CMSC 430
 Introduction to Compilers

Fall 2018

Lexing and Parsing

Overview

- Compilers are roughly divided into two parts
- Front-end - deals with surface syntax of the language
- Back-end - analysis and code generation of the output of the front-end

- Lexing and Parsing translate source code into form more amenable for analysis and code generation
- Front-end also may include certain kinds of semantic analysis, such as symbol table construction, type checking, type inference, etc.

Lexing vs. Parsing

- Language grammars usually split into two levels
- Tokens - the "words" that make up "parts of speech"
- Ex: Identifier [a-zA-Z_]+
- Ex: Number [0-9]+
- Programs, types, statements, expressions, declarations, definitions, etc - the "phrases" of the language
- Ex: if (expr) expr;
- Ex: def id(id, ..., id) expr end
- Tokens are identified by the lexer
- Regular expressions
- Everything else is done by the parser
- Uses grammar in which tokens are primitives
- Implementations can look inside tokens where needed

Lexing vs. Parsing (cont'd)

- Lexing and parsing often produce abstract syntax tree as a result
- For efficiency, some compilers go further, and directly generate intermediate representations
- Why separate lexing and parsing from the rest of the compiler?
- Why separate lexing and parsing from each other?

Parsing theory

- Goal of parsing: Discovering a parse tree (or derivation) from a sentence, or deciding there is no such parse tree
- There's an alphabet soup of parsers
- Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser
- Can parse any context-free grammar (but inefficient)
- LL(k)
- top-down, parses input left-to right (first L), produces a leftmost derivation (second L), k characters of lookahead
- LR(k)
- bottom-up, parses input left-to-right (L), produces a rightmost derivation (R), k characters of lookahead
- We will study only some of this theory
- But we'll start more concretely

Parsing practice

- Yacc and lex - most common ways to write parsers
- yacc = "yet another compiler compiler" (but it makes parsers)
- lex = lexical analyzer (makes lexers/tokenizers)
- These are available for most languages
- bison/flex — GNU versions for C/C++
- ocamlyacc/ocamllex - what we'll use in this class

Example: Arithmetic expressions

- High-level grammar:
- $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{n}|(\mathrm{E})$
- What should the tokens be?
- Typically they are the terminals in the grammar
- \{+, (,), n\}
- Notice that n itself represents a set of values
- Lexers use regular expressions to define tokens
- But what will a typical input actually look like?

1	+	2	+	\ln	$($	3		+		4	2

- We probably want to allow for whitespace
- Notice not included in high-level grammar: lexer can discard it
- Also need to know when we reach the end of the file
- The parser needs to know when to stop

Lexing with ocamllex (.mll)

```
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
    regexp_1 { action_1 }
    | ..
    | regexp_n { action_n }
and ..
{ trailer }
```

- Compiled to .ml output file
- header and trailer are inlined into output file as-is
- regexps are combined to form one (big!) finite automaton that recognizes the union of the regular expressions
- Finds longest possible match in the case of multiple matches
- Generated regexp matching function is called entrypoint

Lexing with ocamllex (.mll)

```
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
    regexp_1 { action_1 }
    | ..
    | regexp_n { action_n }
and ...
{ trailer }
```

- When match occurs, generated entrypoint function returns value in corresponding action
- If we are lexing for ocamlyacc, then we'll return tokens that are defined in the ocamlyacc input grammar

Example

```
{
    open Ex1_parser
    exception Eof
}
rule token = parse
    [' ' '\t' '\r'] { token lexbuf } (* skip blanks *)
    | ['\n' ] { EOL }
| ['0'-'9']+ as lxm
'+'
    '('
    ')'
    eof
{ INT(int_of_string lxm) }
{ PLUS }
{ LPAREN }
{ RPAREN }
{ raise Eof }
```

```
(* token definition from Ex1_parser *)
type token =
    | INT of (int)
    | EOL
    | PLUS
    | LPAREN
    | RPAREN
```


Generated code

```
# 1 "ex1_lexer.mll" (* line directives for error msgs *)
    open Ex1_parser
    exception Eof
# 7 "ex1_lexer.ml"
let __ocaml_lex_tables = {...} (* table-driven automaton *)
let rec token lexbuf = ... (* the generated matching fn *)
```

- You don't need to understand the generated code
- But you should understand it's not magic
- Uses Lexing module from OCaml standard lib
- Notice that token rule was compiled to token fn
- Mysterious lexbuf from before is the argument to token
- Type can be examined in Lexing module ocamldoc

Lexer limitations

- Automata limited to 32767 states
- Can be a problem for languages with lots of keywords

```
rule token = parse
    "keyword_1" { ... }
    "keyword_2" { ... }
    "keyword n" { ... }
    ['A'-'Z'-'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '__'] * as id
        { IDENT id}
```

- Solution?

