
CMSC 430
Introduction to Compilers

Fall 2018

Lexing and Parsing

Overview
• Compilers are roughly divided into two parts

■ Front-end — deals with surface syntax of the language
■ Back-end — analysis and code generation of the output of

the front-end

• Lexing and Parsing translate source code into form
more amenable for analysis and code generation

• Front-end also may include certain kinds of
semantic analysis, such as symbol table
construction, type checking, type inference, etc.

 2

Lexer
Source
code Parser AST/IRTypes

Lexing vs. Parsing
• Language grammars usually split into two levels

■ Tokens — the “words” that make up “parts of speech”
- Ex: Identifier [a-zA-Z_]+

- Ex: Number [0-9]+

■ Programs, types, statements, expressions, declarations,
definitions, etc — the “phrases” of the language
- Ex: if (expr) expr;

- Ex: def id(id, ..., id) expr end

• Tokens are identified by the lexer
■ Regular expressions

• Everything else is done by the parser
■ Uses grammar in which tokens are primitives
■ Implementations can look inside tokens where needed

 3

Lexing vs. Parsing (cont’d)
• Lexing and parsing often produce abstract syntax

tree as a result
■ For efficiency, some compilers go further, and directly

generate intermediate representations

• Why separate lexing and parsing from the rest of
the compiler?

• Why separate lexing and parsing from each other?

 4

Parsing theory
• Goal of parsing: Discovering a parse tree (or

derivation) from a sentence, or deciding there is no
such parse tree

• There’s an alphabet soup of parsers
■ Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser

- Can parse any context-free grammar (but inefficient)

■ LL(k)
- top-down, parses input left-to right (first L), produces a leftmost

derivation (second L), k characters of lookahead

■ LR(k)
- bottom-up, parses input left-to-right (L), produces a rightmost derivation

(R), k characters of lookahead

• We will study only some of this theory
■ But we’ll start more concretely

 5

Parsing practice
• Yacc and lex — most common ways to write parsers

■ yacc = “yet another compiler compiler” (but it makes
parsers)

■ lex = lexical analyzer (makes lexers/tokenizers)

• These are available for most languages
■ bison/flex — GNU versions for C/C++
■ ocamlyacc/ocamllex — what we’ll use in this class

 6

Example: Arithmetic expressions
• High-level grammar:

■ E → E + E | n | (E)

• What should the tokens be?
■ Typically they are the terminals in the grammar

- {+, (,), n}

- Notice that n itself represents a set of values

- Lexers use regular expressions to define tokens

■ But what will a typical input actually look like?

- We probably want to allow for whitespace

- Notice not included in high-level grammar: lexer can discard it

- Also need to know when we reach the end of the file

- The parser needs to know when to stop
 7

1 + 2 + \n (3 + 4 2) eof

Lexing with ocamllex (.mll)

• Compiled to .ml output file
■ header and trailer are inlined into output file as-is
■ regexps are combined to form one (big!) finite automaton that

recognizes the union of the regular expressions
- Finds longest possible match in the case of multiple matches

- Generated regexp matching function is called entrypoint

 8

(* Slightly simplified format *)
{ header }
rule entrypoint = parse
 regexp_1 { action_1 }
 | …
 | regexp_n { action_n }
and …
{ trailer }

Lexing with ocamllex (.mll)

• When match occurs, generated entrypoint function
returns value in corresponding action
■ If we are lexing for ocamlyacc, then we’ll return tokens that

are defined in the ocamlyacc input grammar

 9

(* Slightly simplified format *)
{ header }
rule entrypoint = parse
 regexp_1 { action_1 }
 | …
 | regexp_n { action_n }
and …
{ trailer }

Example

 10

{
 open Ex1_parser
 exception Eof
}
rule token = parse
 [' ' '\t' '\r'] { token lexbuf } (* skip blanks *)
 | ['\n'] { EOL }
 | ['0'-'9']+ as lxm { INT(int_of_string lxm) }
 | '+' { PLUS }
 | '(' { LPAREN }
 | ')' { RPAREN }
 | eof { raise Eof }

(* token definition from Ex1_parser *)
type token =
 | INT of (int)
 | EOL
 | PLUS
 | LPAREN
 | RPAREN

Generated code

• You don’t need to understand the generated code
■ But you should understand it’s not magic

• Uses Lexing module from OCaml standard lib
• Notice that token rule was compiled to token fn

■ Mysterious lexbuf from before is the argument to token
■ Type can be examined in Lexing module ocamldoc

 11

1 "ex1_lexer.mll" (* line directives for error msgs *)

 open Ex1_parser
 exception Eof

7 "ex1_lexer.ml"
let __ocaml_lex_tables = {...} (* table-driven automaton *)
let rec token lexbuf = ... (* the generated matching fn *)

Lexer limitations
• Automata limited to 32767 states

■ Can be a problem for languages with lots of keywords

■ Solution?

