
Project 6
Due Tuesday, December 11, 2018, 11:59:59pm

Introduction

In this project, you will add a static type checking system to the Rube programming language. Recall the
formal syntax for Rube programs, shown in Figure 1. For simplicity, this version of Rube does not support
initializer methods, but it would be straightforward to add those later. In this project, we will extend this
grammar to include static types, and then build a type checker for the resulting language.

To keep everything simpler, this project does not build directly on your Project 5 code. But, it does use
the same lexer and parser, and it should be easy for you to see how you might incorporate type checking
into your compiler.

Project Structure

The project skeleton code is divided up into the following files:

Makefile Makefile
lexer.mll Rube lexer
parser.mly Rube parser
ast.mli Abstract syntax tree type
rubet.ml The main type checker logic
main.ml Parse the specified input file and call type checker
r{1-4}.ru Example inputs that should type check

You will only change rubet.ml, lexer.mll, and parser.mly; you should not edit any of the other files.
The file main.ml includes code to run the parser and then dispatch to the type checker. Right now, the
“type checker” implementation just unparses the input file to standard output, e.g., after running make you
can run:

$./main.byte r1.ru

"Hello, world!".print()

yes

to parse r1.ru and print the parsed result to standard out. You’ll change this code so that the parsed input
is no longer printed to standard output. The yes indicates that this program type checks. In fact, the
current implementation will always print yes, until you implement your type checker.

Part 1: Adding Type Annotations to Rube

Next, we are going to add type annotations to Rube. Figure 2 shows the necessary changes to the source
language. In the revised language, classes begin with field definitions, which include types, followed by
method definitions, which include type annotations on arguments and the method return (this type is to the
left of the method name). We also introduce a new expression (E : T) that performs a dynamic type cast to
check at run time that E has type T .

Types T are simply class names. Our system will include distinguished classes Bot, the class of nil

(which can masquerade as an instance of any class) and Object, the root of the class hierarchy.
Finally, we give a definition of method types MT of the form (T1 × · · · × Tn) → T , which is a method

such that its ith argument has type Ti and it returns type T . Method types are not allowed to appear in
the surface syntax, so you don’t need to parse them; however, they are handy to have during type checking.

1

P ::= C∗ E Rube program
C ::= class id < id begin M∗ end Class definition
M ::= def id (id, . . . , id) begin E end Method definition
E ::= n Integers

| nil Nil
| "str" String
| self Self
| id Local variable
| @id Field
| if E then E else E end Conditional
| while E do E end While loop
| E; E Sequencing
| id = E Local variable write
| @id = E Field write
| new id Object creation
| E instanceof id Object class test
| E.id(E, . . . , E) Method invocation

Figure 1: Rube syntax (without types)

C ::= class id < id begin F ∗ M∗ end Class definition
F ::= @id : T Field type
M ::= def T id (id : T, . . . , id : T) L∗ begin E end Method definition
E ::= ... | (E : T) Type cast
L ::= id : T Local variable type
T ::= id Types

MT ::= (T × · · · × T)→ T Method type

Figure 2: Changes to Rube to add static types

Abstract syntax trees Figure 3 shows the OCaml abstract syntax tree data types for programs with
type annotations. It is quite similar to the grammar for the untyped variant of the language; we’ll highlight
the differences next. Important: Don’t modify these constructors or types. Otherwise our grading scripts
won’t work.

EInvoke(e,s,el) corresponds to calling method s of object e with the arguments given in el. (The
arguments are in the same order in the list as in the program text, and may be empty.) The argument list
is a sequence of pairs containing an optional string and the expression passed as an arugment. The string
is ignored for now. Thus, you may safely assume it is None for parts 1–4. Finally, ECast(e,t) represents a
type cast.

A type typ is just a string, wrapped in the constructor TClass, e.g., TClass "Bot" is the type of nil.
We added a constructor here to make it slightly harder to mix up strings corresponding to types with other
strings. We also define mtyp for method types; we’ll use this as the return type of a key function below.

