CMSC 430 Introduction to Compilers Fall 2018

Operational Semantics

Syntax vs. semantics

- Syntax = grammatical structure
- Semantics = underlying meaning
- Sentences in a language can be syntactically wellformed but semantically meaningless
 - "Colorless green ideals sleep furiously." Syntactic Structures, Noam Chomsky, 1957.
 - if ("foo" > 37) { oogbooga(3); "baz" * "qux"; }
- ocamllex and ocamlyacc enforce syntax
 - (Though could play tricks in actions to check semantics)

Syntax vs. semantics (cont'd)

- General principle: enforce correctness at the earliest stage possible
 - Keywords identified in lexer
 - Balanced ()'s enforced in parser
 - Types enforced afterward
- Why?
 - Earlier in pipeline \Rightarrow simpler to think about
 - Reporting errors is easier
 - Less transformation from original program
 - Errors may be easier to localize
 - Faster algorithms for detecting violations
 - Higher chance could employ them interactively in IDE

Detour: Natural deduction

- We are going to use *natural deduction* rules to describe semantics
 - So we need to understand how those work first
- Natural deduction rules provide a syntax for writing down proofs
 - Each rule is essentially an axiom
 - Rules are composed together
 - The result is called a *derivation*
 - The things rules prove are called *judgments*

- H1 ... Hn are hypotheses, C is the conclusion
- "If H1 and H2 and ... and Hn hold, then C holds"

IMP: A language of commands

- a ::= n | X | a0+a1 | a0-a1 | a0×a1
- b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1
- c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | while b do c
 - $n \in N$ = integers, $X \in Var$ = variables, $bv \in Bool = \{true, false\}$
 - This is a typical way of presenting a language
 - Notice grammar is for ASTs
 - Not concerned about issues like ambiguity, associativity, precedence
 - Syntax stratified into commands (c) and expressions (a,b)
 - Expressions have no side effects
 - No function calls (and no higher order functions)
 - So: How do we specify the semantics of IMP?

Program state

- IMP contains imperative updates, so we need to model the program state
 - Here the state is simply the integer value of each variable
 - (Notice can't assign a boolean to a variable, by syntax!)
- State:
 - $\sigma: Var \rightarrow N$
 - A state σ is a mapping from variables to their values

Judgments

- Operational semantics has three kinds of judgments
 - $\langle a, \sigma \rangle \rightarrow n$
 - In state σ , arithmetic expression a evaluates to n
 - $\langle b, \sigma \rangle \rightarrow bv$
 - In state σ , boolean expression b evaluates to true or false
 - $\langle c, \sigma \rangle \rightarrow \sigma'$
 - Running command c in state σ produces state σ'
- Can immediately see only commands have side effects
 - Only form whose evaluation produces a new state
 - Commands also do not return values
 - Note this is math, so we express state changes by creating the new state σ'. We can't just "mutate" σ.

$\langle n, \sigma \rangle \rightarrow n$	$\langle X, \sigma \rangle \rightarrow \sigma(X)$
$\langle a0, \sigma \rangle \rightarrow n0$ $\langle a1, \sigma \rangle \rightarrow n1$	$\langle a0, \sigma \rangle \rightarrow n0$ $\langle a1, \sigma \rangle \rightarrow n1$
$a0+a1, \sigma \rightarrow n0+n1$	$\langle a0-a1, \sigma \rangle \rightarrow n0-n1$

 $\begin{array}{l} \langle a0,\,\sigma\rangle \, \rightarrow n0 \\ \\ \langle a1,\,\sigma\rangle \, \rightarrow n1 \\ \\ \langle a0 \times a1,\,\sigma\rangle \, \rightarrow n0 \times n1 \end{array}$

Arithmetic evaluation (cont'd)

- Notes:
 - Rule for variables only defined if X is in dom(σ). Otherwise the program goes wrong, i.e., it has no meaning
 - Hypotheses of last three rules stacked to save space
 - Notice difference between syntactic operators, on the left side of arrows, and mathematical operators, on the right side of arrows
 - One rule for each kind of expression
 - These are *syntax-directed rules*
 - In the rules, we use terminals and non-terminals in the grammar to stand for anything producible from them
 - E.g., n stands for any integer; o for any state; etc.
 - Order of evaluation irrelevant, because there are no side effects

