
Project 4
Due Thursday, November 01, 2018, 11:59:59pm

Introduction

In this project, you will write a compiler for a programming language called Simpl, which is a simple
imperative language with arithmetic, strings, and function calls. Your compiler will translate Simpl source
code into RubeVM byte code (from Project 3).

Project Structure

The project skeleton code is divided up into the following files:

Makefile Makefile
lexer.mll Simpl lexer
parser.mly Simpl parser
ast.mli Abstract syntax tree type
disassembler.ml RubeVM bytecode disassembler
main.ml The main compiler logic
s{1--4}.si Small sample Simpl programs

You will only change main.ml; you should not edit any of the other files. The file main.ml includes code
to run the parser and then compile the input file to a.out. Right now, the generated output file always
contains code that prints Fix me!:

$ make

$./main.byte s1.si

$ rubevm a.out # renamed main.byte from p3 to rubevm

Fix me!

$...

You’ll need to modify the implementation of compile prog in main.ml to perform actual compilation.
You can use your own rubevm from project 3, or you can run as

/afs/glue.umd.edu/class/fall2018/cmsc/430/0201/public/bin/rubevm

(So if you’ve already added that directory to your path, you can just run rubevm.)
In Simpl, the program executes by running a top-level expression. To make it easier to debug and grade

your compiled programs, the programs you generate should take that expression, turn it into a string, and
print it out; more details below.

Simpl Syntax

The formal syntax for Simpl programs is shown in Figure 1. A Simpl program P consists of a sequence of
function definitions, each of which may take any number of arguments. To execute a program, we invoke its
function main, which must take no arguments.

The body of a function consists of a single expression, which is evaluated and returned from the function
call. Simpl expression include integers n and strings "str". Local variables are identifiers id, which are made
up of upper and lower case letters or underscore. Simpl includes read and writing local variables; conditionals
and while loop; sequencing; standard binary operations; table reads and writes; and function calls. Note
that there is no built-in mechanism to create an empty table. Instead, this is done with a special function
call, similar to calling malloc in C.

1

P ::= F ∗ Simpl program
F ::= def id (id, . . . , id) E end Function definition
E ::= v Values

| id Local variable read
| id = E Local variable write
| if E then E else E end Conditional
| while E do E end While loop
| (E) Grouping
| E; E Sequencing
| E ⊕ E Binary operation
| E[E] Table read
| E[E] = E Table write
| id(E, . . . , E) Function call

v ::= n Integers
| "str" Strings

⊕ ::= + | - | * | / | == | < | <= Binary operators

Figure 1: Rube syntax

type bop =

| BPlus | BMinus | BTimes

| BDiv | BEq | BLt | BLeq

type expr =

| EInt of int

| EString of string

| ELocRd of string

| ELocWr of string ∗ expr

| EIf of expr ∗ expr ∗ expr

| EWhile of expr ∗ expr

| ESeq of expr ∗ expr

| EBinOp of expr ∗ bop ∗ expr
| ETabRd of expr ∗ expr
| ETabWr of expr ∗ expr ∗ expr

| ECall of string ∗ (expr list)

(∗ name ∗ arg list ∗ body ∗)
type simpl fn = { fn name : string ;

fn args : string list ;

fn body : expr }

(∗ program is a list of functions ∗)
type simpl prog = simpl fn list

Figure 2: Abstract syntax tree for Simpl

Abstract syntax trees We’ve provided you with a parser that translates Simpl source code into an
abstract syntax tree. Figure 2 shows the OCaml AST data types.

The first few lines define binary operators bop, which are used in expressions.
The type expr is for expressions. Expression EInt n represents the integer n, and EString s repre-

sents the string s. Expression ELocRd s represents (reading) the local variable s. Notice in our abstract
syntax tree, we use strings for the names of local variables. Expression ELocWr(s,e) corresponds to s=e,
where s is a local variable to be assigned the value of expression e. Expression EIf(e1,e2,e3) corre-
sponds to if e1 then e2 else e3 end. Expression EWhile(e1, e2) executes body e2 as long as guard
e1 is true, and the whole expression evaluates to 0. Expression ESeq(e1,e2) corresponds to e1;e2. Ex-
pression EBinOp(e1,b,e2) corresponds to e1 b e2 with binary operator b. Expression ETabRd(e1, e2)

corresponds to e1[e2], and expression ETabWr(e1, e2, e3) corresponds to e1[e2] = e3. Finally, expres-
sion ECall(s,el) corresponds to calling function s with the arguments given in el. (The arguments are in
the same order in the list as in the program text, and may be empty.)