 12

rule token = parse
 "keyword_1" { ... }
| "keyword_2" { ... }
| ...
| "keyword_n" { ... }
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
 { IDENT id}

Parsing
• Now we can build a parser that works with lexemes

(tokens) from token.mll
■ Recall from 330 that parsers work by consuming one

character at a time off input while building up parse tree
■ Now the input stream will be tokens, rather than chars

■ Notice parser doesn’t need to worry about whitespace,
deciding what’s an INT, etc

 13

1 + 2 + \n (3 + 4 2) eof

INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof

Suitability of Grammar
• Problem: our grammar is ambiguous

■ E → E + E | n | (E)
■ Exercise: find an input that shows ambiguity

• There are parsing technologies that can work with
ambiguous grammars
■ But they’ll provide multiple parses for ambiguous strings,

which is probably not what we want

• Solution: remove ambiguity
■ One way to do this from 330:
■ E → T | E + T
■ T → n | (E)

 14

Parsing with ocamlyacc (.mly)

 15

%{
 header
%}
 declarations
%%
 rules
%%
 trailer

• Compiled to .ml and .mli files
■ .mli file defines token type and entry point main for parsing

- Notice first arg to main is a fn from a lexbuf to a token, i.e., the function
generated from a .mll file!

type token =
 | INT of (int)
 | EOL
 | PLUS
 | LPAREN
 | RPAREN

val main :
 (Lexing.lexbuf -> token) ->
 Lexing.lexbuf -> int.mly input

.mli output

Parsing with ocamlyacc (.mly)

 16

%{
 header
%}
 declarations
%%
 rules
%%
 trailer

• .ml file uses Parsing library to do most of the work
■ header and trailer copied direct to output
■ declarations lists tokens and some other stuff
■ rules are the productions of the grammar

- Compiled to yytables; this is a table-driven parser Also include actions that
are executed as parser executes

- We’ll see an example next

(* header *)
type token = ...
...
let yytables = ...
(* trailer *)

.mly input

.ml output

Actions
• In practice, we don’t just want to check whether an

input parses; we also want to do something with the
result
■ E.g., we might build an AST to be used later in the compiler

• Thus, each production in ocamlyacc is associated
with an action that produces a result we want

• Each rule has the format
■ lhs: rhs {act}
■ When parser uses a production lhs → rhs in finding the

parse tree, it runs the code in act
■ The code in act can refer to results computed by actions of

other non-terminals in rhs, or token values from terminals in
rhs

 17

Example

 18

%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%%
main:
| expr EOL { $1 } (* 1 *)
expr:
| term { $1 } (* 2 *)
| expr PLUS term { $1 + $3 } (* 3 *)
term:
| INT { $1 } (* 4 *)
| LPAREN expr RPAREN { $2 } (* 5 *)

• Several kinds of declarations:
■ %token — define a token or tokens used by lexer
■ %start — define start symbol of the grammar
■ %type — specify type of value returned by actions

Actions, in action

 19

INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof

main:
| expr EOL { $1 }
expr:
| term { $1 }
| expr PLUS term { $1 + $3 }
term:
| INT { $1 }
| LPAREN expr RPAREN { $2 }

. 1+2+(3+42)$

term[1].+2+(3+42)$

expr[1].+2+(3+42)$

expr[1]+term[2].+(3+42)$

expr[3].+(3+42)$

expr[3]+(term[3].+42)$

expr[3]+(expr[3].+42)$

expr[3]+(expr[3]+term[42].)$

expr[3]+(expr[45].)$

expr[3]+term[45].$

expr[48].$

main[48]