Sample derivation

- 1+2+3
- (2*x)-4 in σ = [x→3]

Correspondence to OCaml

```
(* a ::= n | X | a0+a1 | a0-a1 | a0×a1 *)
type aexpr =
| AInt of int
| AVar of string
| APlus of aexpr * aexpr
| AMinus of aexpr * aexpr
| ATimes of aexpr * aexpr
let rec aeval sigma = function
| AInt n -> n
| AVar n -> List.assoc n sigma
| APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2)
| AMinus (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)
| ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)
```

			$\langle b, \sigma \rangle$	$\rightarrow bv$
$\langle true, \sigma \rangle \rightarrow true$	<false, td="" σ<=""><td>$\rangle \rightarrow false$</td><td> νb, σ></td><td>→ ¬bv</td></false,>	$\rangle \rightarrow false$	 νb, σ>	→ ¬bv
<a0, σ=""> -</a0,>	→ n0	<a0, σ=""></a0,>	\rightarrow n0	
<a1, σ=""> -</a1,>	→ n1	<a1, σ=""></a1,>	→ n1	
<a0=a1, σ=""> -</a0=a1,>	→ n0=n1	⟨a0≤a1, σ⟩	→ n0≤n1	
$\langle b0, \sigma \rangle \rightarrow$	bv0	<b0,< td=""><td>$\sigma \rangle \rightarrow bv0$</td><td></td></b0,<>	$\sigma \rangle \rightarrow bv0$	
$\langle b1, \sigma \rangle \rightarrow$	bv1	<b1,< td=""><td>$\sigma \rangle \rightarrow bv1$</td><td></td></b1,<>	$\sigma \rangle \rightarrow bv1$	
$\langle b0 \land b1, \sigma \rangle \rightarrow$	bv0∧bv1	⟨b0∨b1, c	$\sigma \rightarrow bv0$	√bv1

Sample derivations

- ¬false ∧ true
- $2 \le X \lor X \le 4$ in $\sigma = [X \mapsto 3]$

Correspondence to OCaml

```
(* b ::= bv | a0=a1 | a0\leq a1 | \neg b | b0 \land b1 | b0 \lor b1 *)
type bexpr =
| BV of bool
 BEq of aexpr * aexpr
| BLeq of aexpr * aexpr
| BNot of bexpr
| BAnd of bexpr * bexpr
| BOr of bexpr * bexpr
let rec beval sigma = function
| BV b -> b
| BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2)
 BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2)
 BNot b -> not (beval sigma b)
 BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2)
 BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)
```

Command evaluation

$$\begin{array}{ccc} \langle \mathsf{skip}, \sigma \rangle \to \sigma & & \langle \sigma \rangle \\ & & \langle \mathsf{a}, \sigma \rangle \to \mathsf{n} & & & \langle \mathsf{c} \sigma \rangle \\ & & \langle \mathsf{X}:=\mathsf{a}, \sigma \rangle \to \sigma[\mathsf{X} \mapsto \mathsf{n}] & & & \langle \mathsf{c} \sigma \rangle \end{array}$$

$$\begin{array}{l} \langle c0, \sigma \rangle \rightarrow \sigma 0 \\ \langle c1, \sigma 0 \rangle \rightarrow \sigma 1 \\ \langle c0; c1, \sigma \rangle \rightarrow \sigma 1 \end{array}$$

- Here σ[X→a] is the state that is the same as σ, except X now maps to a
 - (σ[X→a])(X) = a
 - $(\sigma[X \mapsto a])(Y) = \sigma(Y)$ $X \neq Y$
- Notice order of evaluation explicit in sequence rule

Command evaluation (cont'd)

$$\begin{array}{ll} \langle b, \sigma \rangle \rightarrow true & \langle c0, \sigma \rangle \rightarrow \sigma 0 \\ \\ \langle if \ b \ then \ c0 \ else \ c1, \sigma \rangle \rightarrow \sigma 0 \\ \\ \hline \langle b, \sigma \rangle \rightarrow false & \langle c1, \sigma \rangle \rightarrow \sigma 1 \\ \\ \\ \langle if \ b \ then \ c0 \ else \ c1, \sigma \rangle \rightarrow \sigma 1 \end{array}$$

