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Overview
• Compilers are roughly divided into two parts 

■ Front-end — deals with surface syntax of the language 
■ Back-end — analysis and code generation of the output of 

the front-end 

• Lexing and Parsing translate source code into form 
more amenable for analysis and code generation 

• Front-end also may include certain kinds of 
semantic analysis, such as symbol table 
construction, type checking, type inference, etc.
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Lexing vs. Parsing
• Language grammars usually split into two levels 

■ Tokens — the “words” that make up “parts of speech” 
- Ex: Identifier [a-zA-Z_]+ 

- Ex: Number [0-9]+ 

■ Programs, types, statements, expressions, declarations, 
definitions, etc — the “phrases” of the language 
- Ex: if (expr) expr; 

- Ex: def id(id, ..., id) expr end 

• Tokens are identified by the lexer 
■ Regular expressions 

• Everything else is done by the parser 
■ Uses grammar in which tokens are primitives 
■ Implementations can look inside tokens where needed
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Lexing vs. Parsing (cont’d)
• Lexing and parsing often produce abstract syntax 

tree as a result 
■ For efficiency, some compilers go further, and directly 

generate intermediate representations 

• Why separate lexing and parsing from the rest of 
the compiler? 

• Why separate lexing and parsing from each other?
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Parsing theory
• Goal of parsing: Discovering a parse tree (or 

derivation) from a sentence, or deciding there is no 
such parse tree 

• There’s an alphabet soup of parsers 
■ Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser 

- Can parse any context-free grammar (but inefficient) 

■ LL(k) 
- top-down, parses input left-to right (first L), produces a leftmost 

derivation (second L), k characters of lookahead 

■ LR(k) 
- bottom-up, parses input left-to-right (L), produces a rightmost derivation 

(R), k characters of lookahead 

• We will study only some of this theory 
■ But we’ll start more concretely
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Parsing practice
• Yacc and lex — most common ways to write parsers 

■ yacc = “yet another compiler compiler” (but it makes 
parsers) 

■ lex = lexical analyzer (makes lexers/tokenizers) 

• These are available for most languages 
■ bison/flex — GNU versions for C/C++ 
■ ocamlyacc/ocamllex — what we’ll use in this class
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Example: Arithmetic expressions
• High-level grammar: 

■ E → E + E | n | (E) 

• What should the tokens be? 
■ Typically they are the terminals in the grammar 

- {+, (, ), n} 

- Notice that n itself represents a set of values 

- Lexers use regular expressions to define tokens 

■ But what will a typical input actually look like? 

- We probably want to allow for whitespace 

- Notice not included in high-level grammar: lexer can discard it 

- Also need to know when we reach the end of the file 

- The parser needs to know when to stop
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1 + 2 + \n ( 3  + 4 2 ) eof



Lexing with ocamllex (.mll)

• Compiled to .ml output file 
■ header and trailer are inlined into output file as-is 
■ regexps are combined to form one (big!) finite automaton that 

recognizes the union of the regular expressions 
- Finds longest possible match in the case of multiple matches 

- Generated regexp matching function is called entrypoint
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(* Slightly simplified format *) 
{ header } 
rule entrypoint = parse 
        regexp_1 { action_1 } 
      | … 
      | regexp_n { action_n } 
and … 
{ trailer }



Lexing with ocamllex (.mll)

• When match occurs, generated entrypoint function 
returns value in corresponding action 
■ If we are lexing for ocamlyacc, then we’ll return tokens that 

are defined in the ocamlyacc input grammar
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(* Slightly simplified format *) 
{ header } 
rule entrypoint = parse 
        regexp_1 { action_1 } 
      | … 
      | regexp_n { action_n } 
and … 
{ trailer }



Example
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{ 
  open Ex1_parser 
  exception Eof 
} 
rule token = parse 
    [' ' '\t' '\r']     { token lexbuf }  (* skip blanks *) 
  | ['\n' ]             { EOL } 
  | ['0'-'9']+ as lxm   { INT(int_of_string lxm) } 
  | '+'                 { PLUS } 
  | '('                 { LPAREN } 
  | ')'                 { RPAREN } 
  | eof                 { raise Eof }

(* token definition from Ex1_parser *) 
type token = 
  | INT of (int) 
  | EOL 
  | PLUS 
  | LPAREN 
  | RPAREN



Generated code

• You don’t need to understand the generated code 
■ But you should understand it’s not magic 

• Uses Lexing module from OCaml standard lib 
• Notice that token rule was compiled to token fn 

■ Mysterious lexbuf from before is the argument to token 
■ Type can be examined in Lexing module ocamldoc
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# 1 "ex1_lexer.mll"  (* line directives for error msgs *)  
  
  open Ex1_parser 
  exception Eof 

# 7 "ex1_lexer.ml" 
let __ocaml_lex_tables = {...}  (* table-driven automaton *) 
let rec token lexbuf = ...  (* the generated matching fn *) 