■ The “.” indicates where
we are in the parse
■ We’ve skipped several

intermediate steps
here, to focus only on
actions

■ (Details next)

term[1]

Actions, in action

 20

INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof

main:
| expr EOL { $1 }
expr:
| term { $1 }
| expr PLUS term { $1 + $3 }
term:
| INT { $1 }
| LPAREN expr RPAREN { $2 }

1

expr[1] term[2]

2

expr[3]

+

term[3]

expr[3] term[42]

42

expr[45]

+

3

term[45]

()

expr[48]

+

main[48]

Invoking lexer/parser

• Tip: can also use Lexing.from_string and
Lexing.from_function

 21

try
 let lexbuf = Lexing.from_channel stdin in
 while true do
 let result = Ex1_parser.main Ex1_lexer.token lexbuf in
 print_int result; print_newline(); flush stdout
 done
with Ex1_lexer.Eof ->
 exit 0

Terminology review
• Derivation

■ A sequence of steps using the productions to go from the start
symbol to a string

• Rightmost (leftmost) derivation
■ A derivation in which the rightmost (leftmost) nonterminal is

rewritten at each step

• Sentential form
■ A sequence of terminals and non-terminals derived from the

start-symbol of the grammar with 0 or more reductions
■ I.e., some intermediate step on the way from the start symbol to

a string in the language of the grammar

• Right- (left-)sentential form
■ A sentential form from a rightmost (leftmost) derivation

• FIRST(α)
■ Set of initial symbols of strings derived from α 22

Bottom-up parsing
• ocamlyacc builds a bottom-up parser

■ Builds derivation from input back to start symbol

• To reduce γi to γi–1
■ Find production A → β where β is in γi, and replace β with A

• In terms of parse tree, working from leaves to root
■ Nodes with no parent in a partial tree form its upper fringe
■ Since each replacement of β with A shrinks upper fringe,

we call it a reduction.

• Note: need not actually build parse tree
■ |parse tree nodes| = |input| + |reductions|

 23

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ input
bottom-up

 24

Bottom-up parsing, illustrated

x y

S

B
α

γ

S ⇒* α B y ⇒ α γ y ⇒* x y

rule B → γ

Upper fringe: solid
Yet to be parsed: dashed

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead

 25

Bottom-up parsing, illustrated

x y

S

B
α

S ⇒* α B y ⇒ α γ y ⇒* x y

rule B → γ

Upper fringe: solid
Yet to be parsed: dashed

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead

Finding reductions
• Consider the following grammar

1. S → a A B e
2. A → A b c
3. | b
4. B → d

• How do we find the next reduction?
• How do we do this efficiently?

 26

Sentential
Form Production Position

abbcde 3 2
aAbcde 2 4
aAde 4 3
aABe 1 4

S N/A N/A
Input: abbcde

Handles
• Goal: Find substring β of tree’s frontier that matches

some production A → β
■ (And that occurs in the rightmost derivation)
■ Informally, we call this substring β a handle

• Formally,
■ A handle of a right-sentential form γ is a pair (A→β,k) where

- A→β is a production and k is the position in γ of β’s rightmost symbol.

- If (A→β,k) is a handle, then replacing β at k with A produces the right
sentential form from which γ is derived in the rightmost derivation.

■ Because γ is a right-sentential form, the substring to the
right of a handle contains only terminal symbols
- ⇒ the parser doesn’t need to scan past the handle (only lookahead)

 27

Example
• Grammar

1. S → E
2. E → E + T
3. | E - T
4. | T
5. T → T * F
6. | T / F
7. | F
8. F → n
9. | id
10. | (E)

 28

Production Sentential
Form

Handle
(prod,k)

S
1 E 1,1
3 E-T 3,3
5 E-T*F 5,5
9 E-T*id 9,5
7 E-F*id 7,3
8 E-n*id 8,3
4 T-n*id 4,1
7 F-n*id 7,1
9 id-n*id 9,1

Handles for rightmost derivation of id-n*id

Finding reductions
• Theorem: If G is unambiguous, then every right-

sentential form has a unique handle
■ If we can find those handles, we can build a derivation!