- Two rules for conditional
 - Just like in logic we needed two rules for $\wedge\text{-}E$ and $\vee\text{-}I$
 - Notice we specify only one command is executed

Command evaluation (cont'd)

 $\begin{array}{l} \langle b, \sigma \rangle \rightarrow \mathsf{false} \\ \langle \mathsf{while} \ b \ \mathsf{do} \ \mathsf{c}, \sigma \rangle \rightarrow \sigma \\ \\ \langle b, \sigma \rangle \rightarrow \mathsf{true} \qquad \langle \mathsf{c}; \ \mathsf{while} \ b \ \mathsf{do} \ \mathsf{c}, \sigma \rangle \rightarrow \sigma' \\ \\ \langle \mathsf{while} \ b \ \mathsf{do} \ \mathsf{c}, \sigma \rangle \rightarrow \sigma' \end{array}$

Sample derivations

n:=3; f:=1; while n ≥ 1 do f := f * n; n := n - 1

Correspondence to OCaml

```
(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 |
         while b do c *)
type cmd =
| CSkip
| CAssn of string * aexpr
CSeq of cmd * cmd
| CIf of bexpr * cmd * cmd
| CWhile of bexpr * cmd
let rec ceval sigma = function
| CSkip -> sigma
| CAssn (x, a) -> (x:(aeval sigma a))::sigma
  (* note List.assoc in aeval stops at first match *)
| CSeq (c0, c1) ->
  let sigma0 = ceval sigma c0 in ceval sigma0 c1
  (* or "ceval (ceval sigma c0) c1" *)
 CIf (b, c0, c1) ->
  if (beval sigma b) then (ceval sigma c0)
                     else (ceval sigma c1)
 CWhile (b, c) \rightarrow
  if (beval sigma b)
  then ceval sigma (CSeq (c, CWhile(b,c)))
  else sigma
```

Big-step semantics

- Semantics given are "big step" or "natural semantics"
 - E.g., $\langle c, \sigma \rangle \rightarrow \sigma'$
 - Commands fully evaluated to produce the final output state, in one, big step
- Limitation: Can't give semantics to non-terminating programs
 - We would need to work with infinite derivations, which is typically not valid
 - (Note: It is possible, though, using a co-inductive interpretation)

Small-step semantics

- Instead, can expose intermediate steps of computation
 - $a \rightarrow_{\sigma} a'$
 - Evaluating a one step in state or produces a'
 - $b \rightarrow_{\sigma} b'$
 - Evaluating b one step in state o produces b'
 - $\bullet \quad \langle c, \, \sigma \rangle \, \to_1 \ \langle c', \, \sigma' \rangle$
 - Running command c in state σ for one step yields a new command c' and new state σ
- Note putting σ on the arrow is just a convenience
 - Good notation for stringing evaluations together
 - $a0 \rightarrow_{\sigma} a1 \rightarrow_{\sigma} a2 \rightarrow_{\sigma} ...$
 - Put 1 on arrow for commands just to let us distinguish different kinds of arrows

Small-step rules for arithmetic

$$X \rightarrow_{\sigma} \sigma(X)$$

a0 → _σ a0'	$a1 \rightarrow_{\sigma} a1'$	p=m+n
a0+a1→ _σ a0'+a1	n+a1→ _σ n+a1'	n+m→ _σ p

- Similarly for and ×
- Notice no rule for evaluating integer n
 - An integer is in *normal form*, meaning no further evaluation is possible
- We've fixed the order of evaluation
 - Could also have made it non-deterministic

Context rules

- We have some rules that do the "real" work
 - The rest are *context rules* that define order of evaluation
- Cool trick (due to Hieb and Felleisen):
 - Define a *context* as a term with a "hole" in it
 - C ::= 🗆 | C+a | n+C | C-a | n-C | C×a | n×C
 - Notice the terms generated by this grammar always have exactly one
 , and it always appears at the *next* position that can be evaluated
 - Define C[a] to be C where □ is replaced by a
 - Ex: $((\Box+3) \times 5)[4] = (4+3) \times 5$
 - Now add one, single context rule:

a →
$$_{\sigma}$$
 a'
C[a]→ $_{\sigma}$ C[a']

Small-step rules for booleans

- Very similar to arithmetic expressions
 - Too boring to write them all down...

