
CMSC 430
Introduction to Compilers

Fall 2018

Operational Semantics

Syntax vs. semantics
• Syntax = grammatical structure
• Semantics = underlying meaning

• Sentences in a language can be syntactically well-
formed but semantically meaningless
■ “Colorless green ideals sleep furiously.” — Syntactic Structures, Noam Chomsky, 1957.
■ if (“foo” > 37) { oogbooga(3); “baz” * “qux”; }

• ocamllex and ocamlyacc enforce syntax
■ (Though could play tricks in actions to check semantics)

 2

Syntax vs. semantics (cont’d)
• General principle: enforce correctness at the earliest

stage possible
■ Keywords identified in lexer
■ Balanced ()’s enforced in parser
■ Types enforced afterward

• Why?
■ Earlier in pipeline ⇒ simpler to think about

■ Reporting errors is easier
- Less transformation from original program

- Errors may be easier to localize

■ Faster algorithms for detecting violations
- Higher chance could employ them interactively in IDE

 3

Detour: Natural deduction
• We are going to use natural deduction rules to

describe semantics
■ So we need to understand how those work first

• Natural deduction rules provide a syntax for writing
down proofs
■ Each rule is essentially an axiom
■ Rules are composed together

- The result is called a derivation

■ The things rules prove are called judgments

 4

Structure of a rule

■ H1 ... Hn are hypotheses, C is the conclusion
■ “If H1 and H2 and ... and Hn hold, then C holds”

 5

H1 H2 ... Hn
C

name

IMP: A language of commands

• n ∈ N = integers, X ∈ Var = variables, bv ∈ Bool = {true, false}
• This is a typical way of presenting a language

■ Notice grammar is for ASTs
- Not concerned about issues like ambiguity, associativity, precedence

• Syntax stratified into commands (c) and expressions (a,b)
■ Expressions have no side effects

• No function calls (and no higher order functions)
• So: How do we specify the semantics of IMP?

 6

a ::= n | X | a0+a1 | a0-a1 | a0×a1
b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1
c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | while b do c

Program state
• IMP contains imperative updates, so we need to

model the program state
■ Here the state is simply the integer value of each variable
■ (Notice can’t assign a boolean to a variable, by syntax!)

• State:
■ σ : Var → N
■ A state σ is a mapping from variables to their values

 7

Judgments
• Operational semantics has three kinds of judgments

■ 〈a, σ〉→ n
- In state σ, arithmetic expression a evaluates to n

■ 〈b, σ〉→ bv
- In state σ, boolean expression b evaluates to true or false

■ 〈c, σ〉→ σ’
- Running command c in state σ produces state σ’

• Can immediately see only commands have side effects
■ Only form whose evaluation produces a new state
■ Commands also do not return values
■ Note this is math, so we express state changes by creating the

new state σ’. We can’t just “mutate” σ.

 8

Arithmetic evaluation

 9

〈n, σ〉→ n 〈X, σ〉→ σ(X)

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0+a1, σ〉→ n0+n1

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0-a1, σ〉→ n0-n1

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0×a1, σ〉→ n0×n1

Arithmetic evaluation (cont’d)
• Notes:

■ Rule for variables only defined if X is in dom(σ). Otherwise
the program goes wrong, i.e., it has no meaning

■ Hypotheses of last three rules stacked to save space
■ Notice difference between syntactic operators, on the left

side of arrows, and mathematical operators, on the right
side of arrows

■ One rule for each kind of expression
- These are syntax-directed rules

■ In the rules, we use terminals and non-terminals in the
grammar to stand for anything producible from them
- E.g., n stands for any integer; σ for any state; etc.

■ Order of evaluation irrelevant, because there are no side
effects

 10

Sample derivation
• 1+2+3
• (2*x)-4 in σ = [x↦3]

 11

Correspondence to OCaml

 12

(* a ::= n | X | a0+a1 | a0-a1 | a0×a1 *)
type aexpr =
| AInt of int
| AVar of string
| APlus of aexpr * aexpr
| AMinus of aexpr * aexpr
| ATimes of aexpr * aexpr

let rec aeval sigma = function
| AInt n -> n
| AVar n -> List.assoc n sigma
| APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2)
| AMinus (a1, a2) -> (aeval sigma a1) - (aeval sigma a2)
| ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)

Boolean evaluation

 13

〈true, σ〉→ true

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0=a1, σ〉→ n0=n1

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0≤a1, σ〉→ n0≤n1

〈false, σ〉→ false

〈b0, σ〉→ bv0
〈b1, σ〉→ bv1

〈b0∧b1, σ〉→ bv0∧bv1

〈b0, σ〉→ bv0
〈b1, σ〉→ bv1

〈b0∨b1, σ〉→ bv0∨bv1

〈b, σ〉→ bv

〈¬b, σ〉→ ¬bv

Sample derivations
• ¬false ∧ true

• 2 ≤ X ∨ X ≤ 4 in σ = [X↦3]