• Sketch of Proof:
■ G is unambiguous ⇒ rightmost derivation is unique

■ ⇒ a unique production A → β applied to derive γi from γi–1

■ and a unique position k at which A→β is applied
■ ⇒ a unique handle (A→β,k)

• This all follows from the definitions

 29

Bottom-up handle pruning
• Handle pruning: discovering handle and reducing it

■ Handle pruning forms the basis for bottom-up parsing

• So, to construct a rightmost derivation

• Apply the following simple algorithm

■ This takes 2n steps

 30

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ input

for i ← n to 1 by –1

 Find handle (Ai →βi , ki) in γi

 Replace βi with Ai to generate γi–1

Shift-reduce parsing algorithm
• Maintain a stack of terminals and non-terminals

matched so far
■ Rightmost terminal/non-terminal on top of stack
■ Since we’re building rightmost derivation, will look at top

elements of stack for reductions

 31

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input
 report an error

Potential errors
• Can’t find handle
• Reach end of file

Example
• Grammar

1. S → E
2. E → E + T
3. | E - T
4. | T
5. T → T * F
6. | T / F
7. | F
8. F → n
9. | id
10. | (E)

 32

Stack Input Handle
(prod,k)

Action

id-n*id none shift
id -n*id 9,1 reduce 9
F -n*id 7,1 reduce 7
T -n*id 4,1 reduce 4
E -n*id none shift
E- n*id none shift
E-n *id 8,3 reduce 8
E-F *id 7,3 reduce 7
E-T *id none shift
E-T* id none shift
E-T*id 9,5 reduce 9
E-T*F 5,5 reduce 5
E-T 3,3 reduce 3
E 1,1 reduce 1
S none accept

Shift/reduce parse of id-n*id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce

Parse tree for example

 33

S

id

T

F

E –

E

id

n

F

FT

T

*

Algorithm actions
• Shift-reduce parsers have just four actions

■ Shift — next word is shifted onto the stack
■ Reduce — right end of handle is at top of stack

- Locate left end of handle within the stack

- Pop handle off stack and push appropriate lhs

■ Accept — stop parsing and report success
■ Error — call an error reporting/recovery routine

• Cost of operations
■ Accept is constant time
■ Shift is just a push and a call to the scanner
■ Reduce takes |rhs| pops and 1 push

- If handle-finding requires state, put it in the stack ⇒ 2x work

■ Error depends on error recovery mechanism
 34

Finding handles
• To be a handle, a substring of sentential form γ must :

■ Match the right hand side β of some rule A → β
■ There must be some rightmost derivation from the start

symbol that produces γ with A → β as the last production
applied

■ ⇒ Looking for rhs’s that match strings is not good enough

• How can we know when we have found a handle?
■ LR(1) parsers use DFA that runs over stack and finds them

- One token look-ahead determines next action (shift or reduce) in each
state of the DFA.

■ A grammar is LR(1) if we can build an LR(1) parser for it

• LR(0) parsers: no look-ahead

 35

LR(1) parsing
• Can use a set of tables to describe LR(1) parser

■ ocamlyacc automates the process of building the tables
- Standard library Parser module interprets the tables

■ LR parsing invented in 1965 by Donald Knuth
■ LALR parsing invented in 1969 by Frank DeRemer

 36

Scanner Table-driven
Parser

ACTION &
GOTO
Tables

Parser
Generator

source
code

grammar

output

LR(1) parsing algorithm
• Two tables

■ ACTION: reduce/shift/accept
■ GOTO: state to be in after reduce

• Cost
■ |input| shifts
■ |derivation| reductions
■ One accept

• Detects errors by failure to shift,
reduce, or accept

 37

stack.push(INVALID); stack.push(s0);
not_found = true;
token = scanner.next_token();
do while (not_found) {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) {
 stack.popnum(2*|β|); // pop 2*|β| symbols
 s = stack.top();
 stack.push(A);
 stack.push(GOTO[s,A]);
 }
 else if (ACTION[s,token] == “shift si”) {
 stack.push(token); stack.push(si);
 token ← scanner.next_token();
 }
 else if (ACTION[s,token] == “accept” && token == EOF)
 not_found = false;
 else report a syntax error and recover;
}
report success;

Example parser table
• ocamlyacc -v ex1_parser.mly — produce .output file

with parser table

 38

state

action goto

productions. EOL + N () main expr term
0 (special)

1 s3 s4 acc 6 7 entry → . main

2 (special)
3 r4 term → INT .

