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Introduction
• So far, we’ve focused on the compiler “front end” 

■ Syntax (lexing/parsing) 
■ High-level language semantics 

• Ultimately, we want to generate code that runs our 
program on a “real” machine 

• What machine should we target? 
■ We could pick a specific hardware architecture 
■ But we probably want our programs to run on multiple 

• A common approach: target an abstracted machine, 
implement that machine for each real system

 2



Virtual Machines
• Transform program into an intermediate 

representation (IR) with well-defined semantics 
• Can interpret the IR using a virtual machine 

■ Java, Lua, OCaml, .NET CLR, … 
■ “Virtual” just means implemented in software, rather than 

hardware, but even hardware uses some interpretation 
- E.g., x86 processor has complex instruction set that’s internally 

interpreted into much simpler form 

• Alternatively, can use the IR as input for machine-
specific compilation 
■ LLVM 

• Tradeoffs?
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Java Virtual Machine (JVM)
• JVM memory model 

■ Stack (function call frames, with local variables) 
■ Heap (dynamically allocated memory, garbage collected) 
■ Constants 

• Bytecode files contain 
■ Constant pool (shared constant data) 
■ Set of classes with fields and methods 

- Methods contain instructions in Java bytecode language 

- Use javap -c to disassemble Java programs so you can look at their 
bytecode
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JVM Semantics
• Documented in the form of a 600+ page PDF 

■ https://docs.oracle.com/javase/specs/jvms/se11/jvms11.pdf 

• Many concerns 
■ Binary format of bytecode files 

- Including constant pool 
■ Description of execution model (running individual 

instructions) 
■ Java bytecode verifier 
■ Thread model
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JVM Design Goals
• Type- and memory-safe language 

■ Mobile code—need safety and security 

• Small file size 
■ Constant pool to share constants 
■ Each instruction is a byte (only 256 possible instructions) 

• Good performance 
• Good match to Java source code
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JVM Execution Model
• From the JVM spec: 

■ Virtual Machine Start-up 
■ Loading 
■ Linking: Verification, Preparation, and Resolution 
■ Initialization 
■ Detailed Initialization Procedure 
■ Creation of New Class Instances 
■ Finalization of Class Instances 
■ Unloading of Classes and Interfaces 
■ Virtual Machine Exit
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JVM Instruction Set
• Stack-based language 

■ Each thread has a private stack  
■ All instructions take operands from the stack 

• Categories of instructions 
■ Load and store (e.g. aload_0,istore) 
■ Arithmetic and logic (e.g. ladd,fcmpl) 
■ Type conversion (e.g. i2b,d2i) 
■ Object creation and manipulation (new,putfield) 
■ Operand stack management (e.g. swap,dup2) 
■ Control transfer (e.g. ifeq,goto) 
■ Method invocation and return (e.g. invokespecial,areturn)
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Example

• Try compiling with javac, look at result using javap -c 
• Things to look for: 

■ Various instructions; references to classes, methods, and 
fields; exceptions; type information 

• Things to think about: 
■ File size really compact (Java → J)? Mapping onto machine 

instructions; performance; amount of abstraction in 
instructions
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public class hello { 
   public static void main(String[] args) { 
      System.out.println(“Hello, world!”); 
   } 
}



Other Languages
• While VMs provide convenient abstractions over 

physical machines, they can also be a target for 
multiple front-end languages 

• Typically, also allows language interoperability 

• The JVM has become a popular target 
■ Scala, Kotlin, Clojure, Jython, JRuby, … 

• Other VMs, such as the Microsoft .NET CLR, were 
designed as IRs for multiple languages 
■ https://docs.microsoft.com/en-us/dotnet/standard/clr
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JVM Implementations
• There are many, particularly for embedded 

■ https://en.wikipedia.org/wiki/List_of_Java_virtual_machines 

• Sun (now Oracle) built the primary VM: HotSpot 
■ Part of the JRE, OpenJDK 
■ http://openjdk.java.net/groups/hotspot/ 

• Popular in the research community: Jikes 
■ Implemented in Java (“metacircular”) 
■ https://www.jikesrvm.org/
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Dalvik Virtual Machine
• Alternative target for Java 
• Developed by Google for Android phones 

■ Register-, rather than stack-, based 
■ Designed to be even more compact 

• .dex (Dalvik) files are part of apk’s that are installed 
on phones (apks are zip files, essentially) 
■ All classes must be joined together in one big .dex file, 

contrast with Java where each class separate 
■ .dex produced from .class files
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Compiling to .dex