Lexer limitations
• Automata limited to 32767 states 

■ Can be a problem for languages with lots of keywords 

■ Solution?
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rule token = parse 
  "keyword_1"   { ... } 
| "keyword_2"   { ... } 
| ... 
| "keyword_n" { ... } 
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id 
               { IDENT id}



Parsing
• Now we can build a parser that works with lexemes 

(tokens) from token.mll 
■ Recall from 330 that parsers work by consuming one 

character at a time off input while building up parse tree 
■ Now the input stream will be tokens, rather than chars 

■ Notice parser doesn’t need to worry about whitespace, 
deciding what’s an INT, etc
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1 + 2 + \n ( 3  + 4 2 ) eof

INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof



Suitability of Grammar
• Problem: our grammar is ambiguous 

■ E → E + E | n | (E) 
■ Exercise: find an input that shows ambiguity 

• There are parsing technologies that can work with 
ambiguous grammars 
■ But they’ll provide multiple parses for ambiguous strings, 

which is probably not what we want 

• Solution: remove ambiguity 
■ One way to do this from 330: 
■ E → T | E + T 
■ T → n | (E)
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Parsing with ocamlyacc (.mly)
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%{ 
  header 
%} 
  declarations 
%% 
  rules 
%% 
  trailer

• Compiled to .ml and .mli files 
■ .mli file defines token type and entry point main for parsing 

- Notice first arg to main is a fn from a lexbuf to a token, i.e., the function 
generated from a .mll file!

type token = 
  | INT of (int) 
  | EOL 
  | PLUS 
  | LPAREN 
  | RPAREN 

val main : 
  (Lexing.lexbuf  -> token) -> 
            Lexing.lexbuf -> int.mly input

.mli output



Parsing with ocamlyacc (.mly)
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%{ 
  header 
%} 
  declarations 
%% 
  rules 
%% 
  trailer

• .ml file uses Parsing library to do most of the work 
■ header and trailer copied direct to output 
■ declarations lists tokens and some other stuff 
■ rules are the productions of the grammar 

- Compiled to yytables; this is a table-driven parser Also include actions that 
are executed as parser executes 

- We’ll see an example next

(* header *) 
type token = ... 
... 
let yytables = ... 
(* trailer *)

.mly input

.ml output



Actions
• In practice, we don’t just want to check whether an 

input parses; we also want to do something with the 
result 
■ E.g., we might build an AST to be used later in the compiler 

• Thus, each production in ocamlyacc is associated 
with an action that produces a result we want 

• Each rule has the format 
■ lhs: rhs {act} 
■ When parser uses a production lhs → rhs in finding the 

parse tree, it runs the code in act 
■ The code in act can refer to results computed by actions of 

other non-terminals in rhs, or token values from terminals in 
rhs
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Example
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%token <int> INT 
%token EOL PLUS LPAREN RPAREN 
%start main             /* the entry point */ 
%type <int> main 
%% 
main: 
| expr EOL              { $1 }        (* 1 *) 
expr: 
| term                  { $1 }        (* 2 *) 
| expr PLUS term        { $1 + $3 }   (* 3 *) 
term: 
| INT                   { $1 }        (* 4 *) 
| LPAREN expr RPAREN    { $2 }        (* 5 *)

• Several kinds of declarations: 
■ %token — define a token or tokens used by lexer 
■ %start — define start symbol of the grammar 
■ %type — specify type of value returned by actions



Actions, in action
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INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof

main: 
| expr EOL           { $1 } 
expr: 
| term               { $1 } 
| expr PLUS term     { $1 + $3 } 
term: 
| INT                { $1 } 
| LPAREN expr RPAREN { $2 }

. 1+2+(3+42)$

term[1].+2+(3+42)$

expr[1].+2+(3+42)$

expr[1]+term[2].+(3+42)$

expr[3].+(3+42)$

expr[3]+(term[3].+42)$

expr[3]+(expr[3].+42)$

expr[3]+(expr[3]+term[42].)$

expr[3]+(expr[45].)$

expr[3]+term[45].$

expr[48].$

main[48]

■ The “.” indicates where 
we are in the parse 
■ We’ve skipped several 

intermediate steps 
here, to focus only on 
actions 

■ (Details next)



term[1]

Actions, in action
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INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof

main: 
| expr EOL           { $1 } 
expr: 
| term               { $1 } 
| expr PLUS term     { $1 + $3 } 
term: 
| INT                { $1 } 
| LPAREN expr RPAREN { $2 }

1

expr[1] term[2]

2

expr[3]

+

term[3]

expr[3] term[42]

42

expr[45]

+

3

term[45]