4 s3 s4 8 7 term → (. expr)

5 (special)

6 s9 s10 main → expr . EOL | expr → expr . + term
7 r2 expr → term .

8 s10 s11 expr → expr . + term | term → (expr .)

9 r1 main → expr EOL .

10 s3 s4 12 expr → expr + . term

11 r5 term → (expr) .

12 r3 expr → expr + term .

NB: Numbers in shift refer to state numbers

 Numbers in reduction refer to production numbers

Example parse (N+N+N)

 39

Stack Input Action

1 N+N+N s3

1,N,3 +N+N r4

1,term,7 +N+N r2

1,expr,6 +N+N s10

1,expr,6,+,10 N+N s3
1,expr,6,+,10,N,3 +N r4

1,expr,6,+,10,term,12 +N r3

1,expr,6 +N s10

1,expr,6,+,10 N s3

1,expr,6,+,10,N,3 r4

1,expr,6,+,10,term,12 r3
1,expr,6 s9

1,expr,6,EOL,9 r1

accept

Example parser table (cont’d)
• Notes

■ Notice derivation is built up (bottom to top)
■ Table only contains kernel of each state

- Apply closure operation to see all the productions in the state

• LR(1) parsing requires start symbol not on any rhs
■ Thus, ocamlyacc actually adds another production

- %entry% → \001 main

- (so the acc in the previous table is a slight fib)

• Values returned from actions stored on the stack
■ Reduce triggers computation of action result

 40

Why does this work?
• Stack = upper fringe

■ So all possible handles on top of stack
■ Shift inputs until top elements of stack form a handle

• Build a handle-recognizing DFA
■ Language of handles is regular
■ ACTION and GOTO tables encode the DFA

- Shift = DFA transition

- Reduce = DFA accept

- New state = GOTO[state at top of stack (afetr pop), lhs]

• If we can build these tables, grammar is LR(1)

 41

LR(k) items
• An LR(k) item is a pair [P, δ], where

■ P is a production A→β with a • at some position in the rhs
■ δ is a lookahead string of length ≤ k (words or $)
■ The • in an item indicates the position of the top of the stack

• LR(1):
■ [A→•βγ,a] — input so far consistent with using A →βγ

immediately after symbol on top of stack
■ [A →β•γ,a] — input so far consistent with using A →βγ at

this point in the parse, and parser has already recognized β
■ [A →βγ•,a] — parser has seen βγ, and lookahead of a

consistent with reducing to A

• LR(1) items represent valid configurations of an
LR(1) parser; DFA states are sets of LR(1) items

 42

LR(k) items, cont’d
• Ex: A→BCD with lookahead a can yield 4 items

■ [A→•BCD,a], [A→B•CD,a], [A→BC•D,a], [A→BCD•,a]
■ Notice: set of LR(1) items for a grammar is finite

• Carry lookaheads along to choose correct reduction
■ Lookahead has no direct use in [A→β•γ,a]
■ In [A→β•,a], a lookahead of a ⇒ reduction by A →β

■ For { [A→β•,a],[B→γ•δ,b] }
- Lookahead of a ⇒ reduce to A

- FIRST(δ) ⇒ shift

- (else error)

 43

LR(1) table construction
• States of LR(1) parser contain sets of LR(1) items

• Initial state s0
• Assume S’ is the start symbol of grammar, does not appear in rhs

• (Extend grammar if necessary to ensure this)

• s0 = closure([S’ →•S,$]) ($ = EOF)

• For each sk and each terminal/non-terminal X, compute
new state goto(sk,X)
• Use closure() to “fill out” kernel of new state

• If the new state is not already in the collection, add it

• Record all the transitions created by goto()

• These become ACTION and GOTO tables

• i.e., the handle-finding DFA

• This process eventually reaches a fixpoint

 44

Closure()
• [A→β•Bδ,a] implies [B→•γ,x] for each production

with B on lhs and each x ∈ FIRST(δa)
- (If you’re about to see a B, you may also see a ɣ)

 45

Closure(s)
 while (s is still changing)
 ∀ items [A → β •Bδ,a] ∈ s // item with • to left of nonterminal B
 ∀ productions B → γ ∈ P // all productions for B
 ∀ b ∈ FIRST(δa) // tokens appearing after B
 if [B → • γ,b] ∉ s // form LR(1) item w/ new lookahead
 then add [B→ • γ,b] to s // add item to s if new

