
Project 3
Due Thursday, October 18, 2018, 11:59:59pm

1 Introduction

In this project, you will implement RubeVM, a virtual machine for a simple bytecode language. Later in
the semester, you will compile Rube (a simplified Ruby) source code into RubeVM bytecode.

2 RubeVM Fundamentals

Figure 1 defines what the RubeVM instructions are, what values they manipulate, and provides some defi-
nitions that will be useful for the operational semantics. We’ll discuss the figure from top to bottom.

RubeVM is a register-based machine, where registers r are simply numbered starting from 0. We assume
there is an unbounded number of registers. Registers contain values v. The first two kinds of values are
integers n (e.g., 0, 1, 10, -42, etc) and strings s. Values also include identifiers id. When an identifier is
stored in a register, we treat it as a pointer to the function of that name (more on functions later). We also
use identifiers to refer to global variables (but an identifier in a register is always a function pointer). Lastly,
values include locations `, which are pointers to tables, which are stored in the heap. A table t is a mapping
from values to values.

There are many different kinds of RubeVM instructions i. We’ll discuss the semantics of each instruction
in detail below. For now, just observe there are several groups of instructions: Basics (loading constants,
moving values); arithmetic and comparisons; branching; global variable access; table manipulation; and
function calls.

A RubeVM program P is a mapping from function names (id) to function bodies F , which themselves are
mappings from program counters (pc) to instructions. For example, If P is a program with some function
f , then P (f)(0) is the first instruction in function f . Note that program counters are just natural numbers,
but we write them as pc as a reminder of what they’re used for.

When a program runs, it may update the heap H. The heap stores two kinds of mappings in it: locations `
are mapped to tables t, and global variable names id are mapped to values v. In other words, if H is a heap
and ` ∈ dom(H) (` is in the domain of H, i.e., there is a mapping for ` in H), then H(`) will be a table.
Similarly, if H is a heap and id ∈ dom(H), then H(id) will be a value. Tables are not values because they
are mutable in RubeVM.

As RubeVM executes a function, that function may access a register file R, which is just a mapping from
register numbers to values. In RubeVM, each function invocation has its own local registers that are disjoint
with any other function invocation, i.e., the registers are local variables.

Finally, as RubeVM executes, there will be function calls and returns. To handle these, RubeVM main-
tains a stack S. Each stack frame has the form (id, pc, R), where id is the name of the function, pc is the
program counter, and R is the register file. The stack is a sequence of stack frames, separated with ::, with
the top-most frame on the left.

3 RubeVM Operational Semantics

We’ll describe the operational semantics as a small-step semantics over machine states 〈H,S〉, where H is
the heap and S is the stack. Figure 2 gives the operational semantics rules. The column “Reduction” defines
judgments of the form P ` 〈H,S〉 → 〈H ′, S′〉, meaning that one step of execution of program P with heap H
and stack S yields a new heap H ′ and new stack S′. Recall the current function is always on the left of the
stack. Hence in the rules we almost always write the configuration pattern as 〈H, (id, pc, R)::S〉, to indicate
a state with heap H, current function id, current program counter pc, current registers R, and remainder of
the stack S.

1

Registers r ::= 0 | 1 | . . .
Values v ::= n Integers

| s Strings
| id Identifiers
| ` Pointers

Tables t ::= {v0 7→ v′0, . . . , vj 7→ v′j}

Instructions i ::= const r, v Load constant v into r
| mov r1, r2 Store r2 in r1
| add r1, r2, r3 Store r2 + r3 in r1
| sub r1, r2, r3 Store r2 − r3 in r1
| mul r1, r2, r3 Store r2 × r3 in r1
| div r1, r2, r3 Store r2 ÷ r3 in r1
| eq r1, r2, r3 Store 1 in r1 if r2 = r3, else store 0
| lt r1, r2, r3 Store 1 in r1 if r2 < r3, else store 0
| leq r1, r2, r3 Store 1 in r1 if r2 ≤ r3, else store 0
| is int r1, r2 Store 1 in r1 if r2 is an integer, else store 0
| is str r1, r2 Store 1 in r1 if r2 is an string, else store 0
| is tab r1, r2 Store 1 in r1 if r2 is an table, else store 0
| jmp n Jump to offset n from current pc
| if zero r, n Jump to offset n if r = 0, else skip
| rd glob r, id Load global id into r
| wr glob id, r Store r in global id
| mk tab r Create new table and store pointer to it in r
| rd tab r1, r2, r3 Store mapping for key r3 in table r2 into r1
| wr tab r1, r2, r3 Update table r1 to map key r2 to value r3
| has tab r1, r2, r3 Store 1 in r1 if table r2 has mapping for key r3,