( )

expr[48]

+

main[48]



Invoking lexer/parser

• Tip: can also use Lexing.from_string and 
Lexing.from_function
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try 
  let lexbuf = Lexing.from_channel stdin in 
    while true do 
      let result = Ex1_parser.main Ex1_lexer.token lexbuf in 
        print_int result; print_newline(); flush stdout 
    done 
with Ex1_lexer.Eof -> 
  exit 0



Terminology review
• Derivation 

■ A sequence of steps using the productions to go from the start 
symbol to a string 

• Rightmost (leftmost) derivation 
■ A derivation in which the rightmost (leftmost) nonterminal is 

rewritten at each step 

• Sentential form 
■ A sequence of terminals and non-terminals derived from the 

start-symbol of the grammar with 0 or more reductions 
■ I.e., some intermediate step on the way from the start symbol to 

a string in the language of the grammar 

• Right- (left-)sentential form 
■ A sentential form from a rightmost (leftmost) derivation 

• FIRST(α) 
■ Set of initial symbols of strings derived from α  22



Bottom-up parsing
• ocamlyacc builds a bottom-up parser 

■ Builds derivation from input back to start symbol 

• To reduce γi  to γi–1 
■ Find production A → β where β is in γi, and replace β with A 

• In terms of parse tree, working from leaves to root 
■ Nodes with no parent in a partial tree form its upper fringe  
■ Since each replacement of β with A shrinks upper fringe,  

we call it a reduction. 

• Note: need not actually build parse tree 
■ |parse tree nodes|  =  |input| + |reductions|
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S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ input
bottom-up
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Bottom-up parsing, illustrated

x y

S

B
α

γ

S ⇒* α B y ⇒  α γ y ⇒* x y

rule  B → γ

Upper fringe: solid
Yet to be parsed: dashed

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead



 25

Bottom-up parsing, illustrated

x y

S

B
α

S ⇒* α B y ⇒  α γ y ⇒* x y

rule  B → γ

Upper fringe: solid
Yet to be parsed: dashed

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead



Finding reductions
• Consider the following grammar 

1. S → a A B e 
2. A → A b c 
3.     |   b 
4. B → d 

• How do we find the next reduction? 
• How do we do this efficiently?
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Sentential 
Form Production Position

abbcde 3 2
aAbcde 2 4
aAde 4 3
aABe 1 4

S N/A N/A
Input: abbcde



Handles
• Goal: Find substring β of tree’s frontier that matches 

some production A → β 
■ (And that occurs in the rightmost derivation) 
■ Informally, we call this substring β a handle 

• Formally, 
■ A handle of a right-sentential form γ is a pair (A→β,k) where 

- A→β is a production and k is the position in γ of β’s rightmost symbol. 

- If (A→β,k) is a handle, then replacing β at k with A produces the right 
sentential form from which γ is derived in the rightmost derivation. 

■ Because γ is a right-sentential form, the substring to the 
right of a handle contains only terminal symbols 
- ⇒ the parser doesn’t need to scan past the handle (only lookahead)
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Example
• Grammar 

1. S → E 
2. E → E + T 
3.       | E - T 
4.       | T 
5. T → T * F 
6.       | T / F 
7.       | F 
8. F → n 
9.       | id 
10.     | (E)
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Production Sentential 
Form

Handle 
(prod,k)

S
1 E 1,1
3 E-T 3,3
5 E-T*F 5,5
9 E-T*id 9,5
7 E-F*id 7,3
8 E-n*id 8,3
4 T-n*id 4,1
7 F-n*id 7,1
9 id-n*id 9,1

Handles for rightmost derivation of id-n*id



Finding reductions
• Theorem: If G is unambiguous, then every right-

sentential form has a unique handle 
■ If we can find those handles, we can build a derivation! 

• Sketch of Proof: 
■ G is unambiguous ⇒ rightmost derivation is unique 

■ ⇒ a unique production A → β applied to derive γi from γi–1 

■ and a unique position k at which A→β is applied 
■ ⇒ a unique handle (A→β,k) 

• This all follows from the definitions
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Bottom-up handle pruning
• Handle pruning: discovering handle and reducing it 

■ Handle pruning forms the basis for bottom-up parsing 

• So, to construct a rightmost derivation 

• Apply the following simple algorithm 

■ This takes 2n steps
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S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ input

for i ← n to 1 by –1 

     Find handle (Ai →βi , ki) in γi  

     Replace βi with Ai to generate γi–1



Shift-reduce parsing algorithm
• Maintain a stack of terminals and non-terminals 

matched so far 
■ Rightmost terminal/non-terminal on top of stack 
■ Since we’re building rightmost derivation, will look at top 

elements of stack for reductions
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push INVALID 
token ← next_token( ) 
repeat until (top of stack = Goal and token = EOF) 
     if the top of the stack is a handle A→β  
          then      // reduce β to A 
               pop |β| symbols off the stack 
               push A onto the stack 
          else if (token ≠ EOF) 
               then // shift  
                     push token  
                     token ← next_token( ) 
               else     // need to shift, but out of input  
        report an error   