Parsing

- Now we can build a parser that works with lexemes (tokens) from token.mll
- Recall from 330 that parsers work by consuming one character at a time off input while building up parse tree
- Now the input stream will be tokens, rather than chars

- Notice parser doesn't need to worry about whitespace, deciding what's an INT, etc

Suitability of Grammar

- Problem: our grammar is ambiguous
- $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{n}|(\mathrm{E})$
- Exercise: find an input that shows ambiguity
- There are parsing technologies that can work with ambiguous grammars
- But they'll provide multiple parses for ambiguous strings, which is probably not what we want
- Solution: remove ambiguity
- One way to do this from 330:
- $\mathrm{E} \rightarrow \mathrm{T} \mid \mathrm{E}+\mathrm{T}$
- $\mathrm{T} \rightarrow \mathrm{n} \mid(\mathrm{E})$

Parsing with ocamlyacc (.mly)

```
% {
    header
% }
    declarations
%%
    rules
%%
    trailer
    .mly input
```

```
type token =
    | INT of (int)
    | EOL
    | PLUS
    | LPAREN
    | RPAREN
val main :
    (Lexing.lexbuf -> token) ->
        Lexing.lexbuf -> int
    .mli output
```

- Compiled to .ml and .mli files
- .mli file defines token type and entry point main for parsing
- Notice first arg to main is a fn from a lexbuf to a token, i.e., the function generated from a .mll file!

Parsing with ocamlyacc (.mly)

```
% {
    header
% }
    declarations
%%
    rules
%%
    trailer
```

```
(* header *)
type token = ...
let yytables = ...
(* trailer *)
    .ml output
```

 .mly input
 - .ml file uses Parsing library to do most of the work
- header and trailer copied direct to output
- declarations lists tokens and some other stuff
- rules are the productions of the grammar
- Compiled to yytables; this is a table-driven parser Also include actions that are executed as parser executes
- We'll see an example next

Actions

- In practice, we don't just want to check whether an input parses; we also want to do something with the result
- E.g., we might build an AST to be used later in the compiler
- Thus, each production in ocamlyacc is associated with an action that produces a result we want
- Each rule has the format
- Ihs: rhs \{act\}
- When parser uses a production lhs \rightarrow rhs in finding the parse tree, it runs the code in act
- The code in act can refer to results computed by actions of other non-terminals in rhs, or token values from terminals in rhs

Example

```
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main
/* the entry point */
%type <int> main
%%
main:
| expr EOL
expr:
| term
| expr PLUS term
term:
| INT
LPAREN expr RPAREN
```


- Several kinds of declarations:
- \%token - define a token or tokens used by lexer
- \%start - define start symbol of the grammar
- \%type - specify type of value returned by actions

Actions, in action

INT(1)	PLUS	INT(2)	PLUS	LPAREN
. $1+2+(3+42) \$$				
term[1].+2+(3+42)\$				
expr[1].+2+(3+42)\$				
expr[I]+term[2].+(3+42)\$				
$\operatorname{expr}[3] .+(3+42) \$$				
expr[3]+(term[3].+42)\$				
expr[3]+(expr[3].+42)\$				
expr[3]+(expr[3]+term[42].)\$				
expr[3]+(expr[45].)\$				
expr[3]+term[45].\$				
expr[48].\$				
main[48]				

```
main:
    | expr EOL { $1 }
expr:
| term { $1 }
| expr PLUS term { $1 + $3 }
term:
| INT { $1 }
    | LPAREN expr RPAREN { $2 }
```

- The "." indicates where we are in the parse
- We've skipped several intermediate steps here, to focus only on actions
- (Details next)

Actions, in action

INT(1)	PLUS	INT(2)	PLUS	LPAREN	INT(3)	PLUS	INT(42)	RPAREN


```
main:
| expr EOL { $1 }
expr:
| term { $1 }
| expr PLUS term { $1 + $3 }
term:
    | INT 
```


Invoking lexer/parser

```
try
    let lexbuf = Lexing.from_channel stdin in
    while true do
            let result = Ex1_parser.main Ex1_lexer.token lexbuf in
                        print_int result; print_newline() ; flush stdout
    done
with Ex1_lexer.Eof ->
    exit 0
```

- Tip: can also use Lexing.from_string and Lexing.from_function

Terminology review

- Derivation
- A sequence of steps using the productions to go from the start symbol to a string
- Rightmost (leftmost) derivation
- A derivation in which the rightmost (leftmost) nonterminal is rewritten at each step
- Sentential form
- A sequence of terminals and non-terminals derived from the start-symbol of the grammar with 0 or more reductions
- I.e., some intermediate step on the way from the start symbol to a string in the language of the grammar
- Right- (left-)sentential form
- A sentential form from a rightmost (leftmost) derivation
- FIRST(α)
- Set of initial symbols of strings derived from a

Bottom-up parsing

- ocamlyacc builds a bottom-up parser
- Builds derivation from input back to start symbol

$$
S \Rightarrow v_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma^{2} \Rightarrow \ldots \Rightarrow \gamma n-1 \Rightarrow \gamma n \Rightarrow \text { input }
$$

