CMSC 430
 Introduction to Compilers

Fall 2018

Operational Semantics

Syntax vs. semantics

- Syntax = grammatical structure
- Semantics = underlying meaning
- Sentences in a language can be syntactically wellformed but semantically meaningless
- "Colorless green ideals sleep furiously." - smmaticis structruses, Nam Chomssy, 1957 .
- if ("foo" > 37) \{ oogbooga(3); "baz" * "qux"; \}
- ocamllex and ocamlyacc enforce syntax
- (Though could play tricks in actions to check semantics)

Syntax vs. semantics (cont'd)

- General principle: enforce correctness at the earliest stage possible
- Keywords identified in lexer
- Balanced ()'s enforced in parser
- Types enforced afterward
- Why?
- Earlier in pipeline \Rightarrow simpler to think about
- Reporting errors is easier
- Less transformation from original program
- Errors may be easier to localize
- Faster algorithms for detecting violations
- Higher chance could employ them interactively in IDE

Detour: Natural deduction

- We are going to use natural deduction rules to describe semantics
- So we need to understand how those work first
- Natural deduction rules provide a syntax for writing down proofs
- Each rule is essentially an axiom
- Rules are composed together
- The result is called a derivation
- The things rules prove are called judgments

Structure of a rule

- H 1 ... Hn are hypotheses, C is the conclusion
- "If H1 and H2 and ... and Hn hold, then C holds"

IMP: A language of commands

$$
\begin{aligned}
& a::=n|X| a 0+a 1|a 0-a 1| a 0 \times a 1 \\
& b::=b v|a 0=a 1| a 0 \leq a 1|~ b b| b 0 \wedge b 1 \mid b 0 v b 1 \\
& c::=\text { skip | } X:=a|c 0 ; c 1| \text { if } b \text { then } c 0 \text { else } c 1 \mid \text { while } b \text { do } c
\end{aligned}
$$

- $\mathrm{n} \in \mathrm{N}=$ integers, $\mathrm{X} \in \mathrm{Var}=$ variables, $\mathrm{bv} \in$ Bool $=\{$ true, false $\}$
- This is a typical way of presenting a language
- Notice grammar is for ASTs
- Not concerned about issues like ambiguity, associativity, precedence
- Syntax stratified into commands (c) and expressions (a,b)
- Expressions have no side effects
- No function calls (and no higher order functions)
- So: How do we specify the semantics of IMP?

Program state

- IMP contains imperative updates, so we need to model the program state
- Here the state is simply the integer value of each variable
- (Notice can't assign a boolean to a variable, by syntax!)
- State:
- $\sigma: \operatorname{Var} \rightarrow \mathrm{N}$
- A state σ is a mapping from variables to their values

Judgments

- Operational semantics has three kinds of judgments
- $\langle\mathrm{a}, \sigma\rangle \rightarrow \mathrm{n}$
- In state σ, arithmetic expression a evaluates to n
- $\langle\mathrm{b}, \sigma\rangle \rightarrow \mathrm{bv}$
- In state σ, boolean expression b evaluates to true or false
- $\langle\mathrm{c}, \sigma\rangle \rightarrow \sigma^{\prime}$
- Running command c in state σ produces state σ '
- Can immediately see only commands have side effects
- Only form whose evaluation produces a new state
- Commands also do not return values
- Note this is math, so we express state changes by creating the new state σ '. We can't just "mutate" σ.

Arithmetic evaluation

$$
\overline{\langle n, \sigma\rangle \rightarrow n} \quad\langle X, \sigma\rangle \rightarrow \sigma(X)
$$

$$
\begin{aligned}
\langle\mathrm{a} 0, \sigma\rangle & \rightarrow \mathrm{n} 0 \\
\langle\mathrm{a} 1, \sigma\rangle & \rightarrow \mathrm{n} 1
\end{aligned} \quad \begin{aligned}
\langle\mathrm{a} 0, \sigma\rangle & \rightarrow \mathrm{n} 0 \\
\langle\mathrm{a} 1, \sigma\rangle & \rightarrow \mathrm{n} 1 \\
\hline\langle\mathrm{a} 0+\mathrm{a} 1, \sigma\rangle & \rightarrow \mathrm{n} 0+\mathrm{n} 1
\end{aligned}
$$

$$
\begin{aligned}
\langle\mathrm{a} 0, \sigma\rangle & \rightarrow \mathrm{n} 0 \\
\langle\mathrm{a} 1, \sigma\rangle & \rightarrow \mathrm{n} 1 \\
\hline\langle\mathrm{a} 0 \times \mathrm{a} 1, \sigma\rangle & \rightarrow \mathrm{n} 0 \times \mathrm{n} 1
\end{aligned}
$$

