CMSC 430

Introduction to Compilers
Fall 2018

Operational Semantics

Syntax vs. semantics

» Syntax = grammatical structure
» Semantics = underlying meaning

» Sentences in a language can be syntactically well-
formed but semantically meaningless

= “Colorless green ideals sleep furiously.” —syaci srcures noam cromsky, 1957
» if ("foo” > 37) { oogbooga(3); “baz” * “qux’; }

» ocamllex and ocamlyacc enforce syntax
= (Though could play tricks in actions to check semantics)

Syntax vs. semantics (cont’d)

* General principle: enforce correctness at the earliest
stage possible
» Keywords identified in lexer
= Balanced ()’'s enforced in parser
» [ypes enforced afterward

 Why?

= Earlier in pipeline = simpler to think about

» Reporting errors is easier
- Less transformation from original program

- Errors may be easier to localize

» Faster algorithms for detecting violations

- Higher chance could employ them interactively in IDE

Detour: Natural deduction

* We are going to use natural deduction rules to
describe semantics

= S0 we need to understand how those work first

» Natural deduction rules provide a syntax for writing
down proofs
= Each rule is essentially an axiom
» Rules are composed together

- The result is called a derivation

» The things rules prove are called judgments

Structure of a rule

H1 H2 ... Hn
C

name

= H1 ... Hn are hypotheses, C is the conclusion
= “If H1 and H2 and ... and Hn hold, then C holds”

IMP: A language of commands

a:
b :
C:

=n| X|a0+a1 | a0-a1 | a0xa1
= bv |a0=a1|al0<al|b|bOaAb1 | bOvb1
.= skip | X:=a | cO;c1 | if b then cO else c1 | while b do c

n € N = integers, X € Var = variables, bv € Bool = {true, false}

This is a typical way of presenting a language
= Notice grammar is for ASTs

- Not concerned about issues like ambiguity, associativity, precedence

Syntax stratified into commands (c) and expressions (a,b)

= Expressions have no side effects

No function calls (and no higher order functions)
So: How do we specify the semantics of IMP?

Program state

IMP contains imperative updates, so we need to
model the program state

» Here the state is simply the integer value of each variable
» (Notice can’t assign a boolean to a variable, by syntax!)

State:

= 0:Var— N
» Astate o is a mapping from variables to their values

Judgments

* Operational semantics has three kinds of judgments

(a,0) —n

- In state g, arithmetic expression a evaluates to n
(b, o) — bv

- In state o, boolean expression b evaluates to true or false
(c,0) —» 0O

- Running command c in state o produces state ¢’

« Can immediately see only commands have side effects

Only form whose evaluation produces a new state
Commands also do not return values

Note this is math, so we express state changes by creating the
new state o’. We can't just “mutate” o.

Arithmetic evaluation

(n, o) —n (X, 0) — o(X)

(a0, o) — n0 (a0, o) — n0
(a1, o) — n1 (a1, o) — n1
(a0+a1, o) — n0+n1 (a0-a1, 0) — n0-n1

(aO, G) — N0

(a1, o) — n1
(a0xa1, o) — n0xn1

Arithmetic evaluation (cont’d)

Notes:

Rule for variables only defined if X is in dom(c). Otherwise
the program goes wrong, i.e., it has no meaning

Hypotheses of last three rules stacked to save space

Notice difference between syntactic operators, on the left
side of arrows, and mathematical operators, on the right
side of arrows

One rule for each kind of expression

- These are syntax-directed rules

In the rules, we use terminals and non-terminals in the
grammar to stand for anything producible from them

- E.g., n stands for any integer; o for any state; etc.

Order of evaluation irrelevant, because there are no side
effects

Sample derivation

o 1+2+3
* (2"X)-4 In 0 = [x~3]

Correspondence to OCaml

(* a ::=n | X | aO+al | a0-al | aOxal *)
type aexpr =

AInt of int

AVar of string

APlus of aexpr * aexpr

AMinus of aexpr * aexpr

ATimes of aexpr * aexpr

let rec aeval sigma = function

AInt n -> n

AVar n -> List.assoc n sigma

APlus (al, a2) -> (aeval sigma al) + (aeval sigma aZ2)
AMinus (al, a2) -> (aeval sigma al) - (aeval sigma a2)
ATimes (al, a2) -> (aeval sigma al) * (aeval sigma a2)

Boolean evaluation

(b, o) — bv
(true, o) — true (false, o) — false (b, o) — "bv
(aO, O') — N0 (aO, O') — n0
(a1, o) — n1 (a1, o) — n1