- To reduce үi to үi-1
- Find production $A \rightarrow \beta$ where β is in γi, and replace β with A
- In terms of parse tree, working from leaves to root
- Nodes with no parent in a partial tree form its upper fringe
- Since each replacement of β with A shrinks upper fringe, we call it a reduction.
- Note: need not actually build parse tree
- |parse tree nodes| = |input| + |reductions|

Bottom-up parsing, illustrated

LR(I) parsing

- Scan input left-to-right
- Rightmost derivation
- I token lookahead
rule $B \rightarrow \gamma$

$$
S \Rightarrow^{*} \alpha B y \Rightarrow \alpha \gamma y \Rightarrow^{*} x y
$$

Bottom-up parsing, illustrated

LR(I) parsing

- Scan input left-to-right
- Rightmost derivation
- I token lookahead
rule $B \rightarrow \gamma$

$$
S \Rightarrow^{*} \alpha B y \Rightarrow \alpha \gamma y \Rightarrow^{*} x y
$$

Upper fringe: solid Yet to be parsed: dashed

Finding reductions

- Consider the following grammar

1. $S \rightarrow a A B e$
2. $A \rightarrow A b c$
3. $\mid \mathrm{b}$
4. $B \rightarrow d$

Input: abbcde

Sentential Form	Production	Position
abbcde	3	2
aAbcde	2	4
aAde	4	3
aABe	1	4
S	N/A	N/A

- How do we find the next reduction?
- How do we do this efficiently?

Handles

- Goal: Find substring β of tree's frontier that matches some production $A \rightarrow \beta$
- (And that occurs in the rightmost derivation)
- Informally, we call this substring β a handle
- Formally,
- A handle of a right-sentential form γ is a pair $(A \rightarrow \beta, k)$ where
- $A \rightarrow \beta$ is a production and k is the position in γ of β 's rightmost symbol.
- If $(A \rightarrow \beta, k)$ is a handle, then replacing β at k with A produces the right sentential form from which γ is derived in the rightmost derivation.
- Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols
- $\quad \Rightarrow$ the parser doesn't need to scan past the handle (only lookahead)

Example

- Grammar

1. $S \rightarrow E$
2. $E \rightarrow E+T$
3. |E-T
4. $\mid \mathrm{T}$
5. $T \rightarrow T^{*} F$
6. $\quad \mid T / F$
7. $\mid F$
8. $\mathrm{F} \rightarrow \mathrm{n}$
9. |id
10. | (E)

Production	Sentential Form	Handle (prod,k)
	S	
1	E	1,1
3	E-T	3,3
5	E-T*F	5,5
9	E-T*id	9,5
7	E-F*id	7,3
8	E-n*id	8,3
4	T-n*id	4,1
7	F-n*id	7,1
9	id-n*id	9,1

Handles for rightmost derivation of id-n*id

Finding reductions

- Theorem: If G is unambiguous, then every rightsentential form has a unique handle
- If we can find those handles, we can build a derivation!
- Sketch of Proof:
- G is unambiguous \Rightarrow rightmost derivation is unique
- \Rightarrow a unique production $A \rightarrow \beta$ applied to derive γi from $\gamma i-1$
- and a unique position k at which $A \rightarrow \beta$ is applied
- \Rightarrow a unique handle $(A \rightarrow \beta, k)$
- This all follows from the definitions

Bottom-up handle pruning

- Handle pruning: discovering handle and reducing it
- Handle pruning forms the basis for bottom-up parsing
- So, to construct a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma^{1} \Rightarrow \gamma^{2} \Rightarrow \ldots \Rightarrow \gamma n-1 \Rightarrow \gamma n \Rightarrow \text { input }
$$

- Apply the following simple algorithm

$$
\text { for } \mathrm{i} \leftarrow \mathrm{n} \text { to } 1 \text { by }-1
$$

Find handle $(\mathrm{Ai} \rightarrow \beta \mathrm{i}, \mathrm{ki})$ in $\mathrm{\gamma i}$
Replace βi with Ai to generate yi -1

- This takes 2 n steps

Shift-reduce parsing algorithm

- Maintain a stack of terminals and non-terminals matched so far
- Rightmost terminal/non-terminal on top of stack
- Since we're building rightmost derivation, will look at top elements of stack for reductions

```
push INVALID
token \leftarrow next_token( )
repeat until (top of stack = Goal and token = EOF)
    if the top of the stack is a handle A->\beta
        then // reduce \beta to A
            pop | }|\mathrm{ symbols off the stack
            push A onto the stack
        else if (token = EOF)
            then // shift
                push token
            token \leftarrow next_token( )
            else // need to shift, but out of input
                    report an error
```