 14

Correspondence to OCaml

 15

(* b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1 *)
type bexpr =
| BV of bool
| BEq of aexpr * aexpr
| BLeq of aexpr * aexpr
| BNot of bexpr
| BAnd of bexpr * bexpr
| BOr of bexpr * bexpr

let rec beval sigma = function
| BV b -> b
| BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2)
| BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2)
| BNot b -> not (beval sigma b)
| BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2)
| BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)

Command evaluation

• Here σ[X↦a] is the state that is the same as σ,
except X now maps to a
■ (σ[X↦a])(X) = a
■ (σ[X↦a])(Y) = σ(Y) X ≠ Y

• Notice order of evaluation explicit in sequence rule

 16

〈skip, σ〉→ σ

〈a, σ〉→ n
〈X:=a, σ〉→ σ[X↦n]

〈c0, σ〉→ σ0
〈c1, σ0〉→ σ1
〈c0; c1, σ〉→ σ1

Command evaluation (cont’d)

• Two rules for conditional
■ Just like in logic we needed two rules for ∧-E and ∨-I
■ Notice we specify only one command is executed

 17

〈b, σ〉→ true 〈c0, σ〉→ σ0
〈if b then c0 else c1, σ〉→ σ0

〈b, σ〉→ false 〈c1, σ〉→ σ1
〈if b then c0 else c1, σ〉→ σ1

Command evaluation (cont’d)

 18

〈b, σ〉→ false
〈while b do c, σ〉→ σ

〈b, σ〉→ true 〈c; while b do c, σ〉→ σ’

〈while b do c, σ〉→ σ'

Sample derivations
• n:=3; f:=1; while n ≥ 1 do f := f * n; n := n - 1

 19

Correspondence to OCaml

 20

(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 |
 while b do c *)
type cmd =
| CSkip
| CAssn of string * aexpr
| CSeq of cmd * cmd
| CIf of bexpr * cmd * cmd
| CWhile of bexpr * cmd

let rec ceval sigma = function
| CSkip -> sigma
| CAssn (x, a) -> (x:(aeval sigma a))::sigma
 (* note List.assoc in aeval stops at first match *)
| CSeq (c0, c1) ->
 let sigma0 = ceval sigma c0 in ceval sigma0 c1
 (* or “ceval (ceval sigma c0) c1” *)
| CIf (b, c0, c1) ->
 if (beval sigma b) then (ceval sigma c0)
 else (ceval sigma c1)
| CWhile (b, c) ->
 if (beval sigma b)
 then ceval sigma (CSeq (c, CWhile(b,c)))
 else sigma

Big-step semantics
• Semantics given are “big step” or “natural

semantics”
■ E.g.,〈c, σ〉→ σ’
■ Commands fully evaluated to produce the final output state,

in one, big step

• Limitation: Can’t give semantics to non-terminating
programs
■ We would need to work with infinite derivations, which is

typically not valid
■ (Note: It is possible, though, using a co-inductive

interpretation)

 21

Small-step semantics
• Instead, can expose intermediate steps of

computation
■ a →σ a’

- Evaluating a one step in state σ produces a’

■ b →σ b’
- Evaluating b one step in state σ produces b’

■ 〈c, σ〉→1 〈c’, σ’〉
- Running command c in state σ for one step yields a new command c’

and new state σ’

• Note putting σ on the arrow is just a convenience
■ Good notation for stringing evaluations together

- a0 →σ a1 →σ a2 →σ ...

■ Put 1 on arrow for commands just to let us distinguish
different kinds of arrows

 22

Small-step rules for arithmetic

• Similarly for - and ×
• Notice no rule for evaluating integer n

■ An integer is in normal form, meaning no further evaluation
is possible

• We’ve fixed the order of evaluation
■ Could also have made it non-deterministic

 23

X →σ σ(X)

a0 →σ a0’

a0+a1→σ a0’+a1

a1 →σ a1’

n+a1→σ n+a1’

p=m+n

n+m→σ p

Context rules
• We have some rules that do the “real” work

■ The rest are context rules that define order of evaluation

• Cool trick (due to Hieb and Felleisen):
■ Define a context as a term with a “hole” in it

- C ::= □ | C+a | n+C | C-a | n-C | C×a | n×C

■ Notice the terms generated by this grammar always have
exactly one □, and it always appears at the next position
that can be evaluated

■ Define C[a] to be C where □ is replaced by a
- Ex: ((□+3) × 5)[4] = (4+3) × 5

■ Now add one, single context rule:

 24

a →σ a’

C[a]→σ C[a’]

Small-step rules for booleans
• Very similar to arithmetic expressions

■ Too boring to write them all down...