A method meth is a record containing the method name, return type, arguments (with types), local
variable definitions, and method body. Method arguments also have an optional expression and an optional
string, denoting a default value and a name. You can assume these last two fields are always None. A class
cls is a record containing the class name, superclass, fields, and methods. Finally, a program prog is a
record containing the list of classes and the top-level expression.

What to Do For this part of the project, you must extend the Rube lexer and parser to support the
grammar extensions just described: fields with types; method type annotations; locals with types; and type

2

type expr =

EInt of int

| ENil

| ESelf

| EString of string

| ELocRd of string (∗ Read a local variable ∗)
| ELocWr of string ∗ expr

(∗ Write a local variable ∗)
| EFldRd of string (∗ Read a field ∗)
| EFldWr of string ∗ expr (∗ Write a field ∗)
| EIf of expr ∗ expr ∗ expr

| EWhile of expr ∗ expr

| ESeq of expr ∗ expr

| ENew of string

| EInstanceOf of expr ∗ string

| EInvoke of expr ∗ string ∗
((string option ∗ expr) list)

| ECast of expr ∗ typ

and typ = TClass of string

and mtyp = (typ list) ∗ typ

(∗ meth name ∗ arg name list ∗ method body ∗)
type meth = { meth name : string;

meth ret: typ;

meth args : (string ∗ typ ∗
expr option ∗ string option) list ;

meth locals : (string ∗ typ) list ;

meth body : expr }

(∗ class name ∗ superclass name ∗ methods ∗)
type cls = { cls name : string ;

cls super : string ;

cls fields : (string ∗ typ) list ;

cls meths : meth list }

(∗ classes ∗ top−level expression ∗)
type prog = { prog clss : cls list ;

prog main : expr }

Figure 3: Abstract syntax tree for Rube with type annotations

casts. (As mentioned earlier, method types (with arrows) will never appear in the surface syntax.) Field
types F ∗ should be separated by whitespace, e.g., id1 : T1 id2 : T2 Local variable types should be
separated by commas, e.g., id1 : T1, id2 : T2, Right now the parser does produce ASTs of the form just
described, but it puts type Bot wherever a type is needed, and uses empty lists for the locals and fields.

Part 2: Typing Utilities

To implement type checking for Rube with type annotations, we’ll need the following utility functions. You
should write these functions in rubet.ml. Important: We will test your code by calling these functions
directly, so it’s important you put them in the right file.

In the following functions, you should assume the existence of five built-in classes: Object, Integer,
String, Map, and Bot, where Object is the root of the inheritance hierarchy, Integer, String, and Map

extend Object. The class Bot is the bottom type, and it also has all the methods of Object. Figure 4 gives
type signatures for built-in methods of these classes; you should assume these built-in methods exist.

1. Write a function defined class p c : prog -> string -> bool that returns true if and only if
class c is defined in program p. This function should return true if asked whether Object, Integer,
String, Map, or Bot are defined.

2. Write a function lca class p c1 c2 : prog -> string -> string -> string that, given classes
c1 and c2, returns the lowest common ancestor of classes c1 and c2 in the inheritance hierarchy. For
example, lca class p "String" "Integer" would return "Object". Note that if A is a subclass
of B, then lca class p "A" "B" would return "B". Also, lca class p "A" "A" should return "A".
Finally, for purposes of this function, Bot should be a descendent of every other class, e.g., lca class

p "String" "Bot" would return "String".

3. Write a function castable p t1 t2 : prog -> typ -> typ -> bool that returns true if and only
if a cast from type t1 to type t2 could potentially succeed at runtime, meaning that either t1 is an
ancestor of t2 in the inheritance hierarchy (downcast), t2 is an ancestor of t1 (upcast), or t1 = t2.
For example, castable p (TClass "Object") (TClass "String") would return true, but castable

3

Class Method type

Object equal? : (Object)→ Object equality check
to s : ()→ String convert to string
print : ()→ Bot print to standard out

String + : (String)→ String string concatenation
length : ()→ Integer string length

Integer + : (Integer)→ Integer addition
- : (Integer)→ Integer subtraction
* : (Integer)→ Integer multiplication
/ : (Integer)→ Integer division

Map find : (Object) -> Object return value mapped to key
insert : (Object, Object) -> Bot add key-value mapping
has : (Object) -> Object check whether key is in map
iter : (Object) -> Bot iterate through mapping

Bot No additional methods

Figure 4: Built-in objects and methods

p (TClass "String") (TClass "Integer") would return false. Because of the odd nature of nil,
castable p (TClass x) (TClass "Bot") should always succeed, for any x.