(a0=a1, o) — n0=n1 (a0<al1, o) — n0<n1

(b0,) — bv0 (b0, a) — bv0
(b1, o) — bv1 (b1, 0) — bv1
(bOAb1, 0) — bvOAbv1 (bOvb1, o) — bvOvbv1

Sample derivations

e false A true
e 25 XvX<4 ino=[X~3]

Correspondence to OCaml

(* b ::= bv | a0=al | a0<al | =b | bOAbl | bOVvbl *)
type bexpr =

BV of bool

BEq of aexpr * aexpr

BLeq of aexpr * aexpr

BNot of bexpr

BAnd of bexpr * bexpr

BOr of bexpr * bexpr

let rec beval sigma = function

BV b -> b

BEq (al, a2) -> (aeval sigma al) = (aeval sigma aZ2)
BLeq (al, a2) -> (aeval sigma al) <= (aeval sigma a2)
BNot b -> not (beval sigma b)

BAnd (bl, b2) -> (beval sigma bl) && (beval sigma b2)
BOr (bl, b2) -> (beval sigma bl) || (beval sigma b2)

Command evaluation

(skip, o) — O (c0, 0) — a0

(a, 0) —n

(c1, 00) — o1
(c0: c1,) — O1

(X:=a, 0) — o[X~n]

* Here o[X~al] Is the state that is the same as o,
except X now maps to a

" (0[X~a]

NIX)=a

. (o[X~al)(Y)=o(Y) X#Y

* Notice order of evaluation explicit in sequence rule

Command evaluation (cont’d)

(b, o) — true (c0,0) — o0
(if b then c0 else c1, o) — o0

(b, o) — false (c1,0) — 01
(if b then c0 else c1, o) — o1

* Two rules for conditional
» Just like in logic we needed two rules for A-E and v-I
= Notice we specify only one command is executed

Command evaluation (cont’d)

(b, o) — false
(whilebdoc,o) >0

(b, o) — true (c:whilebdoc, o) -0

(while bdoc, o) — ¢

Sample derivations

e N:=3; ;=1 whilen=z1dof:=f*n;n:=n-1

Correspondence to OCaml

(* ¢ ::=skip | X:=za | c0;cl | if b then c0 else cl |
while b do c *)
type cmd =
CSkip

CAssn of string * aexpr
CSeq of cmd * cmd

CIf of bexpr * cmd * cmd
CWhile of bexpr * cmd

let rec ceval sigma = function
| CSkip -> sigma
| CAssn (x, a) -> (x: (aeval sigma a)) ::sigma
(* note List.assoc in aeval stops at first match ¥*)
| CSeq (cO, c¢cl) ->
let sigma0 = ceval sigma cO in ceval sigma0O cl
(* or “ceval (ceval sigma c0) cl” *)
| CIf (b, c0, cl) ->
if (beval sigma b) then (ceval sigma cO0)
else (ceval sigma cl)
| CWhile (b, c) ->
if (beval sigma b)
then ceval sigma (CSeq (c, CWhile(b,c)))
else sigma

20

Big-step semantics

* Semantics given are “big step” or “natural
semantics”
= Eg., (c,o0) -0

» Commands fully evaluated to produce the final output state,
In one, big step

» Limitation: Can’t give semantics to non-terminating
programs

= \We would need to work with infinite derivations, which is
typically not valid

= (Note: It is possible, though, using a co-inductive
interpretation)

21

Small-step semantics

* Instead, can expose intermediate steps of
computation

a—ca
- Evaluating a one step in state o produces a’
b —0 b,

- Evaluating b one step in state o produces b’

(C, O'> —>1 <C,, O">

- Running command c in state o for one step yields a new command ¢’

and new state o’

* Note putting o on the arrow Is just a convenience

Good notation for stringing evaluations together

- aO —0 a1 —0 82 —>0 .-

Put 1 on arrow for commands just to let us distinguish
different kinds of arrows

22

Small-step rules for arithmetic

X —0 G(X)
a0 —¢ al’ al —-sal p=m-+n
a0+al1—y a0’+a1 h+al—gs ntatl’ N+m—g p

» Similarly for - and x
* Notice no rule for evaluating integer n

= An integer is in normal form, meaning no further evaluation
IS possible

o \We've fixed the order of evaluation
» Could also have made it non-deterministic

23

Context rules

« \We have some rules that do the “real” work

The rest are context rules that define order of evaluation

* Cool trick (due to Hieb and Felleisen):

Define a context as a term with a “hole” in it
- C:=o|C+a|n+tC|C-a|n-C|Cxa|nxC

Notice the terms generated by this grammar always have
exactly one o, and it always appears at the next position
that can be evaluated

Define C[a] to be C where o is replaced by a
- Ex: ((o+3) x 5)4]=(4+3) x5
Now add one, single context rule:

a—ga
C[a]—>o C[a’]

24

Small-step rules for booleans

* Very similar to arithmetic expressions
= Joo boring to write them all down...