• Classic fixed-point method

• Halts because s ⊂ ITEMS (worklist version is faster)

•Closure “fills out” a state

Example — closure with LR(0)
S → E
E → T+E
 | T
T → id

 46

[S → • E]
[E → • T+E]
[E → • T]
[T → • id]

[kernel item]
[derived item]

[E → T+ • E]
[E → • T+E]
[E → • T]
[T → • id]

Example — closure with LR(1)
S → E
E → T+E
 | T
T → id

 47

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[kernel item]
[derived item] [E → T+ • E, $]

[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

Goto
• Goto(s,x) computes the state that the parser would

reach if it recognized an x while in state s
■ Goto({ [A→β•Xδ,a] }, X) produces [A→βX•δ,a]
■ Should also includes closure([A→βX•δ,a])

 48

Goto(s, X)
 new ←Ø
 ∀ items [A→β•Xδ,a] ∈ s // for each item with • to left of X
 new ← new ∪ [A→βX•δ,a] // add item with • to right of X

 return closure(new) // remember to compute closure!

• Not a fixed-point method!

• Straightforward computation

• Uses closure ()
•Goto() moves forward

Example — goto with LR(0)
S → E
E → T+E
 | T
T → id

 49

[S → • E]
[E → • T+E]
[E → • T]
[T → • id]

[kernel item]
[derived item]

[S → E •]

[E → T • +E]
[E → T •]

[T → id •]

E

T

id

Example — goto with LR(1)
S → E
E → T+E
 | T
T → id

 50

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $][kernel item]

[derived item]

[S → E •, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

E

T

id

Building parser states

• CC = canonical collection (of LR(k) items)
• Fixpoint computation (worklist version)
• Loop adds to CC

■ CC ⊆ 2ITEMS, so CC is finite

 51

cc0 ← closure ([S’→ •S, $])
CC ← { cc0 }

while (new sets are still being added to CC)
 for each unmarked set ccj ∈ CC
 mark ccj as processed
 for each x following a • in an item in ccj
 temp ← goto(ccj, x)
 if temp ∉ CC
 then CC ← CC ∪ { temp }
 record transitions from ccj to temp on x

Example LR(0) states
S → E
E → T+E
 | T
T → id

 52

[S → • E]
[E → • T+E]
[E → • T]
[T → • id]

[S → E •]

[E → T • +E]
[E → T •]

[T → id •]

E

T

id

[E → T + • E]
[E → • T+E]
[E → • T]
[T → • id]

[E → T + E •]

id
E

+

T

Example LR(1) states
S → E
E → T+E
 | T
T → id

 53

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → E •, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

E

T

id

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + E •, $]

id

E

+

T

Building ACTION and GOTO tables

• Many items generate no table entry
■ e.g., [A→β⋅Bα,a] does not, but closure ensures that all the

rhs’s for B are in sx

 54

∀ set sx ∈ S
 ∀ item i ∈ sx

 if i is [A→β •a γ,b] and goto(sx,a) = sk, a ∈ terminals // • to left of terminal a
 then ACTION[x,a] ← “shift k” // ⇒ shift if lookahead = a

 else if i is [S’→S •,$] // start production done,
 then ACTION[x , $] ← “accept” // ⇒ accept if lookahead = $

 else if i is [A→β •,a] // • all the way to right
 then ACTION[x,a] ← “reduce A→β” // → production done
 ∀ n ∈ nonterminals // reduce if lookahead = a
 if goto(sx ,n) = sk

 then GOTO[x,n] ← k // store transitions for nonterminals

Ex ACTION and GOTO tables
1.S → E
2.E → T+E
3. | T
4.T → id

 55

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → E •, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

E

T

id

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3
S3 r4 r4
S4 s3 5 2
S5 r2

S0

S1

S2

S3

S4

S5

Ex ACTION and GOTO tables
1.S → E
2.E → T+E
3. | T
4.T → id

 56

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → E •, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

E

T

id

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3
S3 r4 r4
S4 s3 5 2
S5 r2

S0

S1

S2

S3

S4

S5

Entries
for

shift

Ex ACTION and GOTO tables
1.S → E
2.E → T+E
3. | T
4.T → id

 57

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → E •, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