else store 0
| call r, n1, n2 Call function r, passing params in registers n1

through n2 (no args if n2 < n1)
| ret r Exit current function, returning r
| halt r Stops execution of the virtual machine

Program P ::= ∅ | P [id 7→ F] Mapping from id to function body
Function body F ::= ∅ | F [pc 7→ i] Mapping from pc to instruction
Heap H ::= ∅ | H[` 7→ t] | H[id 7→ v] Mapping from ` to t and id to v
Register file R ::= ∅ | R[r 7→ v] Mapping from register names to values
Stack S ::= ∅ | (id, pc, R)::S

Figure 1: RubeVM syntax and runtime model.

The column “P (id)(pc)” indicates what the instruction in the current function id at the current program
counter pc must be for this rule to apply. Finally, the “Side conditions” column indicates other conditions
that must be true for this rule to apply. If we wrote these rules correctly, at most one reduction rule should
be possible in any state. It’s also possible no rule may apply, in which case the machine gets stuck.

Next we step through the semantics, from top to bottom.

const r, v Yields a new state that is the same as the old state, except the program counter in the current stack
frame has been incremented by one, and the register file has been updated so that r now maps to v.
Note that this may either mean r is newly added to R, or it may be updated. Notice that in addition

2

Reduction P (id)(pc) Side conditions

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r 7→ v])::S〉 const r, v
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ v)])::S〉 mov r1, r2 R(r2) = v

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ n1 + n2)])::S〉 add r1, r2, r3 R(r2) = n1 ∧R(r3) = n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ n1 − n2)])::S〉 sub r1, r2, r3 R(r2) = n1 ∧R(r3) = n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ n1 × n2)])::S〉 mul r1, r2, r3 R(r2) = n1 ∧R(r3) = n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ n1 ÷ n2)])::S〉 div r1, r2, r3 R(r2) = n1 ∧R(r3) = n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 1)])::S〉 eq r1, r2, r3 R(r2) = v ∧R(r3) = v
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 0)])::S〉 eq r1, r2, r3 R(r2) = v1 ∧R(r3) = v2 ∧ v1 6= v2
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 1)])::S〉 lt r1, r2, r3 R(r2) = n1 ∧R(r3) = n2 ∧ n1 < n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 0)])::S〉 lt r1, r2, r3 R(r2) = n1 ∧R(r3) = n2 ∧ n1 ≥ n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 1)])::S〉 leq r1, r2, r3 R(r2) = n1 ∧R(r3) = n2 ∧ n1 ≤ n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 0)])::S〉 leq r1, r2, r3 R(r2) = n1 ∧R(r3) = n2 ∧ n1 > n2

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 1)])::S〉 is int r1, r2 ∃n.R(r2) = n
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 0)])::S〉 is int r1, r2 6 ∃n.R(r2) = n
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 1)])::S〉 is str r1, r2 ∃s.R(r2) = s
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 0)])::S〉 is str r1, r2 6 ∃s.R(r2) = s
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 1)])::S〉 is tab r1, r2 ∃`.R(r2) = `
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 0)])::S〉 is tab r1, r2 6 ∃`.R(r2) = `

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1 + n,R)::S〉 jmp n
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1 + n,R)::S〉 if zero r, n R(r) = 0
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R)::S〉 if zero r, n R(r) 6= 0

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r 7→ v])::S〉 rd glob r, id2 H(id2) = v
P ` 〈H, (id, pc, R)::S〉 → 〈H[id2 7→ v], (id, pc+ 1, R)::S〉 wr glob id2, r R(r) = v

P ` 〈H, (id, pc, R)::S〉 → 〈H[` 7→ {}], (id, pc+ 1, R[r 7→ `])::S〉 mk tab r ` 6∈ dom(H)
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ v′])::S〉 rd tab r1, r2, r3 R(r2) = ` ∧R(r3) = v∧