4. Write a function no builtin redef : prog -> bool that returns true if the program does not try
to define classes Object, String, Integer, Map, or Bot. (Note that we have not specified what to do
for programs that redefine user classes; our test cases will never do so, and so it’s up to you how to
handle such cases.)

5. Write a function lookup meth p c m : prog -> string -> string -> mtyp that returns the type
(an mtyp) of method m in class c or, if that method is not defined, it should return the type from
c’s superclass (and so on, recursively up the class hierarchy). This function should raise Not found

if no such method exists in c or in any superclass. Note: Don’t forget about the types of built-in
and inherited methods in Object, String, Integer, Map, and Bot; they should be returned by this
function. (Note that we have not specified any particular behavior if the same method is defined twice
within one class; our test cases will never do so.)

6. Write a function lookup field p c f : prog -> string -> string -> typ that returns the type
of field f in class c. As with lookup meth, it should recursively explore superclasses to find field
definitions if necessary. This function should raise Not found if f is not defined in c or in any of its
superclasses. (Note that we have not specified any particular behavior if the same field is defined twice
within one class; our test cases will never do so.)

Part 3: Subtyping

Since our language includes subclassing, we will need to define a subtyping relationship as part of type
checking. Figure 5 shows the subtyping rules for this language. In words, the rules are as follows:

• Bot states that the bottom type Bot is a subtype of any other type.

• Obj states that any type is a subtype of Object.

• Class says that id1 is a subtype of id2 if id1 is a subclass of id2 in the program text.

• Trans says that subtyping of classes is transitive, and Refl says that subtyping is reflexive.

4

Bot

P ` Bot ≤ T

Obj

P ` T ≤ Object

Class
(class id1 < id2 begin . . . end) ∈ P

P ` id1 ≤ id2

Trans
P ` id1 ≤ id2 P ` id2 ≤ id3

P ` id1 ≤ id3

Refl

P ` id ≤ id

Meth
T ′1 ≤ T1 · · · T ′n ≤ Tn T ≤ T ′

P ` (T1 × · · · × Tn)→ T ≤ (T ′1 × · · · × T ′n)→ T ′

Figure 5: Subtyping

• For convenience, we also define method subtyping in this figure. Meth says that for one method
type to be a subtype of another, the arguments and return types must have the correct subtyping
relationships. Refer to the class notes for an explanation.

Write a function is subtype p t1 t2 : prog -> typ -> typ -> bool that returns true if and only
if type t1 is a subtype of t2 according to this definition. Also write a function is msubtype p mt1 mt2 :

prog -> mtyp -> mtyp -> bool that returns true if and only if method type mt1 is a subtype of method
type mt2 according to this definition.

Next, notice that the subtyping functions you wrote assume that subclasses are actually subtypes (rule
Class); but a programmer could violate this assumption. For example, a programmer could create a class
that overrides a method from a parent class and changes the type of that method in an unsafe way:

class A < Object begin def int m() 42 end end

class B < A begin def string m() "oops!" end end

Thus, the next step is to write a function check class p c : prog -> string -> bool that checks
whether the type annotations in c make that class a valid subtype of its superclass, according to the following
rules:

• For every method m defined in c, the type of m in c must be a subtype of m in its superclass, or m must
not be defined (or inherited) by its superclass. (Use lookup meth to help you here, so that you handle
the case that the superclass inherits its type for m, and to handle the built-in methods of Object,
String, Integer, Map, and Bot.)