 25

Small-step rules for commands
• Let’s define contexts, to get that out of the way

■ C ::= □ | X:=C | C;c1 | if C then c0 else c1

• Now the rules (plus the context rule):

 26

〈X:=n, σ〉 →1 〈skip, σ[x↦n]〉

〈skip; c1, σ〉 →1 〈c1, σ〉

〈if true then c0 else c1, σ〉 →1 〈c0, σ〉

〈if false then c0 else c1, σ〉 →1 〈c1, σ〉

〈while b do c, σ〉 →1

〈if b then (c; while b do c) else skip, σ〉

Lambda calculus
• e ::= x | λx.e | e e
• Recall

■ Scope of λ extends as far to the right as possible
- λx.λy.x y is λx.(λy.(x y))

■ Function application is left-associative
- x y z is (x y) z

■ Beta-reduction takes a single step of evaluation
- (λx.e1) e2 → e1[e2\x]

 27

 28

A nonderministic semantics

(λx.e1) e2 → e1[e2\x]
e → e′

(λx.e) → (λx.e′)

e1 → e1′
e1 e2 → e1′ e2

e2 → e2′
e1 e2 → e1 e2′

■ Why are these semantics non-deterministic?

 29

...with context rules

(λx.e1) e2 → e1[e2\x]

e → e′
C[e] → C[e′]

• C ::= □ | λx.C | C e | e C

 30

• If a →* b and a →* c, there there exists d such that
b →* d and c →* d
■ Proof: http://www.mscs.dal.ca/~selinger/papers/

lambdanotes.pdf

• Church-Rosser is also called confluence

The Church-Rosser Theorem

http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf

 31

• A term is in normal form if it cannot be reduced
■ Examples: λx.x, λx.λy.z

• By Church-Rosser Theorem, every term reduces to
at most one normal form
■ Warning: All of this applies only to the pure lambda calculus

with non-deterministic evaluation

• Notice that for our application rule, the argument
need not be in normal form

Normal Form

 32

• Consider
■ Δ = λx.x x
■ Then Δ Δ → Δ Δ →···

• In general, self application leads to loops
■ ...which is where the Y combinator comes from (see 330)

Not Every Term Has a Normal Form

 33

• Our non-deterministic reduction rule is fine in theory,
but awkward to implement

• Two deterministic strategies:
■ Lazy: Given (λx.e1) e2, do not evaluate e2 if e1 does not

“need” x
- Also called left-most, call-by-name (c.b.n.), call-by-need, applicative,

normal-order (with slightly different meanings)

■ Eager: Given (λx.e1) e2, always evaluate e2 fully before
applying the function
- Also called call-by-value (c.b.v.)

Lazy vs. Eager Evaluation

C.b.n. small-step semantics
• e ::= x | λx.e | e e

■ Must evaluate function position until we get to a lambda
■ Apply as soon as we know what fn we’re applying
■ Do not evaluate “under” and lambda
■ Do not evaluate the argument

■ In context form:
- C ::= □ | C e

 34

(λx.e1) e2 → e1[e2\x]
e1 → e1′

e1 e2 → e1′ e2

C.b.v. small-step semantics
• e ::= x | v | e e
• v ::= λx.e

■ Must evaluate function position until we get to a lambda
■ Evaluate function posn before argument posn

- Not important here, but matters if we add side effects

■ Do not evaluate “under” and lambda
■ Argument must be fully evaluated before the call

■ In context form:
- C ::= □ | C e | v C 35

(λx.e) v → e[v\x]

e1 → e1′
e1 e2 → e1′ e2

e2 → e2′
v e2 → v e2′

C.b.n. versus c.b.v. in theory
• Call-by-name is normalizing

■ If a is closed and there is a normal form b such that a →*
b under the non-deterministic semantics, then a →* d for
some d under c.b.n. semantics

• Call-by-value is not!
■ There are some programs that terminate under call-by-

name but not under call-by-value
- E.g., (λx.(λy.y)) (∆ ∆)

- Where ∆ = λx.x x

- The non-terminating argument (∆ ∆) is discarded under c.b.n., but
c.b.v. attempts to evaluate it

 36

 37

• Lazy evaluation (call by name, call by need)
■ Has some nice theoretical properties
■ Terminates more often
■ Lets you play some tricks with “infinite” objects
■ Main example: Haskell

• Eager evaluation (call by value)
■ Is generally easier to implement efficiently
■ Blends more easily with side effects
■ Main examples: Most languages (C, Java, ML, etc.)

C.b.n. vs. c.b.v. in practice

