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Code Representations

■ Front end — syntax recognition, semantic analysis, 
produces first AST/IR 

■ Middle end — transforms IR into equivalent IRs that are more 
efficient and/or closer to final IR 

■ Back end — translates final IR into assembly or machine code
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Three-address code
• Classic IR used in many compilers (or, at least, 

compiler textbooks) 
• Core statements have one of the following forms 

■ x = y op z          binary operation 
■ x = op y             unary operation 
■ x = y                  copy statement 

• Example: 

■ Need to introduce temporarily variables to hold intermediate 
computations 

■ Notice: closer to machine code
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z = x + 2 * y; t = 2 * y 
z = x + t



Control Flow in Three-Address Code
• How to represent control flow in IRs? 

■ l: statement              labeled statement 
■ goto l                        unconditional jump 
■ if x rop y goto l         conditional jump (rop = relational op) 

• Example
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if (x + 2 > 5) 
  y = 2; 
else 
  y = 3; 
x++;

    t = x + 2 
    if t > 5 goto l1 
    y = 3 
    goto l2 
l1: y = 2 
l2: x = x + 1



Looping in Three-Address Code
• Similar to conditionals 

■ The line labeled l1 is called the loop header, i.e., it’s the 
target of the backward branch at the bottom of the loop 

■ Notice same code generated for
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x = 10; 
while (x != 0) { 
  a = a * 2; 
  x++; 
} 
y = 20;

    x = 10 
l1: if (x == 0) goto l2 
    a = a * 2 
    x = x + 1 
    goto l1 
l2: y = 20

for (x = 10; x != 0; x++) 
  a = a * 2; 
y = 20;



Basic Blocks
• A basic block is a sequence of three-addr code with 

■ (a) no jumps from it except the last statement 
■ (b) no jumps into the middle of the basic block 

• A control flow graph (CFG) is a graphical 
representation of the basic blocks of a three-
address program 
■ Nodes are basic blocks 
■ Edges represent jump from one basic block to another 

- Conditional branches identify true/false cases either by convention (e.g., 
all left branches true, all right branches false) or by labeling edges with 
true/false condition 

■ Compiler may or may not create explicit CFG structure
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Example
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1. a = 1 
2. b = 10 
3. c = a + b 
4. d = a - b 
5. if (d < 10) goto 9 
6. e = c + d 
7. d = c + d 
8. goto 3 
9. e = c - d 
10. if (e < 5) goto 3 
11. a = a + 1

1. a = 1
2. b = 10

3. c = a + b
4. d = a - b
5. d < 10

6. e = c + d
7. d = c + d

9. e = c - d
10. e < 5

11. a = a + 1



Levels of Abstraction
• Key design feature of IRs: what level of abstraction 

to represent 
■ if x rop y goto l             with explicit relation, OR 
■ t = x rop y; if t goto l   only booleans in guard 
■ Which is preferable, under what circumstances? 

• Representation of arrays 
■ x = y[z]                      high-level, OR 
■ t = y + 4*z; x = *t;      low-level (ptr arith) 
■ Which is preferable, under what circumstances?
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Levels of Abstraction (cont’d)
• Function calls? 

■ Should there be a function call instruction, or should the 
calling convention be made explicit? 
- Former is easier to work with, latter may enable some low-level 

optimizations, e.g.,passing parameters in registers 

• Virtual method dispatch? 
■ Same as above 

• Object construction 
■ Distinguished “new” call that invokes constructor, or 

separate object allocation and initialization?
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Code Generation
• Code generation is the process of moving from 

“highest level” IR down to machine code 
■ Usually takes place after data flow analysis 

• Three major components 
■ Instruction selection — Map IR into assembly code 
■ Instruction scheduling — Reorder operations 

- Hide latencies in pipelined machines, ensure code obeys processor 
constraints 

- Modern processors do a lot of this already, and they have better 
information than the compiler... 

■ Register allocation — Go from unbounded to finite reg set 
- Implies not all variables can always be in registers 

• These problems are tightly coupled 
■ But typically done separately in compilers
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Code quality
• Compilers need to produce good “quality” code 

■ This used to mean: code should match what an expert 
assembly programmer would write 

■ With modern languages it’s much more unclear, but it 
mostly comes down to performance 
- ⇒ back-end needs to know ins and outs of target machine code 

- What kind of code can the machine run efficiently? 