Potential errors 
• Can’t find handle 
• Reach end of file



Example
• Grammar 

1. S → E 
2. E → E + T 
3.       | E - T 
4.       | T 
5. T → T * F 
6.       | T / F 
7.       | F 
8. F → n 
9.       | id 
10.     | (E)
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Stack Input Handle 
(prod,k)

Action

id-n*id none shift
id -n*id 9,1 reduce 9
F -n*id 7,1 reduce 7
T -n*id 4,1 reduce 4
E -n*id none shift
E- n*id none shift
E-n *id 8,3 reduce 8
E-F *id 7,3 reduce 7
E-T *id none shift
E-T* id none shift
E-T*id 9,5 reduce 9
E-T*F 5,5 reduce 5
E-T 3,3 reduce 3
E 1,1 reduce 1
S none accept

Shift/reduce parse of id-n*id

1. Shift until the top of the stack is the right end of a handle 
2. Find the left end of the handle & reduce 



Parse tree for example
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S

id

T

F

E –

E

id

n

F

FT

T

*



Algorithm actions
• Shift-reduce parsers have just four actions 

■ Shift — next word is shifted onto the stack 
■ Reduce — right end of handle is at top of stack 

- Locate left end of handle within the stack 

- Pop handle off stack and push appropriate lhs 

■ Accept — stop parsing and report success 
■ Error — call an error reporting/recovery routine 

• Cost of operations 
■ Accept is constant time 
■ Shift is just a push and a call to the scanner 
■ Reduce takes |rhs| pops and 1 push 

- If handle-finding requires state, put it in the stack ⇒ 2x work 

■ Error depends on error recovery mechanism
 34



Finding handles
• To be a handle, a substring of sentential form γ must : 

■ Match the right hand side β of some rule A → β 
■ There must be some rightmost derivation from the start 

symbol that produces γ with A → β as the last production 
applied 

■ ⇒ Looking for rhs’s that match strings is not good enough 

• How can we know when we have found a handle? 
■ LR(1) parsers use DFA that runs over stack and finds them 

- One token look-ahead determines next  action (shift or reduce) in each 
state of the DFA. 

■ A grammar is LR(1) if we can build an LR(1) parser for it 

•     LR(0) parsers: no look-ahead
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LR(1) parsing
• Can use a set of tables to describe LR(1) parser 

■ ocamlyacc automates the process of building the tables 
- Standard library Parser module interprets the tables 

■ LR parsing invented in 1965 by Donald Knuth 
■ LALR parsing invented in 1969 by Frank DeRemer
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Scanner Table-driven 
Parser

ACTION &  
GOTO 
Tables

Parser 
Generator

source 
code

grammar

output



LR(1) parsing algorithm
• Two tables 

■ ACTION: reduce/shift/accept 
■ GOTO: state to be in after reduce 

• Cost 
■ |input| shifts 
■ |derivation| reductions 
■ One accept 

• Detects errors by failure to shift, 
reduce, or accept
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stack.push(INVALID); stack.push(s0);  
not_found = true; 
token = scanner.next_token(); 
do while (not_found) { 
  s = stack.top(); 
  if ( ACTION[s,token] == “reduce A→β” ) { 
    stack.popnum(2*|β|); // pop 2*|β| symbols 
    s = stack.top(); 
    stack.push(A);  
    stack.push(GOTO[s,A]); 
  } 
  else if ( ACTION[s,token] == “shift si” ) { 
    stack.push(token); stack.push(si); 
    token ← scanner.next_token(); 
  } 
  else if ( ACTION[s,token] == “accept” && token == EOF ) 
      not_found = false; 
  else report a syntax error and recover; 
}  
report success;



Example parser table
• ocamlyacc -v ex1_parser.mly — produce .output file 

with parser table
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state

action goto

productions. EOL + N ( ) main expr term
0 (special)

1 s3 s4 acc 6 7 entry → . main

2 (special)
3 r4 term → INT .

4 s3 s4 8 7 term → ( . expr )

5 (special)

6 s9 s10 main → expr . EOL | expr → expr . + term
7 r2 expr → term .

8 s10 s11 expr → expr . + term | term → ( expr . )

9 r1 main → expr EOL .

10 s3 s4 12 expr → expr + . term

11 r5 term → ( expr ) .

12 r3 expr → expr + term .