• For every field f defined in c, there is no definition of f in any superclass (including transitively). In
other words, shadowing fields in subclasses is not allowed in this language.

• Except for Object, class c may not be an ancestor of itself in the inheritance hierarhcy.

• No class may extend Bot.

• Any type mentioned in a method or field signature must exist in the program, or be a built-in class.

Put is subtype, is msubtype, and check class in rubet.ml.

Part 4: Type Checking

Finally, you must write a function tc prog p : prog -> unit that returns successfully if and only if p type
checks, and otherwise it raises an exception. Put this function in rubet.ml. Figure 6 gives the static type

5

Int

P ;A ` n : Integer

Nil

P ;A ` nil : Bot

Str

P ;A ` "str" : String

Self

P ;A ` self : A(self)

Id
id ∈ dom(A)

P ;A ` id : A(id)

Field-R
A(self) = idself

P ;A ` @id : (lookup field P idself @id)

If
P ;A ` E1 : T1 P ;A ` E2 : T2 P ;A ` E3 : T3

P ;A ` if E1 then E2 else E3 end : lca T2 T3

While
P ;A ` E1 : T1

P ;A ` E2 : T2

P ;A ` while E1 do E2 end : Bot

Seq
P ;A ` E1 : T1

P ;A ` E2 : T2

P ;A ` (E1; E2) : T2

Id-W
P ;A ` id : T P ;A ` E : T ′ P ` T ′ ≤ T

P ;A ` id = E : T

Field-W
P ;A ` @id : T P ;A ` E : T ′ P ` T ′ ≤ T

P ;A ` @id = E : T

New
defined class P id

P ;A ` new id : id

Cast
P ;A ` E : T ′ castable P T ′ T

P ;A ` (E : T) : T

InstanceOf
P ;A ` E : T defined class P id

P ;A ` E instanceof id : Integer

Invoke
P ;A ` E0 : T ′0 · · · P ;A ` En : T ′n

(lookup meth P T ′0 idm) = (T1 × · · ·Tk)→ T
k = n T ′1 ≤ T1 · · · T ′n ≤ Tn

P ;A ` E0.idm(E1, . . . , En) : T

Method
P ; (L∗, id1 : T1, . . . , idn : Tn, self : idc) ` E : T ′ P ` T ′ ≤ T

P ; idc ` def T id (id1 : T1, . . . , idn : Tn) L∗ begin E end

Class
P ; id `M1 · · · P ; id `Mn check class P id

id 6∈ {Object, Integer, String, Bot, Map}
P ` class id < id′ begin F ∗ M1 · · · Mn end

Program
P ` C1 · · · P ` Cn P ; · ` E : T

` C1 · · ·Cn E

Figure 6: Static Type Rules

checking rules that you will translate into OCaml. Here A is a type environment, which as discussed in class
is an associative list mapping local variables to their types. Most of the rules have the form P ;A ` E : T ,
meaning that in program P with environment A, expression E has type T . We’ll explain the other kinds of
rules as we encounter them. We’ve labeled the rules so we can refer to them in the discussion:

• The rules Int, Nil, and Str all say that an integer, nil, or string have the obvious types.

• The local variables of a method include the parameters of the current method, locals defined at the
top of the method, and self, which refers to the object whose method is being invoked. The rules
Self and Id say that self or the identifier id has whatever type is assigned to it in the environment
A. If self or id is not bound in the environment, then this rule doesn’t apply—and hence your type
checker would signal an error.

• The rule Field-R says that when a field is accessed, it has whatever type we get by looking it up
in the program according to the lookup field function you already wrote, finding the current class
by looking up the type of self. Notice that unlike in untyped Rube, it is an error to refer to fields
that have not been pre-defined. Also notice that like Ruby, only fields of self are accessible, and it is
impossible to access a field of another object.

• The rule If says that to type a conditional, the three sub-expressions must all be well-typed, and the
type of the whole if is the least-common ancestor of the types of the then and else branches.