Example

- Grammar

1. $S \rightarrow E$
2. $E \rightarrow E+T$
3. |E-T
4. $\mid \mathrm{T}$
5. $\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F}$
6. $\quad \mid T / F$
7. $\mid \mathrm{F}$
8. $\mathrm{F} \rightarrow \mathrm{n}$
9. |id
10. | (E)
11. $S \rightarrow E$
12. $E \rightarrow E+T$
13. $\quad \mid E-T$
14. $\quad \mid T$
15. $T \rightarrow T^{*} F$
16. $\quad \mid T / F$
17. $\quad \mid F$
18. $F \rightarrow n$
19. $\quad \mid i d$
20. $\quad \mid(E)$
21. Shift until the top of the stack is the right end of a handle
22. Find the left end of the handle \& reduce

Shift/reduce parse of id-n*id

Stack	Input	Handle (prod,k)	Action
	id-n*id	none	shift
id	-n*id	9,1	reduce 9
F	-n*id	7,1	reduce 7
T	-n*id	4,1	reduce 4
E	-n*id	none	shift
E-	n*id	none	shift
E-n	*id	8,3	reduce 8
E-F	*id	7,3	reduce 7
E-T	*id	none	shift
E-T*	id	none	shift
E-T*id		9,5	reduce 9
E-T*F		5,5	reduce 5
E-T		3,3	reduce 3
E		1,1	reduce 1
S		none	accept

Parse tree for example

Algorithm actions

- Shift-reduce parsers have just four actions
- Shift — next word is shifted onto the stack
- Reduce - right end of handle is at top of stack
- Locate left end of handle within the stack
- Pop handle off stack and push appropriate lhs
- Accept - stop parsing and report success
- Error - call an error reporting/recovery routine
- Cost of operations
- Accept is constant time
- Shift is just a push and a call to the scanner
- Reduce takes |rhs| pops and 1 push
- If handle-finding requires state, put it in the stack $\Rightarrow 2 x$ work
- Error depends on error recovery mechanism

Finding handles

- To be a handle, a substring of sentential form γ must :
- Match the right hand side β of some rule $A \rightarrow \beta$
- There must be some rightmost derivation from the start symbol that produces γ with $A \rightarrow \beta$ as the last production applied
- \Rightarrow Looking for rhs's that match strings is not good enough
- How can we know when we have found a handle?
- LR(1) parsers use DFA that runs over stack and finds them
- One token look-ahead determines next action (shift or reduce) in each state of the DFA.
- A grammar is $\operatorname{LR}(1)$ if we can build an $\operatorname{LR}(1)$ parser for it
- $\quad L R(0)$ parsers: no look-ahead

LR(1) parsing

- Can use a set of tables to describe LR(1) parser

- ocamlyacc automates the process of building the tables
- Standard library Parser module interprets the tables
- LR parsing invented in 1965 by Donald Knuth
- LALR parsing invented in 1969 by Frank DeRemer

LR(1) parsing algorithm

- Two tables

```
stack.push(INVALID); stack.push(\mp@subsup{s}{0}{});
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A }->\beta\mathrm{ " ) {
        stack.popnum(2*|\beta|); // pop 2*|\beta| symbols
        s = stack.top();
        stack.push(A);
        stack.push(GOTO[s,A]);
    }
    else if ( ACTION[s,token] == "shift s;" ) {
        stack.push(token); stack.push(\mp@subsup{s}{\textrm{i}}{\prime});
        token \leftarrow scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept" && token == EOF )
        not_found = false;
    else report a syntax error and recover;
}
report success;
```


Example parser table

- ocamlyacc -v ex1_parser.mly — produce .output file with parser table

state	action						goto			productions
	.	EOL	+	N	$($)	main	expr	term	
0										(special)
1				s3	s4		acc	6	7	entry \rightarrow. main
2										(special)
3	r4									term \rightarrow INT
4				s3	s4			8	7	term \rightarrow (. expr)
5										(special)
6		s9	s10							main \rightarrow expr . EOL \| expr \rightarrow expr . + term
7	r2									expr \rightarrow term .
8			s10			s11				expr \rightarrow expr . + term \| term \rightarrow (expr .)
9	r1									main \rightarrow expr EOL
10				s3	s4				12	expr \rightarrow expr + . term
11	r5									term \rightarrow (expr)
12	r3									expr \rightarrow expr + term .