Arithmetic evaluation (cont'd)

- Notes:
- Rule for variables only defined if X is in dom(σ). Otherwise the program goes wrong, i.e., it has no meaning
- Hypotheses of last three rules stacked to save space
- Notice difference between syntactic operators, on the left side of arrows, and mathematical operators, on the right side of arrows
- One rule for each kind of expression
- These are syntax-directed rules
- In the rules, we use terminals and non-terminals in the grammar to stand for anything producible from them
- E.g., n stands for any integer; σ for any state; etc.
- Order of evaluation irrelevant, because there are no side effects

Sample derivation

- 1+2+3
- $\left(2^{*} x\right)-4$ in $\sigma=[x \mapsto 3]$

Correspondence to OCaml

```
(* a ::= n | X | a0+a1 | a0-a1 | a0\timesa1 *)
type aexpr =
| AInt of int
| AVar of string
| APlus of aexpr * aexpr
| AMinus of aexpr * aexpr
| ATimes of aexpr * aexpr
let rec aeval sigma = function
| AInt n -> n
AVar n -> List.assoc n sigma
APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2)
AMinus (a1, a2) -> (aeval sigma a1) - (aeval sigma a2)
| ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)
```


Boolean evaluation

$\sum_{\langle\text {true }, \sigma\rangle \rightarrow \text { true }} \xlongequal{\langle\text { false, } \sigma\rangle \rightarrow \text { false }} \quad$| $\langle\mathrm{b}, \sigma\rangle \rightarrow \mathrm{bv}$ |
| :--- |
| $\langle\neg \mathrm{b}, \sigma\rangle \rightarrow \neg \mathrm{bv}$ |

$$
\frac{\begin{array}{cl}
\langle\mathrm{a} 0, \sigma\rangle & \rightarrow \mathrm{n} 0 \\
\langle\mathrm{a} 1, \sigma\rangle & \rightarrow \mathrm{n} 1 \\
\langle\mathrm{a} 0=\mathrm{a} 1, \sigma\rangle & \rightarrow \mathrm{n} 0=\mathrm{n} 1
\end{array} \frac{\langle\mathrm{a} 0, \sigma\rangle}{} \rightarrow \mathrm{n} 0}{\langle\mathrm{a} 1, \sigma\rangle} \rightarrow \mathrm{n} 10
$$

Sample derivations

- \neg false \wedge true
- $2 \leq X \vee X \leq 4$ in $\sigma=[X \mapsto 3]$

Correspondence to OCaml

```
(* b ::= bv | a0=a1 | a0\leqa1 | ᄀb | b0^b1 | b0Vb1 *)
type bexpr =
| BV of bool
| BEq of aexpr * aexpr
| BLeq of aexpr * aexpr
| BNot of bexpr
| BAnd of bexpr * bexpr
| BOr of bexpr * bexpr
let rec beval sigma = function
    BV b -> b
    BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2)
BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2)
| BNot b -> not (beval sigma b)
| BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2)
| BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)
```


Command evaluation

$$
\begin{gathered}
\langle\text { skip, } \sigma\rangle \rightarrow \sigma \\
\langle\mathrm{a}, \sigma\rangle \rightarrow \mathrm{n} \\
\hline\langle\mathrm{X}:=\mathrm{a}, \sigma\rangle \rightarrow \sigma[\mathrm{X} \mapsto \mathrm{n}]
\end{gathered}
$$

- Here $\sigma[X \mapsto a]$ is the state that is the same as σ, except X now maps to a
- $(\sigma[X \mapsto a])(X)=a$
- $(\sigma[X \mapsto a])(Y)=\sigma(Y) \quad X \neq Y$
- Notice order of evaluation explicit in sequence rule

Command evaluation (cont'd)

- Two rules for conditional
- Just like in logic we needed two rules for $\wedge-E$ and $\vee-1$
- Notice we specify only one command is executed

Command evaluation (cont'd)

$\langle b, \sigma\rangle \rightarrow$ false
\langle while b do c, $\sigma\rangle \rightarrow \sigma$
$\langle\mathrm{b}, \sigma\rangle \rightarrow$ true $\quad\langle\mathrm{c}$; while b do $\mathrm{c}, \sigma\rangle \rightarrow \sigma^{\prime}$
\langle while b do $\mathrm{c}, \sigma\rangle \rightarrow \sigma^{\prime}$

Sample derivations

- $\mathrm{n}:=3$; f:=1; while $\mathrm{n} \geq 1$ do $\mathrm{f}:=\mathrm{f}$ * $\mathrm{n} ; \mathrm{n}:=\mathrm{n}-1$