6

• The rule While says that to type a while look, the two sub-expressions must be while-typed, and the
type of the whole While is Bot.

• The rule Seq says that the type of E1; E2 is the type of E2. Notice that this rule requires E1 to be
well typed, but it doesn’t matter what that type is.

• The rule Id-W says that a write to a local variable is well-typed if the type of the right-hand side of the
assignment is a subtype of the variable type. Notice that unlike untyped Rube, it is an error to write
to a variable that hasn’t been defined as either a parameter or local. Notice also that it is an error to
write to the local variable self (which is implicitly syntactically distinct from the non-terminal id),
and your implementation should signal an error in this case.

• Similarly, the rule Field-W says that a field write is well-typed if the type of the right-hand side is
a subtype of the field type. Again, unlike untyped Rube, fields must be defined with types prior to
writing to them.

• The rule New says that a new expression is well-typed if the class being constructed exists in the
program according to the defined class function you wrote earlier. Notice that, as in Java, the class
can appear anywhere in the program—it could be listed before the current class definition or after.

• The rule InstanceOf such that an instanceof expression is well-typed if the subexpression is well-
typed and if the class being tested for exists in the program. The instanceof itself returns an integer
(recall it will return either 1 or nil).

• The rule Cast says that an expression can be type cast if it is well typed and its type is castable to
the type of the cast (using the castable function you wrote earlier). The resulting type of the cast is
the cast-to type.

• The rule Invoke says that for a method invocation to be well-typed, the receiver object expression
and all arguments must be well-typed. Also, the types of the arguments must be subtypes of the
method type we find by looking up idm in whatever class corresponds to the receiver object, using the
lookup meth function you wrote earlier.

Notice that we don’t need to do anything else here, e.g., we don’t need to look inside the method body.
That’s because we’ll separately check that the method actually has the type the lookup meth function
says it has. Neat!

• The rule Method says that for a method definition to be well typed inside of class idc, it must be that
if we typecheck the method body with locals assigned their types as given, parameters assigned their
types as given, and self given type idc, the body of the method has a type T ′ that is a subtype of
the declared method return type. Note the order here says that locals may shadow parameters, which
may shadow self; however, we will not test whether you implement this shadowing.

• The rule Class says that for a class definition to be well typed, all its method definitions must be
well-typed, and the class’s type annotations must be consistent with its superclasses, according to the
check class function you wrote above. There must also be no definitions of Object, Integer, String,
Bot, or Map.

• Finally, rule Program says that for a program to be well-typed, all of its classes must be well-typed,
and its top-level expression must be well-typed under the empty environment. Notice this means the
top-level expression cannot even refer to self!

When you’re writing tc prog, you’ll probably want to write several other functions, including

val tc_expr : prog -> env -> expr -> typ

7

that type checks an expression. It’s up to you to choose the type for env, but something simple like (string

* typ) list should work just fine. (Functions like List.assoc will be handy in working with this type.)
Your type checking functions can raise any exception to signal that a program is ill-typed. We’ve supplied

the exception Type error as a convenient exception to throw, but you’re not required to use it. In main.ml,
there’s code that calls your tc prog function and either prints yes or no, depending on whether tc prog

type checked the input or found a type error (i.e., raised an exception), respectively.

Academic Integrity

The Campus Senate has adopted a policy asking students to include the following statement on each assign-
ment in every course: “I pledge on my honor that I have not given or received any unauthorized assistance
on this assignment.” Consequently your program is requested to contain this pledge in a comment near the
top.

Please carefully read the academic honesty section of the course syllabus. Any evidence of imper-
missible cooperation on projects, use of disallowed materials or resources, or unauthorized use of computer
accounts, will be submitted to the Student Honor Council, which could result in an XF for the course, or
suspension or expulsion from the University. Be sure you understand what you are and what you are not
permitted to do in regards to academic integrity when it comes to project assignments. These policies apply
to all students, and the Student Honor Council does not consider lack of knowledge of the policies to be a
defense for violating them. Full information is found in the course syllabus—please review it at this time.

8