E

T

id

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3
S3 r4 r4
S4 s3 5 2
S5 r2

S0

S1

S2

S3

S4

S5

Entry
for

accept

Ex ACTION and GOTO tables
1.S → E
2.E → T+E
3. | T
4.T → id

 58

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → E •, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

E

T

id

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3
S3 r4 r4
S4 s3 5 2
S5 r2

S0

S1

S2

S3

S4

S5

Entries
for

reduce

Ex ACTION and GOTO tables
1.S → E
2.E → T+E
3. | T
4.T → id

 59

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → E •, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

E

T

id

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3
S3 r4 r4
S4 s3 5 2
S5 r2

S0

S1

S2

S3

S4

S5

Entries
for

GOTO

What can go wrong?
• What if set s contains [A→β•aγ,b] and [B→β•,a] ?

■ First item generates “shift”, second generates “reduce”
■ Both define ACTION[s,a] — cannot do both actions
■ This is a shift/reduce conflict

• What if set s contains [A→γ•, a] and [B→γ•, a] ?
■ Each generates “reduce”, but with a different production
■ Both define ACTION[s,a] — cannot do both reductions
■ This is called a reduce/reduce conflict

• In either case, the grammar is not LR(1)

 60

Shift/reduce conflict

• Associativity unspecified
■ Ambiguous grammars always have conflicts
■ But, some non-ambiguous grammars also have conflicts

 61

%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%%
main:
| expr EOL { $1 }
expr:
| INT { $1 }
| expr PLUS expr { $1 + $3 }
| LPAREN expr RPAREN { $2 }

Solving conflicts
• Refactor grammar
• Specify operator precedence and associativity

■ Lots of details here
- See “12.4.2 Declarations” at

- http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html#htoc151

■ When comparing operator on stack with lookahead
- Shift if lookahead has higher prec OR same prec, right assoc

- Reduce if lookahead has lower prec OR same prec, left assoc

■ Can use smaller, simpler (ambiguous) grammars
- Like the one we just saw

 62

%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */

http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html#

 63

Left vs. right recursion
• Right recursion

■ Required for termination in top-down parsers
■ Produces right-associative operators

• Left recursion
■ Works fine in bottom-up parsers
■ Limits required stack space
■ Produces left-associative operators

• Rule of thumb
■ Left recursion for bottom-up parsers
■ Right recursion for top-down parsers

*
*

*w

x

y
z

w * (x * (y * z))

*
*

* z

w
x

y

((w * x) * y) * z

Reduce/reduce conflict (1)

• Often these conflicts suggest a serious problem
■ Here, there’s a deep ambiguity

 64

%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%%
main:
| expr EOL { $1 }
expr:
| INT { $1 }
| term { $1 }
| term PLUS expr { $1 + $3 }
term :
| INT { $1 }
| LPAREN expr RPAREN { $2 }

Reduce/reduce conflict (2)

• Grammar not ambiguous, but not enough lookahead
to distinguish last two expr productions

 65

%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%%
main:
| expr EOL { $1 }
expr:
| term1 { $1 }
| term1 PLUS PLUS expr { $1 + $4 }
| term2 PLUS expr { $1 + $3 }
term1 :
| INT { $1 }
| LPAREN expr RPAREN { $2 }
term2 :
| INT { $1 }

Shrinking the tables
• Combine terminals

■ E.g., number and identifier, or + and -, or * and /
- Directly removes a column, may remove a row

• Combine rows or columns (table compression)
■ Implement identical rows once and remap states
■ Requires extra indirection on each lookup
■ Use separate mapping for ACTION and for GOTO

• Use another construction algorithm
■ LALR(1) used by ocamlyacc

 66

LALR(1) parser
• Define the core of a set of LR(1) items as

■ Set of LR(0) items derived by ignoring lookahead symbols

• LALR(1) parser merges two states if they have the
same core

• Result
■ Potentially much smaller set of states
■ May introduce reduce/reduce conflicts
■ Will not introduce shift/reduce conflicts

 67

[E → a •, b]
[A → a •, c]

[E → a •]
[A → a •]

LR(1) state Core

LALR(1) example

• Introduces reduce/reduce conflict
■ Can reduce either E → a or A → ba for lookahead = b

 68

[E → a •, b]
[A → ba •, c]

[E → a •, d]
[A → ba •, b]

LR(1) states

[E → a •, b]
[A → ba •, c]
[E → a •, d]
[A → ba •, b]

Merged state

LALR(1) vs. LR(1)
• Example grammar

• LR(0) ?