A function simpl fn is a record containing the function name, arguments, and body. Finally, a program
simpl prog is a list of functions.

2

Simpl Semantics

Figure 3 gives the formal, big-step operational semantics for evaluating Simpl expressions (we will discuss
relating these rules to compilation next). Note that you are not implementing these rules directly. Rather,
you are building a compiler such that the output program, when run on the Rube VM, will behave according
to the rules.

These rules show reductions of the form P ` 〈A,H,E〉 → 〈A′, H ′, v〉, meaning that in program P , and
with local variables environment A and heap H, expression E reduces to the value v, producing a new local
variable assignment A′ and a new heap H ′. As usual, we extend the set of values v with locations `, which
are pointers used for tables. The program P is there so we can look up functions. We’ve labeled the rules
so we can refer to them in the discussion:

• The rules Int and Str say that an integer or string evaluates to the expected value, in any environment
and heap, and returning the same environment and heap. In the syntax of Simpl, strings begin and
end with double quotes ", and may not contain double quotes inside them.

• Like Ruby, a local variable can be created by writing to it. The rule Id says that the identifier id
evaluates to whatever value it has in the environment A. If id is not bound in the environment, then
this rule doesn’t apply—and hence your compiled code would signal an error. Reading a local variable
does not change the local variable environment or the heap.

• The rule Id-W says that to write to a local variable id, we evaluate the E to a value v, and we return
a configuration with a new environment A′′ that is the same as A′, except now id is bound to v. The
value v is returned by the assignment expression itself. As just mentioned, it is possible to create a
new local variable by writing to it. (So, you’ll need to do a little extra work to figure out what locals
are used in a function body, hence what registers to allocate for those locals.)

• The rules If-T and If-F say that to evaluate an if-then-else expression, we evaluate the guard, and
depending on whether it evaluates to a non-0 value or 0, we evaluate the then or else branch and return
that. (Notice that any non-0 value, including all strings and all table pointers, are treated as “true.”)
Also notice the order of evaluation here: we evaluate the guard E1, which produces a configuration
〈A1, H1, v1〉, and then we evaluate the then or else branch with that local variable environment and
heap.

• The rules While-T and While-F evaluate a while loop, using the same rule as If-* that 0 is false
and any other value is true. A while loop always evaluates to 0.

• The rule Seq says that to evaluate E1; E2, we evaluate E1 and then evaluate E2, whose value we
return. Note that in the syntax, semicolon is a separator, and does not occur after the last expression.
Thus, for example, 1; 2 is an expression, but 1; 2; is not (and will not parse). Notice again the order
of evaluation between E1 and E2.

• The rule BinOp evaluates a binary operation by evaluating the left side, the right side, and then
returning the result of applying the binary operation. We haven’t formally listed the rules for what
v1 ⊕ v2 means, but they are as follows: +, -, *, /, <, and <= operate only on integers. It is an error to
apply them if one of the arguments is not an integer. Operator == can apply to any operands, though
it’s guaranteed to return false if the two operands are not of the same type. == on integers and strings
should do a “deep” comparison of those quantities, just like in RubeVM. == on tables should be a
“shallow” comparison of the tables, returning true only if both sides point to the same table.

• The rule TabRd evaluates E1, which must resolve to a location `. It next evaluates E2, which resolves
to some value v2. Then it returns the mapping for v2 in the table at location `. It is an error if E1

does not resolve to a location or v2 is not in the table at location `.