- When does the machine need extra help from the compiler? 

- Rise of bytecode: fulfills a long-standing idea of splitting front- and 
back-end of compiler up, and reusing them in many combinations 

- ⇒ code generation cannot always be optimal 

- Benchmarking (e.g., SPEC) plays big role in code generator design 

- Compiler vendors play lots of games to do well on benchmarks 

- Rule of thumb: expose as much information as possible
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Example: boolean operators
• How should these be represented? 

■ Depends on the target machine and how they are used 

• Example 1: If-then-else, x86, gcc
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if (x < y) 
  a = b + c; 
else 
  a = d + e;

    cmp rx, ry   // result in EFLAGS 
    jge l1 
    add ra, rb, rc 
    jmp l2 
l1: add ra, rd, re 
l2: nop 



Boolean operators (cont’d)
• Example 2: Standalone, x86, gcc
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a = (x < y);

cmp rx, ry        // result in EFLAGS 
setl %al          // 16-bit instruction 
andb $1, %al      // only low bit set 
movzbl %al, %eax  // extend to 32-bits



Boolean operations (cont’d)
• Example 3: If-then-else, Lua bytecode
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local a,b,c,d,e,x,y; 
if (x < y) then 
  a = b + c; 
else 
  a = d + e; 
end

    lt 0, R5, R6 // skip next instr if R5 < R6 true 
    jmp l1       // pc += 2 
    add R0, R1, R2 
    jmp l2       // pc += 1 
l1: add R0, R3, R4 
l2: return 



Boolean operations (cont’d)
• Example 4: Stand-alone, Lua
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local a,x,y; 
a = (x < y)

    lt 1, R1, R2 // skip next instr if R1 < R2 true 
    jmp l1             // pc += 1 
    loadbool R0, 0, l2 // R0 <- 0, jump to l2 
l1: loadbool R0, 1, l2 // R0 <- 1, fall through to l2 
l2: return 



Example: case statements
• Consider compiling a case/switch statement with n 

guards 
■ How expensive is it to decide which arm applies? 

• Option 1: Cascaded if-then-else 
■ O(n) — linear in the number of cases, and actual cost 

depends on where matching arm occurs 

• Option 2: Binary search 
■ O(log n) — but needs guards that are totally ordered 

• Option 3: Jump table 
■ O(1) — but best when guards are dense (e.g., ints 0..10) 

• No amount of “optimization” will covert one of these 
forms into another
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Instruction selection
• Arithmetic exprs, global vars, if-then-else 

■ See codegen*.ml files on web site
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Instruction selection — loops
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while (b) do s;

Previous 
block

Loop header/
guard

b

Loop body
s

Next block

for (init; b; post) s;

Initialization
init

Loop header/
guard

b

Loop body
s

Loop post
post

Next block

do s while (b);

Previous 
block

Loop header/
body

s

Loop guard
b

Next block



Multi-dimensional arrays
• Conceptually 

• Row-major order (most languages) 

• Column-major order (Fortran) 

• Indirection vectors (Java)
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1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

A

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A



Computing an array address
• a[i] 

■ a + i * sizeof(*a) 
- Here a is the base address of the array, and assume array 0-based 

• a[i][j] 
■ Row-major order 

- a + i * sizeof(*a) + j * sizeof(**a) 

- Here sizeof(*a) is the size of a row or column, as appropriate 

- Much more arithmetic needed if array not 0-based 

■ Column-major order 
- a + j * sizeof(*a) + i * sizeof(**a) 

■ Indirection vectors 
- *(a + i * sizeof(pointer)) + j * sizeof(**a)
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Functions
• (Aka procedure, subroutine, routine, method, ...) 
• Fundamental abstraction of computing 

■ Reusable grouping of code 
■ Usually also introduces a lexical scope/name space 

• Calling conventions to interact with system, libraries, or 
separately compiled code 
■ In these cases, don’t have access to other code at compile time 

- Must have standard for passing parameters, return values, invariants 
maintained across function call, etc 

■ Don’t necessarily need to obey these “within” the language 
- But deviating from them reduces utility of system tools
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Terminology
• Run time vs. compile time 