NB: Numbers in shift refer to state numbers
Numbers in reduction refer to production numbers

Example parse ($\mathbf{N}+\mathbf{N}+\mathbf{N}$)

Stack	Input	Action
1	$\mathrm{N}+\mathrm{N}+\mathrm{N}$	s3
I,N,3	$+\mathrm{N}+\mathrm{N}$	r4
I,term,7	$+\mathrm{N}+\mathrm{N}$	r2
1,expr,6	$+\mathrm{N}+\mathrm{N}$	sl0
I, expr,6,+,10	$\mathrm{N}+\mathrm{N}$	s3
I, expr,6,+, I 0,N,3	$+\mathrm{N}$	r4
I ,expr,6,+, 10,term, I2	$+\mathrm{N}$	r3
I, expr,6	$+\mathrm{N}$	sl0
I, expr,6,+,10	N	s3
I ,expr,6,+, 10,N,3		r4
I, expr,6,+,10,term, I2		r3
I, expr,6		s9
I, expr,6,EOL,9		rl
accept		

Example parser table (cont'd)

- Notes
- Notice derivation is built up (bottom to top)
- Table only contains kernel of each state
- Apply closure operation to see all the productions in the state
- LR(1) parsing requires start symbol not on any rhs
- Thus, ocamlyacc actually adds another production
- \%entry\% $\rightarrow 1001$ main
- (so the acc in the previous table is a slight fib)
- Values returned from actions stored on the stack
- Reduce triggers computation of action result

Why does this work?

- Stack = upper fringe
- So all possible handles on top of stack
- Shift inputs until top elements of stack form a handle
- Build a handle-recognizing DFA
- Language of handles is regular
- ACTION and GOTO tables encode the DFA
- Shift = DFA transition
- Reduce = DFA accept
- New state = GOTO[state at top of stack (afetr pop), Ihs]
- If we can build these tables, grammar is $\operatorname{LR}(1)$

LR(k) items

- An $L R(k)$ item is a pair [P, δ], where
- P is a production $A \rightarrow \beta$ with a at some position in the rhs
- δ is a lookahead string of length $\leq k$
(words or \$)
- The • in an item indicates the position of the top of the stack
- LR(1):
- $[A \rightarrow \bullet \beta \gamma, a]$ - input so far consistent with using $A \rightarrow \beta \gamma$ immediately after symbol on top of stack
- $\left[A \rightarrow \beta^{\bullet} \gamma, a\right]$ - input so far consistent with using $A \rightarrow \beta \gamma$ at this point in the parse, and parser has already recognized β
- $\left[A \rightarrow \beta \gamma^{\bullet}, a\right]$ - parser has seen $\beta \gamma$, and lookahead of a consistent with reducing to A
- $\operatorname{LR}(1)$ items represent valid configurations of an $L R(1)$ parser; DFA states are sets of $L R(1)$ items

LR(k) items, cont'd

- Ex: $\mathrm{A} \rightarrow \mathrm{BCD}$ with lookahead a can yield 4 items
- [A $\rightarrow \cdot B C D, a],[A \rightarrow B \cdot C D, a],[A \rightarrow B C \cdot D, a],[A \rightarrow B C D \cdot a]$
- Notice: set of LR(1) items for a grammar is finite
- Carry lookaheads along to choose correct reduction
- Lookahead has no direct use in $[A \rightarrow \beta \cdot \gamma, a]$
- In $\left[A \rightarrow \beta^{\bullet}, a\right]$, a lookahead of $a \Rightarrow$ reduction by $A \rightarrow \beta$
- For $\left\{[A \rightarrow \beta \cdot, a],\left[B \rightarrow \gamma^{\bullet} \bar{\delta}, b\right]\right\}$
- Lookahead of $a \Rightarrow$ reduce to A
- $\operatorname{FIRST}(\delta) \Rightarrow$ shift
- (else error)

LR(1) table construction

- States of LR(1) parser contain sets of LR(1) items
- Initial state s0
- Assume S^{\prime} is the start symbol of grammar, does not appear in rhs
- (Extend grammar if necessary to ensure this)
- $\mathrm{s} 0=\operatorname{closure}\left(\left[\mathrm{S}^{\prime} \rightarrow \cdot \mathrm{S}, \$\right] \quad(\$=\mathrm{EOF})\right.$
- For each sk and each terminal/non-terminal X, compute new state goto(sk,X)
- Use closure() to "fill out" kernel of new state
- If the new state is not already in the collection, add it
- Record all the transitions created by goto()
- These become ACTION and GOTO tables
- i.e., the handle-finding DFA
- This process eventually reaches a fixpoint

Closure()

- $[A \rightarrow \beta \cdot B \bar{\delta}, a]$ implies $[B \rightarrow \bullet \gamma, x]$ for each production with B on Ihs and each $x \in \operatorname{FIRST}(\delta a)$
- (If you're about to see a B, you may also see a γ)

```
Closure( s )
while ( }s\mathrm{ is still changing )
    \forall items [A T \beta B B , a] ] s // item with • to left of nonterminal B
    productions B }->\textrm{Y}\in\textrm{P}\quad// all productions for 
        \forall\underline{b}\in\operatorname{FIRST}(\delta\underline{a})\quad// tokens appearing after B
        if [B 但 Y,b] & s // form LR(1) item w/ new lookahead
            then add [B->\bullet Y,\underline{b}] to s // add item to s if new
```

- Classic fixed-point method
- Halts because s \subset Items (worklist version is faster)
-Closure "fills out" a state

Example - closure with LR(0)