H(`) = {. . . , v 7→ v′, . . .}
P ` 〈H, (id, pc, R)::S〉 → 〈H[` 7→ H(`)[v 7→ v′]], (id, pc+ 1, R)::S〉 wr tab r1, r2, r3 R(r1) = ` ∧R(r2) = v ∧R(r3) = v′

P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 1])::S〉 has tab r1, r2, r3 R(r2) = ` ∧R(r3) = v ∧ v ∈ dom(H(`))
P ` 〈H, (id, pc, R)::S〉 → 〈H, (id, pc+ 1, R[r1 7→ 0])::S〉 has tab r1, r2, r3 R(r2) = ` ∧R(r3) = v ∧ v 6∈ dom(H(`))

P ` 〈H, (id, pc, R1)::S〉 → 〈H, (id2, 0, R2):: (id, pc, R1)::S〉 call r, n1, n2 R1(r) = id2∧
R2 = [0 7→ R1(n1), . . . , n2 − n1 7→ R1(n2)]

P ` 〈H, (id, pc, R1):: (id2, pc2, R2)::S〉 → ret r R1(r) = v∧
〈H, (id2, pc2 + 1, R2[n1 7→ v])::S〉 P (id2)(pc2) = call r′, n1, n2

Figure 2: Operational Semantics

to letting registers be initialized with integers and strings, this also lets registers be initialized with a
function pointer. Actually calling a function is a two-step process: The name is loaded into a register
with const , and then that register is used as an operand to the call instruction (discussed below).

Also notice this rule technically lets locations be loaded into registers (like casting an integer to a
pointer in C), but well-behaved programs will never use this behavior. In fact, the assembler we give
you forbids this syntactically.

Almost all the remaining instructions increment the program counter by one, so we will leave that out
of the subsequent discussion unless there is a special case.

3

mov r1, r2 Stores the value v associated with r2 in the current register file in the register r1.

add r1, r2, r3 Updates r1 to contain the sum of the integers in r2 and r3. Notice no behavior for this instruction is
defined if r2 or r3 does not contain an integer.

sub ,mul , div Similar to add .

eq r1, r2, r3 Stores 1 in r1 if r2 and r3 both contain the same value, or 0 if they contain different values. Notice
this instruction can compare any values (integers, strings, identifiers, or locations).

lt , leq Similar to eq , but only allows integer comparisons.

is int r1, r2 stores 1 in r1 if r2 contains an integer or 0 otherwise.

is str r1, r2 stores 1 in r1 if r2 contains a string or 0 otherwise.

is tab r1, r2 stores 1 in r1 if r2 contains a table or 0 otherwise.

jmp n Unconditionally updates the program counter to the previous program counter plus n + 1. Since n is
an integer, it may be negative to jump to an earlier instruction in the function. (The extra plus one
here seems to be standard on VMs and CPUs.) Jumping outside the pc range of the current function
is an error.

if zero r, n Adds n + 1 to the previous program counter if r contains zero, otherwise “falls through” to the next
instruction by adding one to the program counter. Note that it is allowed for R(r) to not be an
integer—that case will always fall through, however.

rd glob r, id2 Stores the value v mapped to id2 in the heap into r.

wr glob id2, r Stores the contents of r into the mapping for id2 in the heap.

mk tab r Generates a fresh location ` that is not already mapped in the heap; updates the heap to map ` to an
empty table; and updates r to contain `.

rd tab r1, r2, r3 Looks up the value v stored in r3 in the table whose location ` is stored in r2, and stores the corre-
sponding value v′ into r1. Note this rule is undefined if v is not a key in the table.

wr tab r1, r2, r3 Updates the table whose location ` is indicated by r1 so that the value v stored in r2 is mapped to the
value v′ stored in r3. This may cause either a new mapping to be added if there was none previously,
or the previous mapping to be replaced.

has tab r1, r2, r3 Writes 1 into r1 if the table whose location ` is indicated by r2 has a mapping for key r3. Otherwise
writes 0 into r1.