3

Int

P ` 〈A,H,n〉 → 〈A,H, n〉
Str

P ` 〈A,H, "str"〉 → 〈A,H, “str”〉

Id
id ∈ dom(A)

P ` 〈A,H, id〉 → 〈A,H,A(id)〉

Id-W
P ` 〈A,H,E〉 → 〈A′, H ′, v〉 A′′ = A′[id 7→ v]

P ` 〈A,H, id = E〉 → 〈A′′, H ′, v〉

If-T
P ` 〈A,H,E1〉 → 〈A1, H1, v1〉 v1 6= 0

P ` 〈A1, H1, E2〉 → 〈A2, H2, v2〉
P ` 〈A,H, if E1 then E2 else E3 end〉 → 〈A2, H2, v2〉

If-F
P ` 〈A,H,E1〉 → 〈A1, H1, 0〉

P ` 〈A1, H1, E3〉 → 〈A3, H3, v3〉
P ` 〈A,H, if E1 then E2 else E3 end〉 → 〈A3, H3, v3〉

While-T
P ` 〈A,H,E1〉 → 〈A1, H1, v1〉 v1 6= 0

P ` 〈A1, H1, E2; while E1 do E2 end〉 → 〈A2, H2, v2〉
P ` 〈A,H, while E1 do E2 end〉 → 〈A2, H2, v2〉

While-F
P ` 〈A,H,E1〉 → 〈A1, H1, 0〉

P ` 〈A,H, while E1 do E2 end〉 → 〈A1, H1, 0〉

Seq

P ` 〈A,H,E1〉 → 〈A1, H1, v1〉 P ` 〈A1, H1, E2〉 → 〈A2, H2, v2〉
P ` 〈A,H, (E1; E2)〉 → 〈A2, H2, v2〉

BinOp
P ` 〈A,H,E1〉 → 〈A1, H1, v1〉 P ` 〈A1, H1, E2〉 → 〈A2, H2, v2〉 v = v1 ⊕ v2

P ` 〈A,H,E1 ⊕ E2〉 → 〈A2, H2, v〉

TabRd
P ` 〈A,H,E1〉 → 〈A1, H1, `〉

P ` 〈A1, H1, E2〉 → 〈A2, H2, v2〉 v = H2(`)(v2)

P ` 〈A,H,E1[E2]〉 → 〈A2, H2, v〉

TabWr
P ` 〈A,H,E1〉 → 〈A1, H1, `〉

P ` 〈A1, H1, E2〉 → 〈A2, H2, v2〉
P ` 〈A2, H2, E3〉 → 〈A3, H3, v3〉 H ′ = H3[`(v2) 7→ v3]

P ` 〈A,H,E1[E2] = E3〉 → 〈A3, H
′, v3〉

Call
P ` 〈A,H,E1〉 → 〈A1, H1, v1〉 . . . P ` 〈An−1, Hn−1, En〉 → 〈An, Hn, vn〉

P (id) = (def id (id1, . . . , idn) E end)
A′ = [id1 : v1, . . . , idn : vn] P ` 〈A′, Hn, E〉 → 〈A′′, H ′′, v〉

P ` 〈A,H, id(E1, . . . , En)〉 → 〈An, H
′′, v〉

Program
P = F ∗ P ` 〈∅, ∅, main()〉 → 〈A′, H ′, v〉

` P ⇒ v

Figure 3: Simpl Operational Semantics

4

• The rule TabWr is similar, except it updates the heap so that the table at location ` maps the key
v2 to the value v3. It returns the value v3.

• The rule Call describes a function call. We evaluate the arguments E1 through En, in order from 1
to n, to produce values. (Notice here the “threading” of the location variable environment and heap
through the evaluation of E1 through En.) Next, we look up the function id in the program; it is an
error if the function does not exist. The function must take the same number of arguments as the
number supplied in the call; however, we will not test that you detect this error. (If you do check for
it, it’s best done at compile time in this language.)

We create a new environment A′ in which each of the formal arguments idi is bound to the actual
arguments vi. (Don’t worry about duplicate parameter names; we won’t test that case.) We evaluate
the body of the function in this new environment A′, and whatever is returned is the value of the
function invocation.

Notice that Simpl has no nested scopes. Thus when you call a function, the environment A′ you
evaluate the function body in is not connected to the environment A from the caller. This makes these
semantics simpler than a language with closures.

• Finally, rule Program explains how to evaluate a Simpl program. We simply evaluate a function call
to main with no arguments, starting in the empty environment and the empty heap.