■ The code that implements the calling convention is 
executed at run time 

■ The code is generated at compile time 

• Caller vs. callee 
■ Caller — that function that made the call 
■ Callee — the function that was called

 22



(Algol, C) function call concerns
• Function invoked at call site 

■ Control returns to call site when function returns 
■ ⇒ need to save and restore a “return address” 

• Function calls may be recursive 
■ ⇒ need a stack of return addresses 

• Need storage for parameters and local variables 
• Must preserve caller’s state 

■ ⇒ stack needs space for these 

• Stack consists of activation records 
■ We’ll see what these look like and how they are set up next
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Activation Record Basics

Space for parameters to the 
current routine

Saved register contents

If  function, space for return 
value

Address to resume caller

To restore caller’s AR on a  
return (control link)

Space for local values & 
variables (including spills)

One AR for each invocation of a procedure

parameters

register save 
area

return value

return 
address

caller’s ARP

local 
variables

ARP
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Procedure Linkages
Standard procedure linkage

procedure p

prolog

epilog

pre-call 

post-return 

procedure q

prolog

epilog

Procedure has 
• standard prolog 
• standard epilog 
Each call involves a 
• pre-call sequence 
• post-return sequence 
These are completely 
predictable from the call site 
⇒ depend on the number & 
type of the actual 
parameters
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Pre-call sequence
• Sets up callee’s basic AR 

• Helps preserve its own environment 

• The Details 
■ Allocate space for the callee’s AR 

- except space for local variables 

■ Evaluates each parameter & stores value or address 
■ Saves return address, caller’s ARP into callee’s AR 

■ Save any caller-save registers 
- Save into space in caller’s AR 

■ Jump to address of callee’s prolog code
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Post-return sequence
• Finish restoring caller’s environment  
• Place any value back where it belongs 

• The Details 
■ Copy return value from callee’s AR, if necessary 
■ Free the callee’s AR 

■ Restore any caller-save registers 
■ Copy back call-by-value/result parameters  
■ Continue execution after the call



 28

Prolog code
• Finish setting up callee’s environment 
• Preserve parts of caller’s environment that will be 

disturbed 

• The Details 
■ Preserve any callee-save registers 
■ Allocate space for local data 

- Easiest scenario is to extend the AR 

■ Handle any local variable initializations
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Epilog code
• Wind up the business of the callee 
• Start restoring the caller’s environment 

• The Details 
■ Store return value?  

- Some implementations do this on the return statement 

- Others have return assign it & epilog store it into caller’s AR 

- Still others (x86) store it in a register 

■ Restore callee-save registers 
■ Free space for local data, if necessary 
■ Load return address from AR 

■ Restore caller’s ARP 

■ Jump to the return address
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Concrete example: x86
• The CPU has a fixed number of registers 

■ Think of these as memory that’s really fast to access 
■ For a 32-bit machine, each can hold a 32-bit word 

• Important x86 registers 
■ eax  generic register for computing values 
■ esp  pointer to the top of the stack 
■ ebp  pointer to start of current stack frame 
■ eip  the program counter (points to next instruction in text 

segment to execute)
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x86 calling convention
• To call a function 

■ Push parameters for function onto stack 
■ Invoke CALL instruction to 

- Push current value of eip onto stack 

- I.e., save the program counter 

- Start executing code for called function 

■ Callee pushes ebp onto stack to save it 

• When a function returns 
■ Put return value in eax 
■ Invoke RET instruction to load return address into eip 

- I.e., start executing code where we left off at call
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x86 activation record
• The stack just after f calls g

return instr ptr (eip)

f ’s locals, saves

previous frames

parameters for g

frame boundary

frame boundary

esp

Based on Fig 6-1 in Intel ia-32 manual

return instruction ptr

ebp for caller of f ebp
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x86 activation record
• The stack just after push ebp inside g

return instr ptr (eip)

f ’s locals, saves

previous frames

parameters for g

frame boundary

frame boundary

esp

Based on Fig 6-1 in Intel ia-32 manual

saved ebp of f

return instruction ptr

ebp for caller of f ebp
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x86 activation record
• The stack just after mov esp ebp inside g

return instr ptr (eip)