• Many .class files 
⇒ one .dex file 

• Enables more 
sharing 
Source for this and several of the following slides:: 
Octeau, Enck, and McDaniel. The ded Decompiler. 
Networking and Security Research Center Tech 
Report NAS-TR-0140-2010, The Pennsylvania State 
University. May 2011. http://siis.cse.psu.edu/ded/
papers/NAS-TR-0140-2010.pdf
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Figure 2: dx compilation of Java classes to a DVM
application (simplified view).

initions, and the data segment. A constant pool describes,
not surprisingly, the constants used by a class. This includes
among other items references to other classes, method names
and numerical constants. The class definitions consist in
the basic information such as access flags and class names.
The data element contains the method code executed by the
target VM, as well as other information related to methods
(e.g., number of DVM registers used, local variable table and
operand stack sizes) and to class and instance variables.

Register architecture - The DVM is register-based, whereas
existing JVMs are stack-based. Java bytecode can assign
local variables to a local variable table before pushing them
onto an operand stack for manipulation by opcodes, but it
can also just work on the stack without explicitly storing
variables in the table. Dalvik bytecode assigns local vari-
ables to any of the 216 available registers. The Dalvik op-
codes directly manipulate registers, rather than accessing
elements on a program stack. For example, Figure 3 shows
how a typical operation (“add” function Figure 3(a)) is im-
plemented in Java (stack) versus Dalvik (register) virtual
machine. The Java bytecode shown in Figure 3(b) pushes
the local variables a and b onto the operand stack using the
iload opcode, and returns the result from the stack via the
ireturn opcode. By comparison, the Dalvik bytecode shown
in Figure 3(c) simply references the registers directly.

Instruction set - The Dalvik bytecode instruction set is sub-
stantially di↵erent than that of Java: 218 opcodes vs. 200,
respectively. The nature of the opcodes is very di↵erent:
for example, Java has tens of opcodes dedicated to push-
ing and pulling elements between the stack and local vari-
able table. Obviously the Dalvik bytecode instruction set
does not require any such opcodes. Moreover, as illustrated
in the example in Figure 3, Dalvik instructions tend to be
longer than Java instructions as they include the source and
destination registers (when needed). As a result, Dalvik ap-
plications require fewer instructions. Applications encoded
in Dalvik bytecode have on average 30% fewer instructions
than in Java, but have a 35% larger code size (bytes) [17].
This increased code size has limited impact on performance,
as the DVM reads instructions by units of two bytes.

(a) Source Code

(b) Java (stack) bytecode

(c) Dalvik (register) bytecode

Figure 3: Register vs. Stack Opcodes

Constant pool structure - Java applications necessarily repli-
cate elements in constant pools within the multiple .class

files, e.g., referrer and referent method names. The dx com-
piler attempts to reduce application size by eliminating much
of this replication. Dalvik uses a single large constant pool
that all classes simultaneously reference. Additionally, dx

eliminates some constants by inlining their values directly
into the bytecode. In practice, pool elements for integers,
long integers, and single and double precision floating-point
constants simply disappear as bytecode constants during the
transformation process.

Control flow Structure - Programmatic control flow ele-
ments such as loops, switch statements and exception han-
dlers are structured very di↵erently by Dalvik and Java byte-
code. To simplify, Java bytecode structure loosely mirrors
the source code, whereas Dalvik bytecode does not. The
restructuring is likely performed to increase performance,
reduce code size, or address changes in the way the under-
lying architecture handles variable types and registers.

Ambiguous typing of primitive types - Java bytecode vari-
able assignments distinguish between integer (int) and single-
precision floating-point (float) constants and between long
integer (long) and double-precision floating-point (double)
constants. However, Dalvik constant assignments (int/float
and long/double) use the same opcodes for integers and
floats, e.g., the opcodes are untyped beyond specifying pre-
cision. This complicates decompilation of Dalvik bytecode
because the variable type is not indicated by its declaration.
Thus, the decompilation process must observe a variable cre-
ation and inspect its subsequent use to infer its type to cre-
ate accurate correct Java bytecode and constant pools. This
is a specific instance of a broad class of widely-studied type

inference problems. Note that an incorrect inference (and
thus type) may result in incorrect behavior (and analysis)
of the decompiled program.