NB: Numbers in shift refer to state numbers 

       Numbers in reduction refer to production numbers



Example parse (N+N+N)
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Stack Input Action

1 N+N+N s3

1,N,3 +N+N r4

1,term,7 +N+N r2

1,expr,6 +N+N s10

1,expr,6,+,10 N+N s3
1,expr,6,+,10,N,3 +N r4

1,expr,6,+,10,term,12 +N r3

1,expr,6 +N s10

1,expr,6,+,10 N s3

1,expr,6,+,10,N,3 r4

1,expr,6,+,10,term,12 r3
1,expr,6 s9

1,expr,6,EOL,9 r1

accept



Example parser table (cont’d)
• Notes 

■ Notice derivation is built up (bottom to top) 
■ Table only contains kernel of each state 

- Apply closure operation to see all the productions in the state 

• LR(1) parsing requires start symbol not on any rhs 
■ Thus, ocamlyacc actually adds another production 

- %entry% → \001 main 

- (so the acc in the previous table is a slight fib) 

• Values returned from actions stored on the stack 
■ Reduce triggers computation of action result
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Why does this work?
• Stack = upper fringe 

■ So all possible handles on top of stack 
■ Shift inputs until top elements of stack form a handle 

• Build a handle-recognizing DFA 
■ Language of handles is regular 
■ ACTION and GOTO tables encode the DFA 

- Shift = DFA transition 

- Reduce = DFA accept 

- New state = GOTO[state at top of stack (afetr pop), lhs] 

• If we can build these tables, grammar is LR(1)
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LR(k) items
• An LR(k) item is a pair [P, δ], where 

■ P is a production A→β with a • at some position in the rhs 
■ δ is a lookahead string of length ≤ k            (words or $) 
■ The • in an item indicates the position of the top of the stack 

• LR(1):  
■ [A→•βγ,a] — input so far consistent with using A →βγ 

immediately after symbol on top of stack 
■ [A →β•γ,a] — input so far consistent with using A →βγ at 

this point in the parse, and parser has already recognized β 
■ [A →βγ•,a] — parser has seen βγ, and lookahead of a 

consistent with reducing to A 

• LR(1) items represent valid configurations of an 
LR(1) parser; DFA states are sets of LR(1) items
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LR(k) items, cont’d
• Ex: A→BCD with lookahead a can yield 4 items 

■ [A→•BCD,a], [A→B•CD,a], [A→BC•D,a], [A→BCD•,a]  
■ Notice: set of LR(1) items for a grammar is finite 

• Carry lookaheads along to choose correct reduction 
■ Lookahead has no direct use in [A→β•γ,a] 
■ In [A→β•,a], a lookahead of a ⇒ reduction by A →β 

■ For { [A→β•,a],[B→γ•δ,b] } 
- Lookahead of a ⇒ reduce to A 

- FIRST(δ) ⇒ shift 

- (else error)
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LR(1) table construction
• States of LR(1) parser contain sets of LR(1) items 

• Initial state s0 
• Assume S’ is the start symbol of grammar, does not appear in rhs 

• (Extend grammar if necessary to ensure this) 

• s0 = closure([S’ →•S,$])            ($ = EOF) 

• For each sk and each terminal/non-terminal X, compute 
new state goto(sk,X) 
• Use closure() to “fill out” kernel of new state 

• If the new state is not already in the collection, add it 

• Record all the transitions created by goto( ) 

• These become ACTION and GOTO tables 

• i.e., the handle-finding DFA 

• This process eventually reaches a fixpoint

 44



Closure()
• [A→β•Bδ,a] implies [B→•γ,x] for each production 

with B on lhs and each x ∈ FIRST(δa) 
- (If you’re about to see a B, you may also see a ɣ)

 45

Closure( s ) 
  while ( s is still changing ) 
     ∀ items [A → β •Bδ,a] ∈ s              // item with • to left of nonterminal B 
        ∀ productions  B → γ ∈ P              // all productions for B 
          ∀ b  ∈ FIRST(δa)                     // tokens appearing after B 
            if  [B → • γ,b] ∉ s               // form LR(1) item w/ new lookahead 
                then add [B→ • γ,b] to s   // add item to s if new

• Classic fixed-point method 

• Halts because s ⊂ ITEMS  (worklist version is faster) 

•Closure “fills out” a state



Example — closure with LR(0)
S → E 
E → T+E 
    |   T 
T → id
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[S → • E] 
[E → • T+E] 
[E → • T] 
[T → • id]

[kernel item] 
[derived item]

[E → T+ • E] 
[E → • T+E] 
[E → • T] 
[T → • id]



Example — closure with LR(1)
S → E 
E → T+E 
    |   T 
T → id
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[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[kernel item] 
[derived item] [E → T+ • E, $] 

[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]



Goto
• Goto(s,x) computes the state that the parser would 

reach if it recognized an x while in state s 
■ Goto( { [A→β•Xδ,a] }, X ) produces [A→βX•δ,a] 
■ Should also includes closure( [A→βX•δ,a] )
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Goto( s, X ) 
    new ←Ø 
     ∀ items [A→β•Xδ,a] ∈ s       // for each item with • to left of X 
        new ← new ∪ [A→βX•δ,a]  // add item with • to right of X 

     return closure(new)             // remember to compute closure!

