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Syntax vs. semantics
• Syntax = grammatical structure 
• Semantics = underlying meaning 

• Sentences in a language can be syntactically well-
formed but semantically meaningless 
■ “Colorless green ideals sleep furiously.” — Syntactic Structures, Noam Chomsky, 1957. 
■ if (“foo” > 37) { oogbooga(3); “baz” * “qux”; } 

• ocamllex and ocamlyacc enforce syntax 
■ (Though could play tricks in actions to check semantics)
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Syntax vs. semantics (cont’d)
• General principle: enforce correctness at the earliest 

stage possible 
■ Keywords identified in lexer 
■ Balanced ()’s enforced in parser 
■ Types enforced afterward 

• Why? 
■ Earlier in pipeline ⇒ simpler to think about 

■ Reporting errors is easier 
- Less transformation from original program 

- Errors may be easier to localize 

■ Faster algorithms for detecting violations 
- Higher chance could employ them interactively in IDE
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Detour: Natural deduction
• We are going to use natural deduction rules to 

describe semantics 
■ So we need to understand how those work first 

• Natural deduction rules provide a syntax for writing 
down proofs 
■ Each rule is essentially an axiom 
■ Rules are composed together 

- The result is called a derivation 

■ The things rules prove are called judgments
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Structure of a rule

■ H1 ... Hn are hypotheses, C is the conclusion 
■ “If H1 and H2 and ... and Hn hold, then C holds”
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H1 H2 ... Hn
C

name



IMP: A language of commands

• n ∈ N = integers, X ∈ Var = variables, bv ∈ Bool = {true, false} 
• This is a typical way of presenting a language 

■ Notice grammar is for ASTs 
- Not concerned about issues like ambiguity, associativity, precedence 

• Syntax stratified into commands (c) and expressions (a,b) 
■ Expressions have no side effects 

• No function calls (and no higher order functions) 
• So: How do we specify the semantics of IMP?
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a ::= n | X | a0+a1 | a0-a1 | a0×a1 
b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1 
c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | while b do c



Program state
• IMP contains imperative updates, so we need to 

model the program state 
■ Here the state is simply the integer value of each variable 
■ (Notice can’t assign a boolean to a variable, by syntax!) 

• State: 
■ σ : Var → N 
■ A state σ is a mapping from variables to their values
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Judgments
• Operational semantics has three kinds of judgments 

■ 〈a, σ〉→ n 
- In state σ, arithmetic expression a evaluates to n 

■ 〈b, σ〉→ bv 
- In state σ, boolean expression b evaluates to true or false 

■ 〈c, σ〉→ σ’  
- Running command c in state σ produces state σ’ 

• Can immediately see only commands have side effects 
■ Only form whose evaluation produces a new state 
■ Commands also do not return values 
■ Note this is math, so we express state changes by creating the 

new state σ’. We can’t just “mutate” σ.
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Arithmetic evaluation
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〈n, σ〉→ n 〈X, σ〉→ σ(X)

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0+a1, σ〉→ n0+n1

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0-a1, σ〉→ n0-n1

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0×a1, σ〉→ n0×n1



Arithmetic evaluation (cont’d)
• Notes: 

■ Rule for variables only defined if X is in dom(σ). Otherwise 
the program goes wrong, i.e., it has no meaning 

■ Hypotheses of last three rules stacked to save space 
■ Notice difference between syntactic operators, on the left 

side of arrows, and mathematical operators, on the right 
side of arrows 

■ One rule for each kind of expression 
- These are syntax-directed rules 

■ In the rules, we use terminals and non-terminals in the 
grammar to stand for anything producible from them 
- E.g., n stands for any integer; σ for any state; etc. 

■ Order of evaluation irrelevant, because there are no side 
effects
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Sample derivation
• 1+2+3 
• (2*x)-4 in σ = [x↦3]
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Correspondence to OCaml
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(* a ::= n | X | a0+a1 | a0-a1 | a0×a1 *) 
type aexpr = 
| AInt of int 
| AVar of string 
| APlus of aexpr * aexpr 
| AMinus of aexpr * aexpr 
| ATimes of aexpr * aexpr 

let rec aeval sigma = function 
| AInt n -> n 
| AVar n -> List.assoc n sigma 
| APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2) 
| AMinus (a1, a2) -> (aeval sigma a1) - (aeval sigma a2) 
| ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)



Boolean evaluation
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〈true, σ〉→ true