$S \rightarrow E$
$\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$
| T
$\mathrm{T} \rightarrow \mathrm{id}$

$$
\begin{aligned}
& {[\mathrm{S} \rightarrow \cdot \mathrm{E}]} \\
& {[\mathrm{E} \rightarrow \cdot \mathrm{~T}+\mathrm{E}]} \\
& {[\mathrm{E} \rightarrow \cdot \cdot \mathrm{~T}]} \\
& {[\mathrm{T} \rightarrow \cdot \mathrm{id}]} \\
& \hline \mathrm{l}
\end{aligned}
$$

[kernel item]
[derived item]

$$
\left[\begin{array}{l}
{[\mathrm{E} \rightarrow \mathrm{~T}+\cdot \mathrm{E}]} \\
{[\mathrm{E} \rightarrow \cdot \mathrm{~T}+\mathrm{E}]} \\
{[\mathrm{E} \rightarrow \cdot \mathrm{~T}]} \\
{[\mathrm{T} \rightarrow \cdot \mathrm{id}]}
\end{array}\right.
$$

Example - closure with LR(1)

$S \rightarrow E$
$\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$
| T
$\mathrm{T} \rightarrow \mathrm{id}$

$$
\begin{aligned}
& {[\mathrm{S} \rightarrow \cdot \mathrm{E}, \$]} \\
& {[\mathrm{E} \rightarrow \cdot \mathrm{~T}+\mathrm{E}, \$]} \\
& {[\mathrm{E} \rightarrow \bullet \mathrm{~T}, \$]} \\
& {[\mathrm{T} \rightarrow \bullet \mathrm{id},+]} \\
& {[\mathrm{T} \rightarrow \cdot \mathrm{id}, \$]}
\end{aligned}
$$

[kernel item]
[derived item]

$$
\begin{aligned}
& {[\mathrm{E} \rightarrow \mathrm{~T}+\cdot \mathrm{E}, \$]} \\
& {[\mathrm{E} \rightarrow \cdot \mathrm{~T}+\mathrm{E}, \$]} \\
& {[\mathrm{E} \rightarrow \bullet \mathrm{~T}, \$]} \\
& {[\mathrm{T} \rightarrow \bullet \mathrm{id},+]} \\
& {[\mathrm{T} \rightarrow \cdot \mathrm{id}, \$]}
\end{aligned}
$$

Goto

- Goto(s,x) computes the state that the parser would reach if it recognized an x while in state s
- Goto($\{[A \rightarrow \beta \cdot X \bar{\prime}, a]\}, X)$ produces $[A \rightarrow \beta X \bullet \delta, a]$
- Should also includes closure($[A \rightarrow \beta X \cdot \bar{\delta}, a]$)

```
Goto( s, X )
    new \leftarrow\varnothing
    \forall items [A->\beta\cdotX\delta,\underline{a}]\ins\quad// for each item with • to left of X
        new }\leftarrow\mathrm{ new }\cup[A->\betaX\cdot\delta,\underline{]}]// add item with \bullet to right of X
    return closure(new) // remember to compute closure!
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure ()
- Goto() moves forward

Example - goto with LR(0)

$S \rightarrow E$
$\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$
$\xrightarrow[T]{l}{ }^{\mathrm{T}} \mathrm{id}$
[kernel item]
[derived item]

Example - goto with LR(1)

$S \rightarrow E$
$\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$
$\mathrm{I} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{id}$
[kernel item] [derived item]

Building parser states

```
ccol}\leftarrow\operatorname{closure ([S'->`S,$])
CC}\leftarrow{\mp@subsup{\textrm{CC}}{0}{}
while ( new sets are still being added to CC)
    for each unmarked set cc, \in CC
        mark cc, as processed
        for each x following a - in an item in cc.j
        temp }\leftarrow\mathrm{ goto(ccj, x)
        if temp & CC
                then CC \leftarrow CC u { temp }
        record transitions from cc, to temp on x
```

- CC = canonical collection (of LR(k) items)
- Fixpoint computation (worklist version)
- Loop adds to CC
- $C C \subseteq 2^{\text {ITEMS }}$, so CC is finite

Example LR(0) states

$$
\begin{aligned}
& S \rightarrow E \\
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \\
& \text { | T } \\
& \mathrm{T} \rightarrow \mathrm{id} \\
& \text { [} \mathrm{S} \rightarrow \cdot \mathrm{E} \text {] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [} \mathrm{T} \rightarrow \bullet \mathrm{id} \text {] } \\
& \text { E } \downarrow \\
& {[\mathrm{S} \rightarrow \mathrm{E} \cdot]} \\
& {[\mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \cdot]}
\end{aligned}
$$

Example LR(1) states

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow T+E
\end{aligned}
$$

$$
1 \mathrm{~T}
$$

$$
\mathrm{T} \rightarrow \mathrm{id}
$$

Building ACTION and GOTO tables