• Not a fixed-point method! 

• Straightforward computation 

• Uses closure ( ) 
•Goto() moves forward



Example — goto with LR(0)
S → E 
E → T+E 
    |   T 
T → id

 49

[S → • E] 
[E → • T+E] 
[E → • T] 
[T → • id]

[kernel item] 
[derived item]

[S → E •]

[E → T • +E] 
[E → T •]

[T → id •]

E

T

id



Example — goto with LR(1)
S → E 
E → T+E 
    |   T 
T → id
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[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $][kernel item] 

[derived item]

[S → E •, $]

[E → T • +E, $] 
[E → T •, $]

[T → id •, +] 
[T → id •, $]

E

T

id



Building parser states

• CC = canonical collection (of LR(k) items) 
• Fixpoint computation (worklist version) 
• Loop adds to CC 

■ CC ⊆ 2ITEMS, so CC is finite 
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cc0 ←  closure ( [S’→ •S, $] ) 
CC  ←  { cc0  } 

while ( new sets are still being added to CC) 
   for each unmarked set ccj ∈ CC 
       mark ccj as processed 
       for each x following a •  in an item in ccj  
            temp ←  goto(ccj, x) 
             if temp ∉  CC 
                 then CC ←  CC ∪  { temp } 
             record transitions from ccj to temp on x



Example LR(0) states
S → E 
E → T+E 
    |   T 
T → id
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[S → • E] 
[E → • T+E] 
[E → • T] 
[T → • id]

[S → E •]

[E → T • +E] 
[E → T •]

[T → id •]

E

T

id

[E → T + • E] 
[E → • T+E] 
[E → • T] 
[T → • id]

[E → T + E •]

id
E

+

T



Example LR(1) states
S → E 
E → T+E 
    |   T 
T → id
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[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[S → E •, $]

[E → T • +E, $] 
[E → T •, $]

[T → id •, +] 
[T → id •, $]

E

T

id

[E → T + • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[E → T + E •, $]

id

E

+

T



Building ACTION and GOTO tables

• Many items generate no table entry 
■ e.g., [A→β⋅Bα,a] does not, but closure ensures that all the 

rhs’s for B are in sx
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∀ set sx ∈ S  
    ∀ item i ∈ sx 

        if  i is [A→β •a γ,b] and goto(sx,a) = sk, a ∈ terminals // • to left of terminal a 
             then ACTION[x,a] ← “shift k”                   // ⇒ shift if lookahead = a 

        else if  i is [S’→S •,$]                               // start production done, 
             then ACTION[x , $] ← “accept”               // ⇒ accept if lookahead = $  

        else if  i is [A→β •,a]                               // • all the way to right 
              then ACTION[x,a] ← “reduce A→β”            // → production done 
    ∀ n ∈ nonterminals                                    // reduce if lookahead = a 
        if  goto(sx ,n) = sk 

            then GOTO[x,n] ← k                              // store transitions for nonterminals



Ex ACTION and GOTO tables
1.S → E 
2.E → T+E 
3.    |   T 
4.T → id
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[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[S → E •, $]

[E → T • +E, $] 
[E → T •, $]

[T → id •, +] 
[T → id •, $]

E

T

id

[E → T + • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3 
S3 r4 r4 
S4 s3 5 2
S5 r2 

S0

S1

S2

S3

S4

S5



Ex ACTION and GOTO tables
1.S → E 
2.E → T+E 
3.    |   T 
4.T → id
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[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[S → E •, $]

[E → T • +E, $] 
[E → T •, $]

[T → id •, +] 
[T → id •, $]

E

T

id

[E → T + • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3 
S3 r4 r4 
S4 s3 5 2
S5 r2 

S0

S1

S2

S3

S4

S5

Entries 
for 

shift



Ex ACTION and GOTO tables
1.S → E 
2.E → T+E 
3.    |   T 
4.T → id
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[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[S → E •, $]

[E → T • +E, $] 
[E → T •, $]

[T → id •, +] 
[T → id •, $]

E

T

id

[E → T + • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3 
S3 r4 r4 
S4 s3 5 2
S5 r2 

S0

S1

S2

S3

S4

S5

Entry 
for 

accept



Ex ACTION and GOTO tables
1.S → E 
2.E → T+E 
3.    |   T 
4.T → id

 58

[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[S → E •, $]

[E → T • +E, $] 
[E → T •, $]

[T → id •, +] 
[T → id •, $]

