Introduction

• An *optimization* is a transformation “expected” to
 - Improve running time
 - Reduce memory requirements
 - Decrease code size

• No guarantees with optimizers
 - Produces “improved,” not “optimal” code
 - Can sometimes produce worse code
Why are optimizers needed?

• Reduce programmer effort
 ▪ Don’t make programmers waste time doing simple opts

• Allow programmer to use high-level abstractions without penalty
 ▪ E.g., convert dynamic dispatch to direct calls

• Maintain performance portability
 ▪ Allow programmer to write code that runs efficiently everywhere
 ▪ Particularly a challenge with GPU code
Two laws and a measurement

- Moore’s law
 - Chip density doubles every 18 months
 - Until now, has meant CPU speed doubled every 18 months
 - These days, moving to multicore instead

- Proebsting’s Law
 - Compiler technology doubles CPU power every 18 years
 - Difference between optimizing and non-optimizing compiler about 4x
 - Assume compiler technology represents 36 years of progress

- Worse: runtime performance swings of up to 10% can be expected with no changes to executable
 - http://dl.acm.org/citation.cfm?id=1508275
Dimensions of optimization

- Representation to be optimized
 - Source code/AST
 - IR/bytecode
 - Machine code
- Types of optimization
 - Peephole — across a few instructions (often, machine code)
 - Local — within basic block
 - Global — across basic blocks
 - Interprocedural — across functions
Dimensions of optimization (cont’d)

• Machine-independent
 - Remove extra computations
 - Simplify control structures
 - Move code to less frequently executed place
 - Specialize general purpose code
 - Remove dead/useless code
 - Enable other optimizations

• Machine-dependent
 - Replace complex operations with simpler/faster ones
 - Exploit special instructions (MMX)
 - Exploit memory hierarchy (registers, cache, etc)
 - Exploit parallelism (ILP, VLIW, etc)
Selecting optimizations

• Three main considerations
 - Safety — will optimizer maintain semantics?
 - Tricky for languages with partially undefined semantics!
 - Profitability — will optimization improve code?
 - Opportunity — could the optimization be used often enough to make it worth implementing?

• Optimizations interact!
 - Some optimizations enable other optimizations
 - E.g., constant folding enables copy propagation
 - Some optimizations block other optimizations
Some classical optimizations

• Dead code elimination

  ```
  jmp L
  /* unreachable */
  L: ...
  ```

  ```
  if true then
  ...
  else
  /* unreachable */
  ```

 a = 5 /* dead */
 a = 6

 Also, unreachable functions or methods

• Control-flow simplification

 • Remove jumps to jumps

  ```
  jmp L
  /* unreachable */
  L: goto M
  M: ...
  ```

  ```
  jmp M
  /* unreachable */
  M: ...
  ```
More classical optimizations

- Algebraic simplification
 - Be sure simplifications apply to modular arithmetic

- Constant folding
 - Pre-compute expressions involving only constants

- Special handling for idioms
 - Replace multiplication by shifting
 - May need constant folding to enable sometimes
More classical optimizations

• Common subexpression elimination

\[
\begin{align*}
 a &= b + c \\
 d &= b + c \\
\end{align*}
\]

\[
\begin{align*}
 a &= b + c \\
 d &= a \\
\end{align*}
\]

• Copy propagation

\[
\begin{align*}
 b &= a \\
 c &= b \\
 /* b dead */ \\
\end{align*}
\]

\[
\begin{align*}
 b &= a \\
 c &= a \\
 /* b dead */ \\
\end{align*}
\]

\[
\begin{align*}
 c &= a \\
\end{align*}
\]

dead code elim
Example

Fortran (!) source code:

```
sum = 0
do 10 i = 1, n
  10   sum = sum + a(i) * a(i)
```

Three-address code

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.

1. sum = 0
2. i = 1
3. init for loop and check limit
4. a[i]
5. a[i]
6. a[i]
7. a[i]
8. a[i]
9. a[i]
10. a[i] * a[i]
11. increment sum
12.
13. incr. loop counter
14. back to loop check
Control-flow graph

1. `sum = 0`
2. `i = 1`
3. `if i > n goto 15`
4. `t1 = addr(a) - 4`
5. `t2 = i * 4`
6. `t3 = t1[t2]`
7. `t4 = addr(a) - 4`
8. `t5 = i * 4`
9. `t6 = t4[t5]`
10. `t7 = t3 * t6`
11. `t8 = sum + t7`
12. `sum = t8`
13. `i = i + 1`
14. `goto 3`
15. `T`
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
10a. t7 = t3 * t3
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.
Copy propagation

1. \(\text{sum} = 0 \)
2. \(i = 1 \)
3. \(\text{if } i > n \text{ goto } 15 \)
4. \(t1 = \text{addr}(a) - 4 \)
5. \(t2 = i \times 4 \)
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
11. \(t8 = \text{sum} + t7 \)
12. \(\text{sum} = t8 \)
12a. \(\text{sum} = \text{sum} + t7 \)
13. \(i = i + 1 \)
14. \(\text{goto } 3 \)
15.
Invariant code motion