f ’s locals, saves

previous frames

parameters for g

frame boundary

frame boundary

esp ebp

Based on Fig 6-1 in Intel ia-32 manual

saved ebp of f

return instruction ptr

ebp for caller of f
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Example
int f(int a, int b) { 
  return a + b; 
} 

int main(void) { 
  int x; 

  x = f(3, 4); 
}

f: 
        pushl   %ebp 
        movl    %esp, %ebp 
        subl    $8, %esp 
        movl    12(%ebp), %eax 
        movl    8(%ebp), %ecx 
        movl    %ecx, -4(%ebp) 
        movl    %eax, -8(%ebp) 
        movl    -4(%ebp), %eax 
        addl    -8(%ebp), %eax 
        addl    $8, %esp 
        popl    %ebp 
        retl 
main: 

… 
        movl    $3, %eax 
        movl    $4, %ecx 
        movl    $3, (%esp) 
        movl    $4, 4(%esp) 
        movl    %eax, -8(%ebp)           
        movl    %ecx, -12(%ebp)         
        calll   f 
        movl    %eax, -4(%ebp) 

    …

gcc -m32 -S a.c
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Example
int f(int a, int b) { 
  return a + b; 
} 

int main(void) { 
  int x; 

  x = f(3, 4); 
}

f: 
        pushl   %ebp 
        movl    %esp, %ebp 
        subl    $8, %esp 
        movl    12(%ebp), %eax 
        movl    8(%ebp), %ecx 
        movl    %ecx, -4(%ebp) 
        movl    %eax, -8(%ebp) 
        movl    -4(%ebp), %eax 
        addl    -8(%ebp), %eax 
        addl    $8, %esp 
        popl    %ebp 
        retl 
main: 

… 
        movl    $3, %eax 
        movl    $4, %ecx 
        movl    $3, (%esp) 
        movl    $4, 4(%esp) 
        movl    %eax, -8(%ebp)           
        movl    %ecx, -12(%ebp)         
        calll   f 
        movl    %eax, -4(%ebp) 

    …

gcc -m32 -S a.c
pr

e-
ca

ll
pr

ol
og

ep
ilo

g
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Example
int f(int a, int b) { 
  return a + b; 
} 

int main(void) { 
  int x; 

  x = f(3, 4); 
}

f:                                     
        pushl   %ebp 
        movl    %esp, %ebp 
        movl    12(%ebp), %eax 
        addl    8(%ebp), %eax 
        popl    %ebp 
        retl 

main: 
    pushl   %ebp 

        movl    %esp, %ebp 
        xorl    %eax, %eax 
        popl    %ebp 
        retl

gcc -m32 -S -O3 a.c
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Lots more details
• There’s a whole lot more to say about calling 

functions 
■ Local variables are allocated on stack by the callee as 

needed 
- This is usually the first thing a called function does, by incrementing esp 

■ Saving registers 
- If the callee is going to use eax itself, you’d better save it to the stack 

before you call 

■ Passing parameters in registers 
- More efficient than pushing/popping from the stack 

- Can be done if caller and callee cooperate 

- (But watch out for extern functions that could be called from anywhere) 

■ Etc...



Even more details
• Different languages/OS’s can have different 

conventions 
■ And conventions have changed over time 

• System call interface is different application-level 
interface 
■ Need to switch into kernel mode in some way 
■ Details depend on OS 
■ Typically, syscalls wrapped by standard library 

- E.g., calling open() in C calls into libc, which does some high-level stuff 
and then does a syscall 

- Syscall code often implemented as inline assembly
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Higher-order languages
• If a called function can outlive its caller, need to 

keep activation record on the heap 
■ fun x -> (fun y -> x + y) 
■ I.e., we need closures for these 

• These get allocated basically like we saw in 330 
■ Try to avoid allocating these if curried functions called with 

all arguments at once
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Memory layout

• Code, static, and global data have known size 
■ Can refer to entities by predetermined offsets 

- (Note: ASLR used to prevent attackers from guessing these) 

■ Heap and stack both grow and shrink over time 
- Better utilization if stack and heap grow toward each other (Knuth) 

• Note this is a virtual address space
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The really big picture
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The really small picture