25

Small-step rules for commands

» Let's define contexts, to get that out of the way
» C:=o|X:=C|C;c1|if Cthen cO else c1
* Now the rules (plus the context rule):

(X:=n, 0)

—1 (skip, o[x~n])
(skip; c1,0) —1 (c1, o)
(iftruethencOelsec1,0) —1 (c0, o)
(if false thencO else c1,0) —1 (c1, 0)
(whilebdoc,o) —+

(if b then (c; while b do c) else skip, o)

26

Lambda calculus

e e.=X|Axel|ee
* Recall
= Scope of A extends as far to the right as possible
- AXAYy.XYy is AX.(Ay.(x Y))
» Function application is left-associative
- Xyzis(xy)z
» Beta-reduction takes a single step of evaluation
- (Ax.e1) e2 — el[e2\x]

27

A nonderministic semantics

e —> e
(Ax.e1) e2 — el[e2\X] (Ax.e) — (Ax.e')
el — e’ e2 — e2'
ele2 —-el' e2 el e2 - ele?

» Why are these semantics non-deterministic?

28

=WIith context rules
c C:=o0|M&C|Cel|eC

e — e
Cle] — Clef]

(Ax.e1) e2 — e1[e2\X]

29

The Church-Rosser Theorem

 |[fa —=* banda —~ c, there there exists d such that
b—-*"dandc—*d

» Proof: http://www.mscs.dal.ca/~selinger/papers/
lambdanotes.pdf

« Church-Rosser is also called confluence

30

http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf

Normal Form

« Aterm is in normal form if it cannot be reduced

= Examples: Ax.x, AX.Ay.z

» By Church-Rosser Theorem, every term reduces to
at most one normal form

= Warning: All of this applies only to the pure lambda calculus
with non-deterministic evaluation

* Notice that for our application rule, the argument
need not be in normal form

31

Not Every Term Has a Normal Form

 Consider
« A= Ax.Xx X
s ThenAA—>AAN—---

* In general, self application leads to loops
» ...which is where the Y combinator comes from (see 330)

32

Lazy vs. Eager Evaluation

* Our non-deterministic reduction rule is fine in theory,
but awkward to implement

* Two deterministic strategies:
» Lazy: Given (Ax.e1) e2, do not evaluate e2 if e1 does not
‘need” X

- Also called left-most, call-by-name (c.b.n.), call-by-need, applicative,
normal-order (with slightly different meanings)

» Eager: Given (Ax.e1) e2, always evaluate e2 fully before
applying the function

- Also called call-by-value (c.b.v.)

33

C.b.n. small-step semantics

e e.i=X|Axel|ee

el — el’
(Ax.e1) e2 — el[e2\X] ele2 —-el'e2

» Must evaluate function position until we get to a lambda
= Apply as soon as we know what fn we're applying

» Do not evaluate “under” and lambda

» Do not evaluate the argument

= |n context form:
- C:=o|Ce

34

C.b.v. small-step semantics

ce=Xx|v]ee el —el’
* V.= AX.e ele2 —-el'e2
el2 — e2
(AX.e) v — e[V\X] ve2 »ve?

» Must evaluate function position until we get to a lambda
» Evaluate function posn before argument posn

- Not important here, but matters if we add side effects
= Do not evaluate “under” and lambda
» Argument must be fully evaluated before the call

= |n context form:
- C:=o|Ce|vC

35

C.b.n. versus c.b.v. in theory

» Call-by-name is normalizing

» [f ais closed and there is a normal form b suchthat a —~*

b under the non-deterministic semantics, then a —* d for
some d under c.b.n. semantics

» Call-by-value is not!

» There are some programs that terminate under call-by-
name but not under call-by-value

- E.g., (AX.(Ay.y)) (A A)
- Where A = AX.x X

- The non-terminating argument (A A) is discarded under c.b.n., but
c.b.v. attempts to evaluate it

36

C.b.n. vs. c.b.v. in practice

» Lazy evaluation (call by name, call by need)
» Has some nice theoretical properties
» Terminates more often
» Lets you play some tricks with “infinite” objects
« Main example: Haskell

« Eager evaluation (call by value)
» |s generally easier to implement efficiently
» Blends more easily with side effects
= Main examples: Most languages (C, Java, ML, etc.)

37

