Practice Problems — Type Systems

Here is the simply typed lambda calculus, extended with integers, and its type system:

e = vlxlee
v u= n|Arite
t o= int|t—t
A = |z:tA
VAR Lam App
INT z € dom(A) vt Ake:t Aber:t—t Abeg:t
Al n:int At x: A(z) AR dzite:t =t AFepeg:t

1. Draw derivations showing that the following typing judgments hold:
(a) -F42:int
(b) y:intk Ax:inty : int — int
(c)
(d)

- Azzint. \y:int.x ¢ int — int — int
+ sant — int — int = (A frint — int.f 42) (Az:zint. + x 3) @ int

To save writing effort, you can write ¢ instead of int.

2. Give a simply typed lambda calculus term that is type-incorrect, and yet it does not get stuck at
run time. Your term must not be typable by the trivial operation of changing type annotations on
parameters. For example, (Az:int — int.z) 3 is not a valid answer.

3. Finally, consider type inference for the simply-typed lambda calculus:

e == vl|xlee

v ou= n|Azve

t = alint|t—t

A = |z:tA

App
VAR LAM Alep:t Al eyt

INT x € dom(A) o, Ake:t a fresh t=t' =B B fresh
At n:int Ak x: Az) AFAdre:a—t Abejes:f

Draw derivations showing type inference applied to the following terms in the empty type environment;
write down a solution to the associated constraints; and write down the fully resolved type of the term.
We’ve done the first one as an example.

(a) (Az.x) 42

e ol AR L 42 - int S a) = (int— B)
e v—— vint - {a = a) = (in

F(Azx)42: 8
Solution: o = 8 = int.
Type: int.
(b) Az A\y.x
(c) Az \y.xy
(d) (Az.Ay.x) 3 42