call r, n1, n2 The register r must contain an id2 that names a function in the program. Note there is no check here
that id2 must be a valid function name, but if it is not, the semantics will get stuck in the next step.
A new register file R2 is created and initialized with the contents of the current stack frame’s registers
n1 through n2, offset so R(n1) is in register 0, R(n1 + 1) is in register 1, etc. If n2 < n1, the new
register file R2 is empty by definition. Then a new stack frame is pushed onto the stack, with the
callee function name id2, the initial program counter 0, and the initial register file R2. Thus, in the
next step execution will continue inside of id2.

ret r Pops the current stack frame off the stack, incrementing the caller stack frame’s program counter by
one. Also copies the value v in register r to the register n1 in the caller’s stack frame, where n1 is the
initial register indicated in the call instruction that created the current stack frame.

halt r Stops execution of the virtual machine (hence there is no semantics rule for it). This will turn out to
be useful for your compiler. In the implementation, the contents of the register passed halt is printed
(but this is not part of the formal semantics).

4

type reg = [‘L Reg of int]

type value = [‘ L Int of int | ‘ L Str of string | ‘ L Id of string | ‘L Loc of int]

type id = [‘ L Id of string]

type instr =

| I const of reg ∗ value (∗ dst , src ∗)
| I mov of reg ∗ reg (∗ dst , src ∗)
| I add of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I sub of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I mul of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I div of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I eq of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I lt of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I leq of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I is int of reg ∗ reg (∗ dst , src ∗)
| I is str of reg ∗ reg (∗ dst , src ∗)
| I is tab of reg ∗ reg (∗ dst , src ∗)
| I jmp of int (∗ offset ∗)
| I if zero of reg ∗ int (∗ src , offset ∗)
| I rd glob of reg ∗ id (∗ dst , src ∗)
| I wr glob of id ∗ reg (∗ dst , src ∗)
| I mk tab of reg (∗ dst ∗)
| I rd tab of reg ∗ reg ∗ reg (∗ dst , tab, key ∗)
| I wr tab of reg ∗ reg ∗ reg (∗ tab, key, value ∗)
| I has tab of reg ∗ reg ∗ reg (∗ dst , tab, key ∗)
| I call of reg ∗ int ∗ int (∗ dst , first , last ∗)
| I ret of reg (∗ src ∗)

type fn = instr array

type prog = (string , fn) Hashtbl. t

type heap = (value, value) Hashtbl. t

type regs = (int , value) Hashtbl. t

type stack = (string ∗ int ∗ regs) list

type config = heap ∗ stack

Figure 3: Operational Semantics API in OCaml

In addition, if any instruction tries to access a register that doesn’t exist (i.e., that has not yet been
written), that is undefined and should cause the virtual machine to raise an exception.

Finally, to run a program from scratch, we start executing the main function of the program, with the
program counter at 0, an empty register file, and an empty heap. Thus, the initial configuration for program
P is

〈∅, (main , 0, ∅):: ∅〉

The program exits when main returns. That is, when a program reaches a configuration

〈H, (main , pc, R):: ∅〉

and P (main)(pc) = ret r. The value returned from the program is R(r).
(Note it is an error if main , or any other function, runs out of instructions before returning.)

4 Core Implementation in OCaml

Your job is to implement the operational semantics in OCaml. Figure 3 shows a translation of (most of)
Figure 1 into OCaml. Registers, values, and identifiers are given by types reg, value, and id. Notice there is

5

overlap between value and id. Also notice we have arbitrarily decided to represent locations as integers, and
that we have not given you a representation of tables—that choice is up to you. When you do add tables
to the set of values, do not modify the other constructors. For debugging purposes, you will probably want
to add the capability of printing out table values; you’ll want to modify Disassembler.value to do that (just
follow the pattern).

The middle part of the figure shows the instructions. Finally, the bottom part of the figure defines types
for a function body (an array of instructions), the program (an associative list mapping function names to
their bodies), the heap (a mapping from values to values), registers (a mapping from register numbers to
values), the stack (a list of stack frames containing the function name, program counter, and registers), and
the configuration (a pair of heap and stack).

You must implement the following functions in the file rubevm.ml (the first couple are just warmups,
and you may or may not use them in the last two functions):

• max regs p f : prog → string → int takes a program and the name of a function in the program, and
returns the highest numbered register accessed within the body of the function.

