CMSC 430

Introduction to Compilers
Fall 2018

Language Virtual Machines

Introduction

* So far, we've focused on the compiler “front end”
= Syntax (lexing/parsing)
» High-level language semantics

« Ultimately, we want to generate code that runs our
program on a “real” machine

* What machine should we target?
= \We could pick a specific hardware architecture
» But we probably want our programs to run on multiple

A common approach: target an abstracted machine,
implement that machine for each real system

Virtual Machines

* Transform program into an intermediate
representation (IR) with well-defined semantics

» Can interpret the IR using a virtual machine
» Java, Lua, OCaml, .NET CLR, ...

= “Virtual” just means implemented in software, rather than
hardware, but even hardware uses some interpretation

- E.g., x86 processor has complex instruction set that's internally
interpreted into much simpler form

 Alternatively, can use the IR as input for machine-
specific compilation

= LLVM

 Tradeoffs?

Java Virtual Machine (JVM)

* JVM memory model

» Stack (function call frames, with local variables)
» Heap (dynamically allocated memory, garbage collected)
» Constants

» Bytecode files contain

= Constant pool (shared constant data)
» Set of classes with fields and methods

- Methods contain instructions in Java bytecode language

- Use javap -c to disassemble Java programs so you can look at their
bytecode

JVM Semantics
* Documented in the form of a 600+ page PDF

» https://docs.oracle.com/javase/specs/ivms/se11/jvms11.pdf

 Many concerns
= Binary format of bytecode files
- Including constant pool

= Description of execution model (running individual
instructions)

= Java bytecode verifier
= Thread model

https://docs.oracle.com/javase/specs/jvms/se11/jvms11.pdf

JVM Design Goals

* Type- and memory-safe language
» Mobile code—need safety and security

« Small file size

= Constant pool to share constants
» Each instruction is a byte (only 256 possible instructions)

* Good performance
 Good match to Java source code

JVM Execution Model
From the JVM spec:

Virtual Machine Start-up

_oading

_inking: Verification, Preparation, and Resolution
nitialization

Detailed Initialization Procedure
Creation of New Class Instances
Finalization of Class Instances
Unloading of Classes and Interfaces
Virtual Machine Exit

JVM Instruction Set
» Stack-based language

» Each thread has a private stack
» All instructions take operands from the stack

» Categories of instructions
» |Load and store (e.g. aload 0,istore)
= Arithmetic and logic (e.g. ladd,fcmpl)
= [ype conversion (e.qg. i2b,d2i)
» Object creation and manipulation (new,putfield)
» Operand stack management (e.g. swap,dup?2)
» Control transfer (e.g. ifeq,goto)
» Method invocation and return (e.g. invokespecial,areturn)

Example

public class hello {
public static void main (String[] args) {
System.out.println(“Hello, world!”);

}

* Try compiling with javac, look at result using javap -c
* Things to look for:

» Various instructions: references to classes, methods, and
fields; exceptions; type information

* Things to think about:

» File size really compact (Java — J)? Mapping onto machine
instructions; performance; amount of abstraction in
instructions

Other Languages

While VMs provide convenient abstractions over
physical machines, they can also be a target for
multiple front-end languages

Typically, also allows language interoperability

The JVM has become a popular target
» Scala, Kotlin, Clojure, Jython, JRuby, ...

Other VMSs, such as the Microsoft .NET CLR, were
designed as IRs for multiple languages

» https://docs.microsoft.com/en-us/dotnet/standard/clr

https://docs.microsoft.com/en-us/dotnet/standard/clr

JVM Implementations

* There are many, particularly for embedded
» https://en.wikipedia.org/wiki/List_of Java_virtual _machines

* Sun (now Oracle) built the primary VM: HotSpot
» Part of the JRE, OpendDK
» http://openjdk.java.net/groups/hotspot/

* Popular in the research community: Jikes

» |Implemented in Java ("metacircular”)
= https://www.jikesrvm.org/

https://en.wikipedia.org/wiki/List_of_Java_virtual_machines
http://openjdk.java.net/groups/hotspot/
https://www.jikesrvm.org/