• LR(1) ?

• LALR(1) ?

 69

S’ → S
S → aAd | bBd | aBe | bAe
A → c
B → c

 70

LR(k) Parsers
• Properties

■ Strictly more powerful than LL(k) parsers
■ Most general non-backtracking shift-reduce parser
■ Detects error as soon as possible in left-to-right scan of

input
- Contents of stack are viable prefixes

- Possible for remaining input to lead to successful parse

Error handling (lexing)
• What happens when input not handled by any lexing

rule?
■ An exception gets raised
■ Better to provide more information, e.g.,

• Even better, keep track of line numbers
■ Store in a global-ish variable (oh no!)
■ Increment as a side effect whenever \n recognized

 71

rule token = parse
...

| _ as lxm { Printf.printf "Illegal character %c" lxm;
 failwith "Bad input" }

Error handling (parsing)
• What happens when parsing a string not in the

grammar?
■ Reject the input
■ Do we keep going, parsing more characters?

- May cause a cascade of error messages

- Could be more useful to programmer, if they don’t need to stop at the
first error message (what do you do, in practice?)

• Ocamlyacc includes a basic error recovery
mechanism
■ Special token error may appear in rhs of production
■ Matches erroneous input, allowing recovery

 72

Error example (1)

• If unexpected input appears while trying to match
expr, match token to error
■ Effectively treats token as if it is produced from expr
■ Triggers error action

 73

...
expr:
| term { $1 }
| expr PLUS term { $1 + $3 }
| error { Printf.printf "invalid expression"; 0 }
term: ...

Error example (2)

• If unexpected input appears while trying to match
term, match tokens to error
■ Pop every state off the stack until LPAREN on top
■ Scan tokens up to RPAREN, and discard those, also
■ Then match error production

 74

...
term:
| INT { $1 }
| LPAREN expr RPAREN { $2 }
| LPAREN error RPAREN {Printf.printf "Syntax error!\n"; 0}

Error recovery in practice
• A very hard thing to get right!

■ Necessarily involves guessing at what malformed inputs
you may see

• How useful is recovery?
■ Compilers are very fast today, so not so bad to stop at first

error message, fix it, and go on
■ On the other hand, that does involve some delay

• Perhaps the most important feature is good error
messages
■ Error recovery features useful for this, as well
■ Some compilers are better at this than others

 75

OCamlyacc tip
• Setting OCAMLRUNPARAM=p will cause the

parsing steps to be printed out as the parser runs
• (And setting OCAMLRUNPARAM=b will tell OCaml

to print a stack backtrace for any thrown
exceptions.)

 76

Real programming languages
• Essentially all real programming languages don’t

quite work with parser generators
■ Even Java is not quite LALR(1)

• Thus, real implementations play tricks with parsing
actions to resolve conflicts

• In-class exercise: C typedefs and identifier
declarations/definitions

 77

Additional Parsing Technologies
• For a long time, parsing was a “dead” field

■ Considered solved a long time ago

• Recently, people have come back to it
■ LALR parsing can have unnecessary parsing conflicts
■ LALR parsing tradeoffs more important when computers

were slower and memory was smaller

• Many recent new (or new-old) parsing techniques
■ GLR — generalized LR parsing, for ambiguous grammars
■ LL(*) — ANTLR
■ Packrat parsing — for parsing expression grammars
■ etc...

• The input syntax to many of these looks like yacc/
lex

 78

Designing language syntax
• Idea 1: Make it look like other, popular languages

■ Java did this (OO with C syntax)

• Idea 2: Make it look like the domain
■ There may be well-established notation in the domain (e.g.,

mathematics)
■ Domain experts already know that notation

• Idea 3: Measure design choices
■ E.g., ask users to perform programming (or related) task

with various choices of syntax, evaluate performance,
survey them on understanding
- This is very hard to do!

• Idea 4: Make your users adapt
■ People are really good at learning...

 79

