
CMSC 430
Introduction to Compilers

Fall 2018

Everything (else) you always wanted to
know about OCaml (but were afraid to ask)

OCaml
• You know it well from CMSC 330
• All programming projects will be in OCaml

■ OCaml is well-designed for building language tools

• In 330, we covered all the basics
■ Tuples, lists, recursion, pattern matching, higher-order

functions, currying, data types, modules, module types,
updatable references

• For larger projects, there’s more to know

 2

Records
• Labeled tuples of values

• Fields are referenced with the dot notation

• All record types are named, and must be complete
in any instance

 3

type course = {title:string; num:int};;
type course = { title : string; num : int; }
let x = {title="Intro to Compilers"; num=430};;
val x : course = {title = "Intro to Compilers"; num = 430}

x.title;;
- : string = "Introduction to Compilers"
x.number;;
- : int = 430

let y = {title="Intro to Compilers"};;
Error: Some record field labels are undefined: num

Records (cont’d)
• Record patterns can include partial matches

• The with construct can be used to modify just part of
a record

 4

let nextNum {num=x} = x;;
val nextNum : course -> int = <fun>

{x with num=431};;
- : course = {title = "Intro to compilers"; num = 431}

Records (cont’d)
• Record fields may be mutable

• In fact, this is what updatable refs translate to

 5

type course = {title:string; mutable num:int};;
type course = { title : string; mutable num : int; }
let x = {num=430; title="Intro to compilers"};;
val x : course = {title = "Intro to compilers"; num = 430}
x.num <- 431;;
- : unit = ()
x;;
- : course = {title = "Intro to compilers"; num = 431}

let y = ref 42;;
val y : int ref = {contents = 42}

Arrays and strings
• OCaml arrays are mutable and bounds-checked

• OCaml strings are also mutable (this will change!)

 6

let x = [|1;2;3|];;
val x : int array = [|1; 2; 3|]
x.(0) <- 4;;
- : unit = ()
x;;
- : int array = [|4; 2; 3|]
x.(4);;
Exception: Invalid_argument "index out of bounds".
x.(-1);;
Exception: Invalid_argument "index out of bounds".

let x = "Hello";;
val x : string = "Hello"
x.[0] <- 'J';;
- : unit = ()
x;;
- : string = "Jello"

Design discussion
• OCaml has several similar constructs

■ Tuples
■ Lists
■ Records
■ Arrays
■ Data types

• Why have all these choices? Do other languages
(e.g., Ruby) have all these different constructs?

 7

Labeled arguments
• OCaml allows arguments to be labeled

• Functions with labeled args can be partially applied

 8

let f ~x ~y = x-y;;
val f : x:int -> y:int -> int = <fun>
f 4 3;;
- : int = 1
f ~y:4 ~x:3;;
- : int = -1

let g = f ~y:4;;
val g : x:int -> int = <fun>
g 3;;
- : int = -1
g ~x:3;;
- : int = -1

Optional arguments
• Labeled arguments may be optional

• One note: type inference with partial applications of
functions with labeled arguments may not always
work

 9

let bump ?(step = 1) x = x + step;;
val bump : ?step:int -> int -> int = <fun>
bump 2;;
- : int = 3
bump ~step:3 2;;
- : int = 5

While and for

• Can you encode while and for only using functions
and recursion?

 10

while true do Printf.printf “Hello\n”;;
Hello
Hello
Hello
...
for i = 1 to 10 do Printf.printf "%d\n" i done;;
1
2
...
10

Modules

 11

module type SHAPES =
 sig
 type shape
 val area : shape -> float
 val unit_circle : shape
 val make_circle : float -> shape
 val make_rect : float -> float -> shape
end;;
 
module Shapes : SHAPES =
 struct
 ...
 let make_circle r = Circle r
 let make_rect x y = Rect (x, y)
 end

Functors
• Modules can take other modules as arguments

■ Such a module is called a functor

• Other examples: Hashtbl, Map, Queue, Stack

 12

module type OrderedType = sig
 type t
 val compare : t -> t -> int
end

module Make(Ord: OrderedType) =
struct ... end

module StringSet = Set.Make(String);;
(* works because String has type t, implements compare *)

Variants
• Recall OCaml data types (also called variants)

• Each constructor name refers to a unique type
■ E.g., Circle always makes a shape

• Some downsides
■ Have to define all such types in advance of uses
■ Can’t accept data coming from two different variants

 13

type shape =
| Circle of float
| Rect of float * float

Polymorphic variants
• Like variants, but permit an unbounded number of

constructors, created anywhere
■ Type inference takes care of matching up various uses

■ “<”—allow fewer tags “>”—allow more tags
■ Can remove this ability by creating a named type

 14

[‘On; ‘Off];;
- : [> ‘Off | ‘On] list = [‘On; ‘Off]
‘Number 1;;
- : [> ‘Number of int] = ‘Number 1
let f = function ‘On -> 1 | ‘Off -> 0 | ‘Number n -> n;;
val f : [< ‘Number of int | ‘Off | ‘On] -> int = <fun>
List.map f [‘On; ‘Off];;
- : int list = [1; 0]

type ’a vlist = [‘Nil | ‘Cons of ’a * ’a vlist];;
type ’a vlist = [‘Cons of ’a * ’a vlist | ‘Nil]

Regular vs. polymorphic variants
• Benefits of polymorphic variants:

■ More flexible
■ If used well, can improve modularity, maintainability

• Benefits of regular variants:
■ More type checking permitted

- Only declared constructors used

- Check for complete pattern matching

- Enforce type constraints on parameters

■ Better error messages
- Sometimes type inference with polymorphic variants subtle

■ Compiler can create slightly more optimized code
- More is known at compile time

 15

A note on OCaml versions
• We will use version 4.03.0

■ Add the following directory to your path:

- Ask a TA if you don’t know how

■ This version should be installed on submit now

• If you are installing OCaml yourself, we recommend
using opam
■ We’ll also use the ounit and Yojson packages

- They are installed on GRACE at the path above

 16

/afs/glue.umd.edu/class/fall2018/cmsc/430/0201/public/bin