Small-step rules for commands

- Let's define contexts, to get that out of the way
 - C ::= □ | X:=C | C;c1 | if C then c0 else c1
- Now the rules (plus the context rule):

(X:=n, σ)	\rightarrow_1	⟨skip, σ[x⊷n]⟩
<skip; c1,="" σ=""></skip;>	\rightarrow_1	<c1, σ=""></c1,>
(if true then c0 else c1, σ)	\rightarrow_1	(c0, σ)
(if false then c0 else c1, σ)	\rightarrow_1	<c1, σ=""></c1,>
$\langle while b do c, \sigma \rangle$	→ 1	
(if b then (c; while b do c) else skip, σ)		

Lambda calculus

- e ::= x | λx.e | e e
- Recall
 - Scope of λ extends as far to the right as possible
 - $\lambda x.\lambda y.x y$ is $\lambda x.(\lambda y.(x y))$
 - Function application is left-associative
 - x y z is (x y) z
 - Beta-reduction takes a single step of evaluation
 - $(\lambda x.e1) e2 \rightarrow e1[e2 x]$

A nonderministic semantics

Why are these semantics non-deterministic?

...with context rules

• C ::= \Box | $\lambda x.C$ | C e | e C

 $e \rightarrow e'$ C[e] \rightarrow C[e']

 $(\lambda x.e1) e2 \rightarrow e1[e2 x]$

The Church-Rosser Theorem

- If a →* b and a →* c, there there exists d such that
 b →* d and c →* d
 - Proof: <u>http://www.mscs.dal.ca/~selinger/papers/</u> <u>lambdanotes.pdf</u>
- Church-Rosser is also called confluence

Normal Form

- A term is in normal form if it cannot be reduced
 - Examples: λx.x, λx.λy.z
- By Church-Rosser Theorem, every term reduces to at most one normal form
 - Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation
- Notice that for our application rule, the argument need not be in normal form

Not Every Term Has a Normal Form

- Consider
 - $\Delta = \lambda x.x x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$
- In general, self application leads to loops
 - ...which is where the Y combinator comes from (see 330)

Lazy vs. Eager Evaluation

- Our non-deterministic reduction rule is fine in theory, but awkward to implement
- Two deterministic strategies:
 - Lazy: Given (λx.e1) e2, do not evaluate e2 if e1 does not "need" x
 - Also called left-most, **call-by-name (c.b.n.)**, call-by-need, applicative, normal-order (with slightly different meanings)
 - Eager: Given (λx.e1) e2, always evaluate e2 fully before applying the function
 - Also called call-by-value (c.b.v.)

C.b.n. small-step semantics

• e ::= x | λx.e | e e

 $(\lambda x.e1) e2 \rightarrow e1[e2 x]$

 $e1 \rightarrow e1'$ $e1 \ e2 \rightarrow e1' \ e2$

- Must evaluate function position until we get to a lambda
- Apply as soon as we know what fn we're applying
- Do not evaluate "under" and lambda
- Do not evaluate the argument
- In context form:
 - C ::= □ | C e

C.b.v. small-step semantics

• e ::= x v e e	$e1 \rightarrow e1'$
• v ::= λx.e	$e1 e2 \rightarrow e1' e2$
	$e2 \rightarrow e2'$
$(\lambda x.e) \lor \to e[\lor \land x]$	$v e2 \rightarrow v e2'$

- Must evaluate function position until we get to a lambda
- Evaluate function posn before argument posn
 - Not important here, but matters if we add side effects
- Do not evaluate "under" and lambda
- Argument must be fully evaluated before the call
- In context form:
 - C ::= □ | C e | v C

C.b.n. versus c.b.v. in theory

- Call-by-name is normalizing
 - If a is closed and there is a normal form b such that a →*
 b under the non-deterministic semantics, then a →* d for some d under c.b.n. semantics
- Call-by-value is not!
 - There are some programs that terminate under call-byname but not under call-by-value
 - E.g., (λx.(λy.y)) (Δ Δ)
 - Where $\Delta = \lambda x.x x$
 - The non-terminating argument (Δ Δ) is discarded under c.b.n., but c.b.v. attempts to evaluate it

C.b.n. vs. c.b.v. in practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with "infinite" objects
 - Main example: Haskell
- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)