Null references - The Dalvik bytecode does not specify a
null type, instead opting to use a zero value constant. Thus,
constant zero values present in the Dalvik bytecode have
ambiguous typing that must be recovered. The decompila-
tion process must recover the null type by inspecting the
variable’s use in situ. If the null type is not correctly re-
covered, the resulting bytecode can have illegal integer zero
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Dalvik is Register-Based
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JVM Levels of Indirection
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Figure 5: Constant pool entry structure for a method reference

Table 1: Example Dalvik to Java bytecode translation rules

Dalvik Bytecode Instructions Java Bytecode Instructions Description
add-int d0, s0, s1 iload s0

0 Integer addition
iload s0

1

iadd

istore d0
0

invoke-virtual s0, . . . , sk, mr iload s0
0 Virtual method invocation with

move-result d0 . . . assigned return value.
iload s0

l

invokevirtual m0
r

istore d0
0

for a .class file. Constants include references to classes,
methods, and instance variables. ded traverses the byte-
code for each method in a class, noting such references. ded
also identifies all constant primitives specified in the Dalvik
bytecode. Here, ded notes the types determined during type
inference, described in Section 4.1.

Once ded identifies the constants required by a class, it
adds them to the target .class file. For primitive type
constants, new entries are created. For class, method, and
instance variable references, we must populate the Java con-
stant pool entry based on information available in the Dalvik
constant pool. The two constant pool entries di↵er in com-
plexity. Specifically, Dalvik constant pool entries use signif-
icantly more references to reduce memory overhead.

Figure 5 depicts the method entry constant in both Java
and Dalvik formats. Other constant pool entry types have
similar structures. Each box is a data structure. Index
entries (denoted as “idx” for the Dalvik format) are pointers
to a data structure. The Java method constant pool entry,
Figure 5(a), provides three strings: 1) the class name, 2) the
method name, and 3) a descriptor string representing the
argument and return types. The Dalvik method constant
pool entry, Figure 5(b), also contains these strings, but uses

more indirection. ded ignores Dalvik-specific entries such as
“shorty” strings used as simplified method descriptors.

4.3 Method Code Retargeting
The final stage of the retargeting process is the translation

of the method code. This is a two stage process, as shown
in Figure 4. First, we preprocess the bytecode to reorganize
structures that cannot be directly retargeted. Second, we
linearly translate DVM bytecode to the JVM.

The preprocessing phase considers multidimensional ar-
rays. Both Dalvik and Java use blocks of bytecode instruc-
tions to create multidimensional arrays; however, the in-
structions have di↵erent semantics and layout. ded reorders
and annotates the bytecode with array size and type infor-
mation to allow linear instruction translation.

The bytecode translation linearly processes each Dalvik
instruction. First, ded maps each referenced register to
a Java local variable table index. Second, ded performs
an instruction translation for each encountered Dalvik in-
struction. As Dalvik bytecode is more compact and takes
more arguments, one Dalvik instruction frequently expands
to multiple Java instructions. Third, ded patches the rela-
tive o↵sets used for branches based on preprocessing anno-
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Dalvik Levels of Indirection
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Discussion
• Why did Google invent its own VM? 

■ Licensing fees? (now a settled lawsuit) 
■ Performance? 
■ Code size? 
■ Anything else? 

• Dalvik is no longer the primary runtime 
■ Replaced by Android Runtime (ART) 
■ https://source.android.com/devices/tech/dalvik
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Just-in-time Compilation (JIT)
• Virtual machine that compiles some bytecode all the 

way to machine code for improved performance 
■ Begin interpreting IR 
■ Find performance critical sections 
■ Compile those to native code 
■ Jump to native code for those regions 

• Tradeoffs? 
■ Compilation time becomes part of execution time
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Trace-Based JIT
• Used by HotSpot for Java 
• Very popular for modern Javascript interpreters 

■ JS hard to compile efficiently, because of large distance 
between its semantics and machine semantics 
- Many unknowns sabotage optimizations, e.g., in e.m(...), what method 

will be called? 

• Idea: find a critical (often used) trace of a section of 
the program’s execution, and compile that 
■ Jump into the compiled code when hit beginning of trace 
■ Need to be able to back out in case conditions for taking 

trace are not actually met
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Project 3
• For project 3 you will implement your own small VM 

• In OCaml, of course :) 

• Simple machine model: 
■ Functions with instructions 
■ Heap: global variables 
■ Stack with frames: caller, pc, registers 
■ Unlimited registers 

• Target for code generation in P4-P6
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