Dalvik Virtual Machine

 Alternative target for Java
* Developed by Google for Android phones

» Register-, rather than stack-, based
» Designed to be even more compact

» .dex (Dalvik) files are part of apk’s that are installed
on phones (apks are zip files, essentially)

» All classes must be joined together in one big .dex file,
contrast with Java where each class separate

» .dex produced from .class files

Compiling to .dex

Class 1

Class 2

Class n

.class files

Constant pool 1

Class info 1

Data 1

Constant pool 2

Class info 2

Data 2

Constant pool n

Class info n

Data n

.dex file

Header

Constant pool

Class definition 1

Class definition 2

Class definition n

Data

* Many .class files
= one .dex file

e Enables more
sharing

Source for this and several of the following slides::
Octeau, Enck, and McDaniel. The ded Decompiler.
Networking and Security Research Center Tech
Report NAS-TR-0140-2010, The Pennsylvania State
University. May 2011. http:/siis.cse.psu.edu/ded/
papers/NAS-TR-0140-2010.pdf

http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf

Dalvik is Register-Based

public int add(
1

return a +

¥

int a, int b)

b;

(a) Source Code

public 1nt add(int, int)
0: 1load 1
1: 1load 2
2: 1add
3: 1return
(b) Java (stack) bytecode

public 1nt addiint, int)
Q: add-1nt vO,v2,v3
2 return vio

(c) Dalvik (register) bytecode

JVM Levels of Indirection

CONSTANT_ Methodref info

tag=10
class_index
name_and_type_index

CONSTANT_ Class info

/
T

/tag =7

name_index

CONSTANT_NameAndType_info

tag = 11 ,

name_index
descriptor_index

CONSTANT_Utf8_info

tag = 1
length
bytes

CONSTANT_Utf8_info

tag = 1
length
bytes

CONSTANT_Utf8_info

tag = 1
length

bytes

|5

Dalvik Levels of Indirection

method _id item

class_idx
proto_idx
name_idx

-- -

- -
-
-
-
-
-
-

string_data_item

utf16_size
data

string_data_item

utf16_size
data

/| utf16_size

string_id_item

string_data_ off

type_item

type_idx

ﬂl string_id_item

/| string_data_off -2

-

/

type_id_item ,/ ﬂl string_id_item
,/ | descriptor_idx /[string_data_off |
/ ——— / T
A proto__id_item) r type_id_item
-~ | shorty_idx [_-"I'descriptor_idx L

paramaters_off |- --=>|____type_list

. size
N string_id_item list

string_data_off

~
-~
-~
-~
-~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~ o
~

...
~

A.string_data_item

data
type_id_item

/| descriptor_idx g

~ > string_data_item
utf16_size
data

/
/ .
(similar for these edges) .-+

S
~
~
S e
~

iy
-
S
S~
-
-~
-
-
-
-
-~ -

string_data_ off 4

string_id_item 7

»
-

string_data_item
utf16_size
data

Discussion
* Why did Google invent its own VM?

» Licensing fees”? (now a settled lawsuit)
» Performance?

» Code size?

= Anything else?

« Dalvik is no longer the primary runtime

» Replaced by Android Runtime (ART)
» https://source.android.com/devices/tech/dalvik

https://source.android.com/devices/tech/dalvik

Just-in-time Compilation (JIT)

* Virtual machine that compiles some bytecode all the
way to machine code for improved performance

= Begin interpreting IR

» Find performance critical sections

= Compile those to native code

= Jump to native code for those regions

* Tradeoffs?
= Compilation time becomes part of execution time

Trace-Based JIT

» Used by HotSpot for Java

* Very popular for modern Javascript interpreters

» JS hard to compile efficiently, because of large distance
between its semantics and machine semantics

- Many unknowns sabotage optimizations, e.g., in e.m(...), what method
will be called?

 |dea: find a critical (often used) trace of a section of
the program’s execution, and compile that

= Jump into the compiled code when hit beginning of trace

» Need to be able to back out in case conditions for taking
trace are not actually met

Project 3

For project 3 you will implement your own small VM

In OCaml, of course :)

Simple machine model:

» Functions with instructions

» Heap: global variables

» Stack with frames: caller, pc, registers
» Unlimited registers

Target for code generation in P4-PG6

20