```
vet sx
    \forall item i }\in\mp@subsup{S}{x}{
```



```
            then Action[x,a] \leftarrow "shift k" // => shift if lookahead = a
    else if i is [S'->S •,$]
        then Action[x,$] \leftarrow "accept"
    else if i is [A->\beta \bullet,a]
        then Action [x,a] \leftarrow "reduce A->\beta"
    | n nonterminals
        if goto(sx,n) = sk
        then Gото[x,n] \leftarrowk // store transitions for nonterminals
```

- Many items generate no table entry
- e.g., $[A \rightarrow \beta \cdot B \alpha, a]$ does not, but closure ensures that all the rhs's for B are in $s x$

Ex ACTION and GOTO tables

What can go wrong?

- What if set s contains $[A \rightarrow \beta \cdot a \gamma, b]$ and $[B \rightarrow \beta \cdot, a]$?
- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] — cannot do both actions
- This is a shift/reduce conflict
- What if set s contains $\left[A \rightarrow \gamma^{\bullet}, a\right]$ and $\left[B \rightarrow \gamma^{\bullet}, a\right]$?
- Each generates "reduce", but with a different production
- Both define ACTION[s,a] — cannot do both reductions
- This is called a reduce/reduce conflict
- In either case, the grammar is not $\operatorname{LR}(1)$

Shift/reduce conflict

```
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%%
main:
| expr EOL { $1 }
expr:
| INT { $1 }
| expr PLUS expr { $1 + $3 }
| LPAREN expr RPAREN { $2 }
```

- Associativity unspecified
- Ambiguous grammars always have conflicts
- But, some non-ambiguous grammars also have conflicts

Solving conflicts

- Refactor grammar
- Specify operator precedence and associativity

```
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
```

- Lots of details here
- See "12.4.2 Declarations" at
- http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html\#htoc151
- When comparing operator on stack with lookahead
- Shift if lookahead has higher prec OR same prec, right assoc
- Reduce if lookahead has lower prec OR same prec, left assoc
- Can use smaller, simpler (ambiguous) grammars
- Like the one we just saw

Left vs. right recursion

- Right recursion
- Required for termination in top-down parsers
- Produces right-associative operators
- Left recursion
- Works fine in bottom-up parsers
- Limits required stack space
- Produces left-associative operators

$$
\left(\left(w^{*} x\right)^{*} y\right) * z
$$

- Rule of thumb
- Left recursion for bottom-up parsers
- Right recursion for top-down parsers

Reduce/reduce conflict (1)

```
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%%
main:
| expr EOL { $1 }
expr:
| INT
    term
| term PLUS expr { $1 + $3 }
term :
| INT
    LPAREN expr RPAREN
{ $1 }
{ $2 }
```

- Often these conflicts suggest a serious problem
- Here, there's a deep ambiguity

Reduce/reduce conflict (2)

```
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%%
main:
| expr EOL { $1 }
expr:
| term1 { $1 }
| term1 PLUS PLUS expr { $1 + $4 }
| term2 PLUS expr { $1 + $3 }
term1 :
| INT
    LPAREN expr RPAREN { $2 }
term2 :
| INT
{ $1 }
```

- Grammar not ambiguous, but not enough lookahead to distinguish last two expr productions

Shrinking the tables

- Combine terminals
- E.g., number and identifier, or + and -, or * and /
- Directly removes a column, may remove a row
- Combine rows or columns (table compression)
- Implement identical rows once and remap states
- Requires extra indirection on each lookup
- Use separate mapping for ACTION and for GOTO
- Use another construction algorithm
- LALR(1) used by ocamlyacc

LALR(1) parser

- Define the core of a set of LR(1) items as
- Set of $\operatorname{LR}(0)$ items derived by ignoring lookahead symbols

$$
\begin{array}{cc}
{\left[\begin{array}{l}
{[\mathrm{E} \rightarrow \mathrm{a} \bullet, \mathrm{~b}]} \\
{[\mathrm{A} \rightarrow \mathrm{a} \cdot, \mathrm{c}]}
\end{array}\right.} & \begin{array}{c}
{[\mathrm{E} \rightarrow \mathrm{a} \bullet]} \\
\mathrm{LR}(1) \text { state }
\end{array}
\end{array}
$$

- LALR(1) parser merges two states if they have the same core
- Result
- Potentially much smaller set of states
- May introduce reduce/reduce conflicts
- Will not introduce shift/reduce conflicts

LALR(1) example

$$
\begin{aligned}
& {\left[\begin{array}{l}
{[\mathrm{E} \rightarrow \mathrm{a} \cdot \mathrm{~b}]} \\
{[\mathrm{A} \rightarrow \mathrm{ba} \cdot \mathrm{c}]}
\end{array}\right.} \\
& \begin{array}{l}
\text { LR(1) states }
\end{array} \\
& \begin{array}{l}
\mathrm{E} \rightarrow \mathrm{a} \cdot \mathrm{~d}] \\
{[\mathrm{A} \rightarrow \mathrm{ba} \cdot, \mathrm{~b}]}
\end{array} \\
& \begin{array}{l}
{[\mathrm{E} \rightarrow \mathrm{a} \cdot \mathrm{~b}]} \\
{[\mathrm{A} \rightarrow \mathrm{ba} \cdot \mathrm{c}, \mathrm{c}]} \\
\mathrm{E} \rightarrow \mathrm{a} \cdot \mathrm{~d}] \\
{[\mathrm{A} \rightarrow \mathrm{ba} \cdot \mathrm{~b}, \mathrm{~b}]}
\end{array} \\
& \text { Merged state }
\end{aligned}
$$

- Introduces reduce/reduce conflict
- Can reduce either $\mathrm{E} \rightarrow \mathrm{a}$ or $\mathrm{A} \rightarrow$ ba for lookahead $=b$

LALR(1) vs. LR(1)

- Example grammar

$$
\begin{aligned}
& S^{\prime} \rightarrow \mathrm{S} \\
& \mathrm{~S} \rightarrow \text { aAd } \mid \text { bBd } \mid \text { aBe } \mid \text { bAe } \\
& \mathrm{A} \rightarrow \mathrm{C} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

- $\operatorname{LR}(0)$?
- $\operatorname{LR}(1)$?
- LALR(1)?

LR(k) Parsers

- Properties
- Strictly more powerful than LL(k) parsers
- Most general non-backtracking shift-reduce parser
- Detects error as soon as possible in left-to-right scan of input
- Contents of stack are viable prefixes
- Possible for remaining input to lead to successful parse

Error handling (lexing)

- What happens when input not handled by any lexing rule?
- An exception gets raised
- Better to provide more information, e.g.,