Errors

The rules above describe how to run a program that behaves correctly. They do not say what to do when
there is an error. This is fairly typical of language definitions, which leave it up to the language implementor
to decide what to do for errors. However, for grading purposes, we do need to specify some of the ways you
should handle errors:

• If a program tries to read a table value that does not exist, it should print halt: Key does not

exist and then exit immediately.

• For any error not on this list, your implementation may report the error in whatever way you prefer;
we will not test these cases.

• Recall that we will not write any test cases that have the following two issues: (1) calling a function
with the wrong number of arguments and (2) having duplicate parameter names.

For all error cases, you should generate a program that reports the error at run time, even if you could
imagine detecting the error at compile time. For example, just by looking at it, we can see the Simpl
expression 0+"foo" will always fail at run-time. But for this project, the code 0+"foo" should compile, and
only when we run it will we get the error.

Note that the way we’ve set up this project, most errors can be left to RubeVM to signal.

Built-in functions

In addition to the core language, Simpl also includes several built-in functions. Your compiler should behave
as if the built-in functions exist at the start of the program. Here are the functions:

• print string(x) – Print string x. Returns x.

• print int(x) – Print integer x. Returns x (the integer, not its string representation).

• to s(x) – If x is a string, return it. If x is an integer, return the integer as a string.

5

• to i(x) – If x is an integer, return it. If x is a string, convert the string to an integer and return it. If
x contains characters other than digits and possibly an initial minus, this may behave arbitrarily.

• concat(x1, x2) – Return concatenation of strings x1 and x2

• length(x) – return length of string x

• size(x) – return number of key-value pairs in table x

• mktab() – return a new, empty table

• is i(x) – return 1 if x is an integer and 0 otherwise

• is s(x) – return 1 if x is a string and 0 otherwise

• is t(x) – return 1 if x is a table and 0 otherwise

Notice these are suspiciously similar to the foreign functions supported in RubeVM, except for the last
four. Thus, you probably don’t need to do much work at all to support these. Also notice that we didn’t
include an iter function; why not?

As in Project 3, if the user defines their own function with the same name as a built-in function, the
user-defined function should take precedence.

Compilation

As mentioned in the introduction, your compiled program should begin by calling main(), which will yield
a value v. The return value should be an integer or string, which should then be printed to standard out.
(We won’t test the case where the return value is not an integer or a string.) Recall from project 3 that the
interpreter already prints the returned integer or string to standard output, so you probably don’t need to
do much to achieve this behavior.

Here are some suggestions for doing the project:

• Notice that Simpl is pretty close in many ways to RubeVM. Thus, if you implement things in the
natural way, the project will be a lot easier, i.e., use RubeVM integers, strings, and tables for Simpl
integers, strings, and tables.

• You don’t have to implement function calls right away, since the program always begins by calling
main; thus you can just hard code that into your compiler.

• To implement local variables, you’ll need to walk through a function’s code and create a mapping from
variables to RubeVM register numbers. Notice that the RubeVM semantics automagically implement
the right behavior for variables (referring to a variable/register that has not been written is an error).
To rephrase in a slightly different way: the generated RubeVM code will refer directly to registers, and
so you won’t actually manipulate local variable names at run time.

• The code for mktab() and is *(x) will be the same for all programs. You can thus hard-code it into
your compiler.

Academic Integrity

The Campus Senate has adopted a policy asking students to include the following statement on each assign-
ment in every course: “I pledge on my honor that I have not given or received any unauthorized assistance
on this assignment.” Consequently your program is requested to contain this pledge in a comment near the
top.

6

Please carefully read the academic honesty section of the course syllabus. Any evidence of imper-
missible cooperation on projects, use of disallowed materials or resources, or unauthorized use of computer
accounts, will be submitted to the Student Honor Council, which could result in an XF for the course, or
suspension or expulsion from the University. Be sure you understand what you are and what you are not
permitted to do in regards to academic integrity when it comes to project assignments. These policies apply
to all students, and the Student Honor Council does not consider lack of knowledge of the policies to be a
defense for violating them. Full information is found in the course syllabus—please review it at this time.

7