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0=a1, σ〉→ n0=n1

〈a0, σ〉→ n0
〈a1, σ〉→ n1

〈a0≤a1, σ〉→ n0≤n1

〈false, σ〉→ false

〈b0, σ〉→ bv0
〈b1, σ〉→ bv1

〈b0∧b1, σ〉→ bv0∧bv1

〈b0, σ〉→ bv0
〈b1, σ〉→ bv1

〈b0∨b1, σ〉→ bv0∨bv1

〈b, σ〉→ bv

〈¬b, σ〉→ ¬bv



Sample derivations
• ¬false ∧ true 

• 2 ≤ X ∨ X ≤ 4  in σ = [X↦3]
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Correspondence to OCaml
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(* b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1 *) 
type bexpr = 
| BV of bool 
| BEq of aexpr * aexpr 
| BLeq of aexpr * aexpr 
| BNot of bexpr 
| BAnd of bexpr * bexpr 
| BOr of bexpr * bexpr 

let rec beval sigma = function 
| BV b -> b 
| BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2) 
| BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2) 
| BNot b -> not (beval sigma b) 
| BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2) 
| BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)



Command evaluation

• Here σ[X↦a] is the state that is the same as σ, 
except X now maps to a 
■ (σ[X↦a])(X) = a 
■ (σ[X↦a])(Y) = σ(Y)     X ≠ Y 

• Notice order of evaluation explicit in sequence rule
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〈skip, σ〉→ σ

〈a, σ〉→ n
〈X:=a, σ〉→ σ[X↦n]

〈c0, σ〉→ σ0
〈c1, σ0〉→ σ1
〈c0; c1, σ〉→ σ1



Command evaluation (cont’d)

• Two rules for conditional 
■ Just like in logic we needed two rules for ∧-E and ∨-I 
■ Notice we specify only one command is executed
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〈b, σ〉→ true       〈c0, σ〉→ σ0
〈if b then c0 else c1, σ〉→ σ0

〈b, σ〉→ false       〈c1, σ〉→ σ1
〈if b then c0 else c1, σ〉→ σ1



Command evaluation (cont’d)
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〈b, σ〉→ false
〈while b do c, σ〉→ σ

〈b, σ〉→ true       〈c; while b do c, σ〉→ σ’

〈while b do c, σ〉→ σ'



Sample derivations
• n:=3; f:=1; while n ≥ 1 do f := f * n; n := n - 1
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Correspondence to OCaml
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(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | 
         while b do c *) 
type cmd = 
| CSkip 
| CAssn of string * aexpr 
| CSeq of cmd * cmd 
| CIf of bexpr * cmd * cmd 
| CWhile of bexpr * cmd 

let rec ceval sigma = function 
| CSkip -> sigma 
| CAssn (x, a) -> (x:(aeval sigma a))::sigma 
  (* note List.assoc in aeval stops at first match *) 
| CSeq (c0, c1) -> 
  let sigma0 = ceval sigma c0 in ceval sigma0 c1 
  (* or “ceval (ceval sigma c0) c1” *) 
| CIf (b, c0, c1) -> 
  if (beval sigma b) then (ceval sigma c0) 
                     else (ceval sigma c1) 
| CWhile (b, c) -> 
  if (beval sigma b) 
  then ceval sigma (CSeq (c, CWhile(b,c))) 
  else sigma



Big-step semantics
• Semantics given are “big step” or “natural 

semantics” 
■ E.g.,〈c, σ〉→ σ’  
■ Commands fully evaluated to produce the final output state, 

in one, big step 

• Limitation: Can’t give semantics to non-terminating 
programs 
■ We would need to work with infinite derivations, which is 

typically not valid 
■ (Note: It is possible, though, using a co-inductive 

interpretation)

 21



Small-step semantics
• Instead, can expose intermediate steps of 

computation 
■ a →σ a’ 

- Evaluating a one step in state σ produces a’ 

■ b →σ b’ 
- Evaluating b one step in state σ produces b’ 

■ 〈c, σ〉→1 〈c’, σ’〉  
- Running command c in state σ for one step yields a new command c’ 

and new state σ’ 

• Note putting σ on the arrow is just a convenience 
■ Good notation for stringing evaluations together 

- a0 →σ a1 →σ a2 →σ ... 

■ Put 1 on arrow for commands just to let us distinguish 
different kinds of arrows 
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Small-step rules for arithmetic

• Similarly for - and × 
• Notice no rule for evaluating integer n 

■ An integer is in normal form, meaning no further evaluation 
is possible 

• We’ve fixed the order of evaluation 
■ Could also have made it non-deterministic
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X →σ σ(X)

a0 →σ a0’

a0+a1→σ a0’+a1

a1 →σ a1’

n+a1→σ n+a1’

p=m+n

n+m→σ p



Context rules
• We have some rules that do the “real” work 

■ The rest are context rules that define order of evaluation 

• Cool trick (due to Hieb and Felleisen): 
■ Define a context as a term with a “hole” in it 

- C ::= □ | C+a | n+C | C-a | n-C | C×a | n×C 

■ Notice the terms generated by this grammar always have 
exactly one □, and it always appears at the next position 
that can be evaluated 

■ Define C[a] to be C where □ is replaced by a 
- Ex: ((□+3) × 5)[4] = (4+3) × 5 

■ Now add one, single context rule:
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a →σ a’