Correspondence to OCaml

```
(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 |
    while b do c *)
type cmd =
    CSkip
    CAssn of string * aexpr
    CSeq of cmd * cmd
    CIf of bexpr * cmd * cmd
    CWhile of bexpr * cmd
let rec ceval sigma = function
    CSkip -> sigma
    CAssn (x, a) -> (x:(aeval sigma a))::sigma
    (* note List.assoc in aeval stops at first match *)
| CSeq (c0, c1) ->
    let sigma0 = ceval sigma c0 in ceval sigma0 c1
    (* or "ceval (ceval sigma cO) c1" *)
| CIf (b, c0, c1) ->
    if (beval sigma b) then (ceval sigma cO)
                                    else (ceval sigma c1)
    CWhile (b, c) ->
    if (beval sigma b)
    then ceval sigma (CSeq (c, CWhile(b,c)))
    else sigma
```


Big-step semantics

- Semantics given are "big step" or "natural semantics"
- E.g., $\langle c, \sigma\rangle \rightarrow \sigma$ '
- Commands fully evaluated to produce the final output state, in one, big step
- Limitation: Can't give semantics to non-terminating programs
- We would need to work with infinite derivations, which is typically not valid
- (Note: It is possible, though, using a co-inductive interpretation)

Small-step semantics

- Instead, can expose intermediate steps of computation
- a \rightarrow a'
- Evaluating a one step in state σ produces a'
- b $\rightarrow_{\sigma} \mathrm{b}^{\prime}$
- Evaluating b one step in state σ produces b'
- $\langle c, \sigma\rangle \rightarrow 1 \quad\left\langle c^{\prime}, \sigma^{\prime}\right\rangle$
- Running command c in state σ for one step yields a new command c' and new state σ '
- Note putting σ on the arrow is just a convenience
- Good notation for stringing evaluations together
- a0 \rightarrow_{σ} a1 \rightarrow_{σ} a2 $\rightarrow_{\sigma} \ldots$
- Put 1 on arrow for commands just to let us distinguish different kinds of arrows

Small-step rules for arithmetic

$X \rightarrow \sigma(X)$
$\frac{a 0 \rightarrow \sigma a \rightarrow^{\prime}}{a 0+a 1 \rightarrow_{\sigma} a 0^{\prime}+a 1} \frac{a 1 \rightarrow_{\sigma} a 1^{\prime}}{n+a 1 \rightarrow_{\sigma} n+a 1^{\prime}} \quad \frac{p=m+n}{n+m \rightarrow \sigma}$

- Similarly for - and \times
- Notice no rule for evaluating integer n
- An integer is in normal form, meaning no further evaluation is possible
- We've fixed the order of evaluation
- Could also have made it non-deterministic

Context rules

- We have some rules that do the "real" work
- The rest are context rules that define order of evaluation
- Cool trick (due to Hieb and Felleisen):
- Define a context as a term with a "hole" in it
- C ::= \quad | $\mathrm{C}+\mathrm{a}|\mathrm{n}+\mathrm{C}| \mathrm{C}-\mathrm{a}|\mathrm{n}-\mathrm{C}| \mathrm{C} \times \mathrm{a} \mid \mathrm{n} \times \mathrm{C}$
- Notice the terms generated by this grammar always have exactly one \square, and it always appears at the next position that can be evaluated
- Define C[a] to be C where \square is replaced by a
- Ex: ((ロ+3)×5)[4] = (4+3)×5
- Now add one, single context rule:

$$
\frac{\mathrm{a} \rightarrow \sigma \mathrm{a}}{\mathrm{C}[\mathrm{a}] \rightarrow_{\sigma} \mathrm{C}\left[\mathrm{a}^{\prime}\right]}
$$

Small-step rules for booleans

- Very similar to arithmetic expressions
- Too boring to write them all down...

Small－step rules for commands

－Let＇s define contexts，to get that out of the way
－ $\mathrm{C}::=$ ㅁ $\mathrm{X}:=\mathrm{C}|\mathrm{C} ; \mathrm{c} 1|$ if C then c 0 else c 1
－Now the rules（plus the context rule）：

$\langle\mathrm{X}:=\mathrm{n}, \sigma\rangle$	$\rightarrow 1$	〈skip，$\sigma[\mathrm{x} \mapsto \mathrm{n}]$ 〉
\langle skip；c1，$\sigma\rangle$	$\rightarrow 1$	$\langle\mathrm{c} 1, \sigma\rangle$
$\langle i f$ true then c0 else c1，σ 〉	$\rightarrow 1$	$\langle\mathrm{c} 0, \sigma\rangle$
\langle if false then c0 else c1，σ 〉	$\rightarrow 1$	$\langle\mathrm{c} 1, \mathrm{\sigma}\rangle$
\langle while b do $\mathrm{c}, \sigma\rangle \quad \rightarrow 1$ $\langle i f \mathrm{~b}$ then（c；while b do c）else skip，σ 〉		