• current inst p (h, s) : prog → config → instr takes a program and a configuration, and returns the next
instruction to be executed (i.e., the instruction that run inst would execute if it were called).

• run inst p (h, s) : prog → config → config takes a program and a current configuration, and executes
the next instruction, yielding a new configuration. This function should raise an exception (of your
choice) if the program attempts to do anything that is erroneous in the semantics, i.e., if there is no
reduction rule for that case. Some example erroneous cases are adding two strings, “calling” an integer
as a function, reading a non-existent key in a table, etc. This function should also raise an exception
if is asked to execute a halt instruction.

• run prog p : prog → prog ret runs a program, starting in the initial configuration (as defined above),
until either main returns or the program halts. In the first case, the function should return ‘Reg
v where v is the value returned by main. In the second case, the function should return ‘Halt v where
v is the contents of the register passed to halt .

To help make it a bit easier to write RubeVM programs, we’ve provided you with an assembler. Once you
have a working prototype, you can run a program from scratch as ./main.byte file , where file is the name of
a file containing rubevm assembly code. For an example of a program in this format, see r1.rubevm , which
doesn’t do anything interesting but does include every possible instruction. After a program is executed,
rubevm prints the value returned from running the program.

5 Foreign Functions

The interpreter above is theoretically useful, but programs are still limited in practical terms. For example,
there’s no way to do I/O within the language. To solve this problem, you must extend your interpreter to
perform special handling of certain foreign function calls. In RubeVM, foreign function calls look just like
normal calls (they are invoked with the call instruction as usual), but the interpreter intercepts them and
performs special operations that are written in OCaml rather than in RubeVM code. You must implement
the following foreign functions:

• print string(s) . Prints string s to standard output. This function should print s as-is, e.g., it does not
print a newline after the string. Returns the string that was printed.

• print int(n) . Prints integer n to standard output (again without anything else, e.g., without adding a
newline). Returns the integer (not its string representation) that was printed.

6

• to s(v) . If v is a string, the string is returned as-is. If v is an integer, converts the integer to a string
and returns that string. If v is an identifier, returns the string Function< id > , where id is the name
of the function. Note there should be no extra spaces added, e.g., if foo is the id, then to s would
return Function<foo> and not Function <foo> or Function< foo > etc.

• to i(v) . If v is an integer, returns the integer as-is. If v is a string, converts the string to an integer
and returns that. Your implementation may do whatever you choose if v is a string that contains
characters other than digits and a possible initial minus sign.

• concat(s1, s2) . Returns the concatenation of strings s1 and s2 .

• length(s) . Returns the length of string s .

• size(t) . Returns the number of key-value pairs in table t . (Note t is really a “pointer to a table” in
the internal RubeVM representation.)

• iter(t, f, x) . Calls function f (which in the semantics will be an id) once on each key–value pair in
table t , passing x as a third argument. For example, if k maps to v in the table, the function f will
be called as f(k,v,x) . The iteration order is unspecified (any order is fine). The iter function always
returns 0 .

In all cases, your implementation must abort with an exception (whichever exception you prefer) if a foreign
function is called with the wrong types of arguments. Since there are quite a few foreign functions to
implement, it would probably be a good idea to design your interpreter to make it easy to add new foreign
functions.

Also, if the bytecode defines a function with the same name as a foreign function, then the bytecode
function takes precedence. For example, if the program defines to i , then calling to i should jump to the
program’s function, not the foreign function.

Academic Integrity

The Campus Senate has adopted a policy asking students to include the following statement on each assign-
ment in every course: “I pledge on my honor that I have not given or received any unauthorized assistance
on this assignment.” Consequently your program is requested to contain this pledge in a comment near the
top.

Please carefully read the academic honesty section of the course syllabus. Any evidence of imper-
missible cooperation on projects, use of disallowed materials or resources, or unauthorized use of computer
accounts, will be submitted to the Student Honor Council, which could result in an XF for the course, or
suspension or expulsion from the University. Be sure you understand what you are and what you are not
permitted to do in regards to academic integrity when it comes to project assignments. These policies apply
to all students, and the Student Honor Council does not consider lack of knowledge of the policies to be a
defense for violating them. Full information is found in the course syllabus—please review it at this time.

7