```
rule token = parse
| _ as lxm { Printf.printf "Illegal character %c" lxm;
    failwith "Bad input" }
```

- Even better, keep track of line numbers
- Store in a global-ish variable (oh no!)
- Increment as a side effect whenever \ln recognized

Error handling (parsing)

- What happens when parsing a string not in the grammar?
- Reject the input
- Do we keep going, parsing more characters?
- May cause a cascade of error messages
- Could be more useful to programmer, if they don't need to stop at the first error message (what do you do, in practice?)
- Ocamlyacc includes a basic error recovery mechanism
- Special token error may appear in rhs of production
- Matches erroneous input, allowing recovery

Error example (1)

```
expr:
```

```
| term { $1 }
    expr PLUS term { $1 + $3 }
| error
{ Printf.printf "invalid expression"; 0 }
```

- If unexpected input appears while trying to match expr, match token to error
- Effectively treats token as if it is produced from expr
- Triggers error action

Error example (2)

```
term:
| INT { $1 }
| LPAREN expr RPAREN { $2 }
| LPAREN error RPAREN {Printf.printf "Syntax error!\n"; 0}
```

- If unexpected input appears while trying to match term, match tokens to error
- Pop every state off the stack until LPAREN on top
- Scan tokens up to RPAREN, and discard those, also
- Then match error production

Error recovery in practice

- A very hard thing to get right!
- Necessarily involves guessing at what malformed inputs you may see
- How useful is recovery?
- Compilers are very fast today, so not so bad to stop at first error message, fix it, and go on
- On the other hand, that does involve some delay
- Perhaps the most important feature is good error messages
- Error recovery features useful for this, as well
- Some compilers are better at this than others

OCamlyacc tip

- Setting OCAMLRUNPARAM=p will cause the parsing steps to be printed out as the parser runs
- (And setting OCAMLRUNPARAM=b will tell OCaml to print a stack backtrace for any thrown exceptions.)

Real programming languages

- Essentially all real programming languages don't quite work with parser generators
- Even Java is not quite LALR(1)
- Thus, real implementations play tricks with parsing actions to resolve conflicts
- In-class exercise: C typedefs and identifier declarations/definitions

Additional Parsing Technologies

- For a long time, parsing was a "dead" field
- Considered solved a long time ago
- Recently, people have come back to it
- LALR parsing can have unnecessary parsing conflicts
- LALR parsing tradeoffs more important when computers were slower and memory was smaller
- Many recent new (or new-old) parsing techniques
- GLR — generalized LR parsing, for ambiguous grammars
- LL(*) — ANTLR
- Packrat parsing — for parsing expression grammars
- etc...
- The input syntax to many of these looks like yacc/ lex

Designing language syntax

- Idea 1: Make it look like other, popular languages
- Java did this (OO with C syntax)
- Idea 2: Make it look like the domain
- There may be well-established notation in the domain (e.g., mathematics)
- Domain experts already know that notation
- Idea 3: Measure design choices
- E.g., ask users to perform programming (or related) task with various choices of syntax, evaluate performance, survey them on understanding
- This is very hard to do!
- Idea 4: Make your users adapt
- People are really good at learning...