C[a]→σ C[a’]



Small-step rules for booleans
• Very similar to arithmetic expressions 

■ Too boring to write them all down...
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Small-step rules for commands
• Let’s define contexts, to get that out of the way 

■ C ::= □ | X:=C | C;c1 | if C then c0 else c1 

• Now the rules (plus the context rule):
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〈X:=n, σ〉 →1 〈skip, σ[x↦n]〉

〈skip; c1, σ〉 →1 〈c1, σ〉

〈if true then c0 else c1, σ〉 →1 〈c0, σ〉

〈if false then c0 else c1, σ〉 →1 〈c1, σ〉

〈while b do c, σ〉 →1

〈if b then (c; while b do c) else skip, σ〉



Lambda calculus
• e ::= x | λx.e | e e 
• Recall 

■ Scope of λ extends as far to the right as possible 
- λx.λy.x y  is λx.(λy.(x y)) 

■ Function application is left-associative 
- x y z is (x y) z 

■ Beta-reduction takes a single step of evaluation 
- (λx.e1) e2 → e1[e2\x]
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A nonderministic semantics

(λx.e1) e2 → e1[e2\x]
e → e′

(λx.e) → (λx.e′)

e1 → e1′
e1 e2 → e1′ e2

e2 → e2′
e1 e2 → e1 e2′

■ Why are these semantics non-deterministic?
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...with context rules

(λx.e1) e2 → e1[e2\x]

e → e′
C[e] → C[e′]

• C ::= □ | λx.C | C e | e C
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• If a →* b and a →* c, there there exists d such that 
b →* d and c →* d 
■ Proof:  http://www.mscs.dal.ca/~selinger/papers/

lambdanotes.pdf 

• Church-Rosser is also called confluence

The Church-Rosser Theorem

http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
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• A term is in normal form if it cannot be reduced 
■ Examples: λx.x, λx.λy.z 

• By Church-Rosser Theorem, every term reduces to 
at most one normal form 
■ Warning:  All of this applies only to the pure lambda calculus 

with non-deterministic evaluation  

• Notice that for our application rule, the argument 
need not be in normal form

Normal Form
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• Consider 
■ Δ = λx.x x
■ Then Δ Δ → Δ Δ →···

• In general, self application leads to loops 
■ ...which is where the Y combinator comes from (see 330)

Not Every Term Has a Normal Form
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• Our non-deterministic reduction rule is fine in theory, 
but awkward to implement 

• Two deterministic strategies: 
■ Lazy:  Given (λx.e1) e2, do not evaluate e2 if e1 does not 

“need” x 
- Also called left-most, call-by-name (c.b.n.), call-by-need, applicative, 

normal-order (with slightly different meanings) 

■ Eager: Given (λx.e1) e2, always evaluate e2 fully before 
applying the function 
- Also called call-by-value (c.b.v.)

Lazy vs. Eager Evaluation



C.b.n. small-step semantics
• e ::= x | λx.e | e e 

■ Must evaluate function position until we get to a lambda 
■ Apply as soon as we know what fn we’re applying 
■ Do not evaluate “under” and lambda 
■ Do not evaluate the argument 

■ In context form: 
- C ::= □ | C e
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(λx.e1) e2 → e1[e2\x]
e1 → e1′

e1 e2 → e1′ e2



C.b.v. small-step semantics
• e ::= x | v | e e 
• v ::= λx.e 

■ Must evaluate function position until we get to a lambda 
■ Evaluate function posn before argument posn 

- Not important here, but matters if we add side effects 

■ Do not evaluate “under” and lambda 
■ Argument must be fully evaluated before the call 

■ In context form: 
- C ::= □ | C e | v C  35

(λx.e) v → e[v\x]

e1 → e1′
e1 e2 → e1′ e2

e2 → e2′
v e2 → v e2′



C.b.n. versus c.b.v. in theory
• Call-by-name is normalizing 

■ If a is closed and there is a normal form b such that    a →*  
b under the non-deterministic semantics, then a →* d for 
some d under c.b.n. semantics 

• Call-by-value is not! 
■ There are some programs that terminate under call-by-

name but not under call-by-value 
- E.g., (λx.(λy.y)) (∆ ∆)  

- Where ∆ = λx.x x 

- The non-terminating argument (∆ ∆) is discarded under c.b.n., but 
c.b.v. attempts to evaluate it
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• Lazy evaluation (call by name, call by need) 
■ Has some nice theoretical properties 
■ Terminates more often 
■ Lets you play some tricks with “infinite” objects 
■ Main example:  Haskell 

• Eager evaluation (call by value) 
■ Is generally easier to implement efficiently 
■ Blends more easily with side effects 
■ Main examples:  Most languages (C, Java, ML, etc.)

C.b.n. vs. c.b.v. in practice