E

T

id

[E → T + • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3 
S3 r4 r4 
S4 s3 5 2
S5 r2 

S0

S1

S2

S3

S4

S5

Entries 
for 

reduce



Ex ACTION and GOTO tables
1.S → E 
2.E → T+E 
3.    |   T 
4.T → id
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[S → • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[S → E •, $]

[E → T • +E, $] 
[E → T •, $]

[T → id •, +] 
[T → id •, $]

E

T

id

[E → T + • E, $] 
[E → • T+E, $] 
[E → • T, $] 
[T → • id, +] 
[T → • id, $]

[E → T + E •, $]

id

E

+
T

ACTION GOTO
id + $ E T

S0 s3 1 2
S1 acc
S2 s4 r3 
S3 r4 r4 
S4 s3 5 2
S5 r2 

S0

S1

S2

S3

S4

S5

Entries 
for 

GOTO



What can go wrong?
• What if set s contains [A→β•aγ,b] and [B→β•,a] ? 

■ First item generates “shift”, second generates “reduce”  
■ Both define ACTION[s,a] — cannot do both actions 
■ This is a shift/reduce conflict 

• What if set s contains [A→γ•, a] and [B→γ•, a] ? 
■ Each generates “reduce”, but with a different production 
■ Both define ACTION[s,a] — cannot do both reductions 
■ This is called a reduce/reduce conflict 

• In  either case, the grammar is not LR(1)
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Shift/reduce conflict

• Associativity unspecified 
■ Ambiguous grammars always have conflicts 
■ But, some non-ambiguous grammars also have conflicts
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%token <int> INT 
%token EOL PLUS LPAREN RPAREN 
%start main             /* the entry point */ 
%type <int> main 
%% 
main: 
| expr EOL              { $1 } 
expr: 
| INT                   { $1 } 
| expr PLUS expr        { $1 + $3 } 
| LPAREN expr RPAREN    { $2 }



Solving conflicts
• Refactor grammar 
• Specify operator precedence and associativity 

■ Lots of details here 
- See “12.4.2 Declarations” at 

- http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html#htoc151 

■ When comparing operator on stack with lookahead 
- Shift if lookahead has higher prec OR same prec, right assoc 

- Reduce if lookahead has lower prec OR same prec, left assoc 

■ Can use smaller, simpler (ambiguous) grammars 
- Like the one we just saw
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%left PLUS MINUS        /* lowest precedence */ 
%left TIMES DIV         /* medium precedence */ 
%nonassoc UMINUS        /* highest precedence */

http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html#
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Left vs. right recursion
• Right recursion 

■ Required for termination in top-down parsers 
■ Produces right-associative operators 

• Left recursion 
■ Works fine in bottom-up parsers 
■ Limits required stack space 
■ Produces left-associative operators  

• Rule of thumb 
■ Left recursion for bottom-up parsers 
■ Right recursion for top-down parsers

*
*

*w

x

y
z

w * ( x * ( y * z ) )

*
*

* z

w
x

y

( (w * x ) *  y ) * z



Reduce/reduce conflict (1)

• Often these conflicts suggest a serious problem 
■ Here, there’s a deep ambiguity
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%token <int> INT 
%token EOL PLUS LPAREN RPAREN 
%start main             /* the entry point */ 
%type <int> main 
%% 
main: 
| expr EOL              { $1 } 
expr: 
| INT                   { $1 } 
| term                  { $1 } 
| term PLUS expr        { $1 + $3 } 
term : 
| INT                   { $1 } 
| LPAREN expr RPAREN    { $2 }



Reduce/reduce conflict (2)

• Grammar not ambiguous, but not enough lookahead 
to distinguish last two expr productions
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%token <int> INT 
%token EOL PLUS LPAREN RPAREN 
%start main             /* the entry point */ 
%type <int> main 
%% 
main: 
| expr EOL              { $1 } 
expr: 
| term1                 { $1 } 
| term1 PLUS PLUS expr  { $1 + $4 } 
| term2 PLUS expr       { $1 + $3 } 
term1 : 
| INT                   { $1 } 
| LPAREN expr RPAREN    { $2 } 
term2 : 
| INT                   { $1 }



Shrinking the tables
• Combine terminals 

■ E.g., number and identifier, or + and -, or * and / 
- Directly removes a column, may remove a row 

• Combine rows or columns (table compression) 
■ Implement identical rows once and remap states 
■ Requires extra indirection on each lookup 
■ Use separate mapping for ACTION and for GOTO 

• Use another construction algorithm 
■ LALR(1) used by ocamlyacc
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LALR(1) parser
• Define the core of a set of LR(1) items as 

■ Set of LR(0) items derived by ignoring lookahead symbols 

• LALR(1) parser merges two states if they have the 
same core 

• Result 
■ Potentially much smaller set of states 
■ May introduce reduce/reduce conflicts 
■ Will not introduce shift/reduce conflicts 
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[E → a •, b] 
[A → a •, c]

[E → a •] 
[A → a •]

LR(1) state Core



LALR(1) example

• Introduces reduce/reduce conflict 
■ Can reduce either E → a or A → ba for lookahead = b
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[E → a •, b] 
[A → ba •, c]

[E → a •, d] 
[A → ba •, b]

LR(1) states

[E → a •, b] 
[A → ba •, c] 
[E → a •, d] 
[A → ba •, b]

Merged state



LALR(1) vs. LR(1)
• Example grammar 

• LR(0) ? 