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>sum = 0</td>
</tr>
<tr>
<td>2.</td>
<td>i = 1</td>
</tr>
<tr>
<td>2a.</td>
<td>(t_1 = \text{addr}(a) - 4)</td>
</tr>
<tr>
<td>3.</td>
<td>if (i > n) goto 15</td>
</tr>
<tr>
<td>4.</td>
<td>(t_1 = \text{addr}(a) - 4)</td>
</tr>
<tr>
<td>5.</td>
<td>(t_2 = i \times 4)</td>
</tr>
<tr>
<td>6.</td>
<td>(t_3 = t_1[t_2])</td>
</tr>
<tr>
<td>10a.</td>
<td>(t_7 = t_3 \times t_3)</td>
</tr>
<tr>
<td>12a.</td>
<td>(\text{sum} = \text{sum} + t_7)</td>
</tr>
<tr>
<td>13.</td>
<td>(i = i + 1)</td>
</tr>
<tr>
<td>14.</td>
<td>goto 3</td>
</tr>
<tr>
<td>15.</td>
<td></td>
</tr>
</tbody>
</table>
1. \(\text{sum} = 0 \)
2. \(i = 1 \)
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i \times 4 \)
3. if \(i > n \) goto 15
5. \(t2 = i \times 4 \)
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
13. \(i = i + 1 \)
14. goto 3
15.
Loop test adjustment

1. sum = 0
2. i = 1
 2a. t1 = addr(a) - 4
 2b. t2 = i * 4
 2c. t9 = n * 4
3. if i > n goto 15
 3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3a
15.
19

definition

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3a
15.

Induction variable elimination
Constant propagation

1. \text{sum} = 0
2. \text{i} = 1
2a. \text{t1} = \text{addr(a)} - 4
2b. \text{t2} = \text{i} \times 4
2d. \text{t2} = 4
2c. \text{t9} = \text{n} \times 4
3a. \text{if} \text{t2} > \text{t9} \text{goto} 15
6. \text{t3} = \text{t1}[\text{t2}]
10a. \text{t7} = \text{t3} \times \text{t3}
12a. \text{sum} = \text{sum} + \text{t7}
12b. \text{t2} = \text{t2} + 4
14. \text{goto} 3a
15.
Dead code elimination

1. sum = 0

2. i = 1

2a. t1 = addr(a) - 4
2d. t2 = 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
14. goto 3a
15.
Final optimized code

1. sum = 0
2. t1 = addr(a) - 4
3. t2 = 4
4. t4 = n * 4
5. if t2 > t4 goto 11
6. t3 = t1[t2]
7. t5 = t3 * t3
8. sum = sum + t5
9. t2 = t2 + 4
10. goto 5
11.

unoptimized: 8 temps, 11 stmts in innermost loop
optimized: 5 temps, 5 stmts in innermost loop

1 index addressing 2 index addressing
1 multiplication 3 multiplications
2 additions 2 additions & 2 subtractions
1 jump 1 jump
1 test 1 test
1 copy 1 copy
1. sum = 0
2. t1 = addr[a] - 4
3. t2 = 4
4. t4 = 4 * n
5. if t2 > t4 goto 11
6. t3 = t1[t2]
7. t5 = t3 * t3
8. sum = sum + t5
9. t2 = t2 + 4
10. goto 5
11.
n = 1; k = 0; m = 3;

read x;

while (n < 10) {
 if (2 + x ≥ 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}

General code motion
1. n = 1; 2. k = 0; 3. m = 3;

4. read x;

5. while (n < 10) {

6. if (2 * x ≥ 5) 7. k := 5;

8. if (3 + k == 3) 9. m := m + 2;

10. n = n + k + m;

11. }

Invariant within loop and therefore moveable

Unaffected by definitions in loop and guarded by invariant condition

Moveable after we move statements 6 and 7

Not moveable because may use def of m from statement 9 on previous iteration
n = 1; k = 0; m = 3;
read x;
while (n < 10) {
 if (2 * x \geq 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}

n = 1; k = 0; m = 3;
read x;
if (2 * x \geq 5) k = 5;
t1 = (3 + k == 3);
while (n < 10) {
 if (t1) m = m + 2;
 n = n + k + m;
}
n = 1; k = 0; m = 3;
read x;
if (2 * x ≥ 5) k := 5;
t1 = (3 + k == 3);
if (t1)
 while (n < 10) {
 m = m + 2;
 n = n + k + m;
 }
else
 while (n < 10)
 n = n + k + m;

Specialization of while loop depending on value of t1
(Global) common subexpr elim

Can be eliminated since \(a*b \) is available, i.e., calculated on all paths to this point.

Cannot be eliminated since \(a*b \) is not available on all paths reaching this point.
Ensure $a\times b$ is assigned to the same variable t so it can be used for the assignment to u.
Copy propagation

We can then forward substitute t for z...

$w = a \times b$

$u = a \times b$

$u = t$

$z = u / 2$

$t = a \times b$

$q = a \times b$

$q = t$

$z = u / 2$

$r = 2 \times z$

$r = 2 \times t$

$t = a \times b$

$z = a \times b$

$z = t$

$r = 2 \times z$

$r = 2 \times t$
Dead code elimination

...and eliminate the assignment to z since it is now dead code.
What else can we do?

t = a * b
r = 2 * t

u = t
z = u / 2

w = a * b
Partial redundancy elimination

We can compute \(a \times b \) on paths where it is not available…

Then eliminate the now fully redundant computation of \(a \times b \)