Lambda calculus

- e ::= x| λx.e|e e
- Recall
- Scope of λ extends as far to the right as possible
- $\lambda x . \lambda y . x y$ is $\lambda x .(\lambda y .(x y))$
- Function application is left-associative
- $x y z$ is ($x y$) z
- Beta-reduction takes a single step of evaluation
- ($\lambda x . e 1$) $\mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{e} 2 \mid x]$

A nonderministic semantics

$e \rightarrow e^{\prime}$
$(\lambda x . e) \rightarrow\left(\lambda x . e^{\prime}\right)$
$\frac{\mathrm{e} 2 \rightarrow \mathrm{e} 2^{\prime}}{\mathrm{e} 1 \mathrm{e} 2 \rightarrow \mathrm{e} 1 \mathrm{e} 2^{\prime}}$

- Why are these semantics non-deterministic?

...with context rules

- C ::= $\quad|\lambda x . C| C e \mid e C$
$\mathrm{e} \rightarrow \mathrm{e}^{\prime}$
$\mathrm{C}[\mathrm{e}] \rightarrow \mathrm{C}\left[\mathrm{e}^{\prime}\right]$
$(\lambda x . e 1) \mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{e} 2 \mid \mathrm{x}]$

The Church-Rosser Theorem

- If $a \rightarrow *$ b and $a \rightarrow *$, there there exists d such that $b \rightarrow * d$ and $c \rightarrow * d$
- Proof: http://www.mscs.dal.ca/~selinger/papers/ lambdanotes.pdf
- Church-Rosser is also called confluence

Normal Form

- A term is in normal form if it cannot be reduced
- Examples: $\lambda x . x, \lambda x . \lambda y . z$
- By Church-Rosser Theorem, every term reduces to at most one normal form
- Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation
- Notice that for our application rule, the argument need not be in normal form

Not Every Term Has a Normal Form

- Consider
- $\Delta=\lambda x . x x$
- Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \ldots$
- In general, self application leads to loops
- ...which is where the Y combinator comes from (see 330)

Lazy vs. Eager Evaluation

- Our non-deterministic reduction rule is fine in theory, but awkward to implement
- Two deterministic strategies:
- Lazy: Given (λ x.e1) e2, do not evaluate e2 if e1 does not "need" x
- Also called left-most, call-by-name (c.b.n.), call-by-need, applicative, normal-order (with slightly different meanings)
- Eager: Given (λ x.e1) e2, always evaluate e2 fully before applying the function
- Also called call-by-value (c.b.v.)

C.b.n. small-step semantics

- e ::= x | λ x.e \mid e e
$(\lambda x . e 1) \mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{e} 2 \mid x]$
$\mathrm{e} 1 \mathrm{e} 2 \rightarrow \mathrm{e} 1^{\prime} \mathrm{e} 2$
- Must evaluate function position until we get to a lambda
- Apply as soon as we know what fn we're applying
- Do not evaluate "under" and lambda
- Do not evaluate the argument
- In context form:
- C ::= 밀

C.b.v. small-step semantics

- e ::=x|v|e e
- v ::= 入x.e
$(\lambda x . e) \vee \rightarrow e[v \backslash x]$

- Must evaluate function position until we get to a lambda
- Evaluate function posn before argument posn
- Not important here, but matters if we add side effects
- Do not evaluate "under" and lambda
- Argument must be fully evaluated before the call
- In context form:
- C ::= a|Ce|vC

C.b.n. versus c.b.v. in theory

- Call-by-name is normalizing
- If a is closed and there is a normal form b such that $a \rightarrow *$ b under the non-deterministic semantics, then $\mathrm{a} \rightarrow$ * d for some d under c.b.n. semantics
- Call-by-value is not!
- There are some programs that terminate under call-byname but not under call-by-value
- E.g., ($\lambda x .(\lambda y . y))(\Delta \Delta)$
- Where $\Delta=\lambda x . x x$
- The non-terminating argument $(\Delta \Delta)$ is discarded under c.b.n., but c.b.v. attempts to evaluate it

C.b.n. vs. c.b.v. in practice

- Lazy evaluation (call by name, call by need)
- Has some nice theoretical properties
- Terminates more often
- Lets you play some tricks with "infinite" objects
- Main example: Haskell
- Eager evaluation (call by value)
- Is generally easier to implement efficiently
- Blends more easily with side effects
- Main examples: Most languages (C, Java, ML, etc.)