• LR(1) ? 

• LALR(1) ?
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S’ → S 
S  → aAd | bBd | aBe | bAe 
A → c 
B → c
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LR(k) Parsers
• Properties 

■ Strictly more powerful than LL(k) parsers 
■ Most general non-backtracking shift-reduce parser 
■ Detects error as soon as possible in left-to-right scan of 

input 
- Contents of stack are viable prefixes 

- Possible for remaining input to lead to successful parse



Error handling (lexing)
• What happens when input not handled by any lexing 

rule? 
■ An exception gets raised 
■ Better to provide more information, e.g., 

• Even better, keep track of line numbers 
■ Store in a global-ish variable (oh no!) 
■ Increment as a side effect whenever \n recognized

 71

rule token = parse 
... 

| _ as lxm { Printf.printf "Illegal character %c" lxm; 
             failwith "Bad input" }



Error handling (parsing)
• What happens when parsing a string not in the 

grammar? 
■ Reject the input 
■ Do we keep going, parsing more characters? 

- May cause a cascade of error messages 

- Could be more useful to programmer, if they don’t need to stop at the 
first error message (what do you do, in practice?) 

• Ocamlyacc includes a basic error recovery 
mechanism 
■ Special token error may appear in rhs of production 
■ Matches erroneous input, allowing recovery
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Error example (1)

• If unexpected input appears while trying to match 
expr, match token to error 
■ Effectively treats token as if it is produced from expr 
■ Triggers error action
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... 
expr: 
| term                  { $1 } 
| expr PLUS term        { $1 + $3 } 
| error           { Printf.printf "invalid expression"; 0 } 
term: ...



Error example (2)

• If unexpected input appears while trying to match 
term, match tokens to error 
■ Pop every state off the stack until LPAREN on top 
■ Scan tokens up to RPAREN, and discard those, also 
■ Then match error production
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... 
term: 
| INT                 { $1 } 
| LPAREN expr RPAREN  { $2 } 
| LPAREN error RPAREN {Printf.printf "Syntax error!\n"; 0} 



Error recovery in practice
• A very hard thing to get right! 

■ Necessarily involves guessing at what malformed inputs 
you may see 

• How useful is recovery? 
■ Compilers are very fast today, so not so bad to stop at first 

error message, fix it, and go on 
■ On the other hand, that does involve some delay 

• Perhaps the most important feature is good error 
messages 
■ Error recovery features useful for this, as well 
■ Some compilers are better at this than others
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OCamlyacc tip
• Setting OCAMLRUNPARAM=p will cause the 

parsing steps to be printed out as the parser runs 
• (And setting OCAMLRUNPARAM=b will tell OCaml 

to print a stack backtrace for any thrown 
exceptions.)
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Real programming languages
• Essentially all real programming languages don’t 

quite work with parser generators 
■ Even Java is not quite LALR(1) 

• Thus, real implementations play tricks with parsing 
actions to resolve conflicts 

• In-class exercise: C typedefs and identifier 
declarations/definitions
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Additional Parsing Technologies
• For a long time, parsing was a “dead” field 

■ Considered solved a long time ago 

• Recently, people have come back to it 
■ LALR parsing can have unnecessary parsing conflicts 
■ LALR parsing tradeoffs more important when computers 

were slower and memory was smaller 

• Many recent new (or new-old) parsing techniques 
■ GLR — generalized LR parsing, for ambiguous grammars 
■ LL(*) — ANTLR 
■ Packrat parsing — for parsing expression grammars 
■ etc... 

• The input syntax to many of these looks like yacc/
lex
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Designing language syntax
• Idea 1: Make it look like other, popular languages 

■ Java did this (OO with C syntax) 

• Idea 2: Make it look like the domain 
■ There may be well-established notation in the domain (e.g., 

mathematics) 
■ Domain experts already know that notation 

• Idea 3: Measure design choices 
■ E.g., ask users to perform programming (or related) task 

with various choices of syntax, evaluate performance, 
survey them on understanding 
- This is very hard to do! 

• Idea 4: Make your users adapt 
■ People are really good at learning...

 79