Source: https://en.wikipedia.org/wiki/Page_table  43

https://en.wikipedia.org/wiki/Page_table


Linking
• Many languages support separate compilation 

■ Individual modules or components are compiled by themselves, 
without needing to recompile the modules or components they 
depend on 

■ Can dramatically reduce time to recompile program when 
program is changed 

• Linking combines components together 
■ In C and OCaml, linking is an explicit phase 
■ In Java, linking is implicit as dependencies are loaded by the JVM 

• Linkers often support shared libraries 
■ Shared lib code appears only once on disk for all apps 
■ Shared lib can be updated, apps automatically see new version 

- ⇒ linking against shared lib only checks existence (and maybe type) of symbol 

■ Shard lib code must be position independent  44



Linking example
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Makefile
all: main.o lib.o
        gcc main.o lib.o -o prog

lib.o: lib.c
gcc -c lib.c

main.o: main.c
gcc -c main.c

main.c
extern int print_s(const char *);
int main() {
   print_s("Hello, world!”);
}

lib.c
#include <stdio.h>
void print_s(const char *s) {
    printf("%s", s);
}

otool -tv main.o (OS X)
objdump -D main.o (linux)



gcc compilation process

 46Source: http://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html 

http://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html


Loading
• OS needs to know many things about a program 

■ Where is the program code 
■ Where are values for the data segment 
■ How should the program be started 
■ What shared libs does the program refer to 

• Thus, compilers must create an executable that is in 
a standard format 
■ E.g., ELF on Linux, PE32+ on Windows, Mach-O on OS X 

• Details of all these can be found on the web, in man 
pages, and in developer documentation
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ELF 
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elf.c
int x = 1010101;
char *s = "Hello, world!\n";

int main() {
    int x=1;
    return x;
}

gcc -o elf.c
objdump -D elf.o



Stack SMASHING! 
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Buffer overflow

*str ret exec(“/bin/sh”)

top of stack

strcpy()  -  what if bounds aren’t checked?

Return to libc

*str ret fake_ret

top of stack

“/bin/sh”

system()



Stack SMASHING! (defences)
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Canary values
inject random values in between stack frames
check those values during function call

Address Space Layout Randomization 
randomize the layout of key data areas (heap, 
stack, libraries)

int main () {
    register int *ebp asm("ebp");
    printf("%p\n", ebp);
}

$: ./randomlayout 
0x7fff67835036
$: ./randomlayout 
0x7fff663e5036



Compiling objects and classes
• Object = record with data (fields) and code (meths) 

■ In a classless OO language, in general case need to treat 
each object separately 

• Class = set of objects with same meths 
■ ⇒ All insts of a class can share memory used for meth code 

■ (But, each inst has its own fields) 

• Virtual method table (vtable) contains pointers to 
methods of class 
■ Object record points to vtable, and then vtable used to 

resolve dynamic dispatch
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Example

• The vtable includes the class type (for run-time type 
tests) and a function pointer for each method 
■ At x.m1(), call (x->vtable[0])() 
■ (Note we know the offset of m1 from the type of x)
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class A { int f; void m1(void) { ... } } 

a1 = A.new(); 

a2 = A.new();

a1

a2

0

1
A

(code 
for m1)

m1
fvtable



Single Inheritance

• Ensure superclass layouts are prefixes of subclass 
layouts 
■ At x.m1(), still call (x->vtable[0])() 
■ At x.m2(), call (x->vtable[1])()
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class A { int f; void m1(void) { ... } } 

class B extends A { int g; void m2(void) { ... } } 

a = A.new(); 

b = B.new();

a

b

0

2

A (code 
for m1)

m1fvtable

1 B

m1 m2

(code 
for m2)

fvtable g



Multiple inheritance

• (Notice that D overrides method m1) 
• Much more complicated! 

■ Separate compilation, so don’t know full inheritance 
hierarchy 

■ Must support both up- and downcasts 
■ Want method lookup to be efficient 

• Solutions? Several—see web for details!
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class A { int f; void m1(void) { ... } } 

class B extends A { int g; void m2(void) { ... } } 

class C extends A { int h; void m3(void) { ... } } 

class D extends B { int i; void m1(void) { ... } } 

class E extends C, D { int j; void m4(void) { ... } }


