
CMSC 430
Introduction to Compilers

Fall 2018

Data Flow Analysis
Applications and Implementations

 2

• A framework for proving facts about programs

• Reasons about lots of little facts

• Little or no interaction between facts
■ Works best on properties about how program computes

• Based on all paths through program
■ Including infeasible paths

• Operates on control-flow graphs, typically

Data Flow Analysis

 3

• Most data flow analyses can be classified this way
■ A few don’t fit: bidirectional analysis

• Lots of literature on data flow analysis

Space of Data Flow Analyses

May Must

Forward Reaching
definitions

Available
expressions

Backward Live
variables

Very busy
expressions

Applications: Reaching Defs.

• Constant propagation: if all definitions of a given
variable’s use are the same constant value, just
assign the constant directly. 
 

• Loop invariant code motion: if an expression is
computed in a loop, but all of the components are
defined outside the loop, the code can move.

 4

Applications: Liveness

• Register allocation: variables that are not live in a
given basic block (or subgraph) do not need to be in
registers. More on this later. 
 

• Dead code elimination: variables that are assigned
but not live after the assignment don’t need to be
computed at all.

 5

Applications: Available Exprs.

• Common sub-expression elimination: create a
new variable containing the result of an expression.
Replace subsequent uses of the expression with a
read from the variable.

 6

Applications: Very Busy Exprs.

• Code motion, e.g., move the computation of an
expression to before a loop or branch.

• If the same expression will be computed on every
branch of a conditional, or every time through the
loop, it can be pre-computed.

 7

if (a < b) {
 x = a - b  
} else {  
 y = a - b  
}

t = a - b
if (a < b) {
 x = t  
} else {  
 y = t  
}

Implementations
• Optimizing compilers implement data-flow analysis 

• GCC:
■ https://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-

Internals-4-cfg-cg-df.pdf
■ https://github.com/gcc-mirror/gcc/blob/master/gcc/df-core.c
■ https://github.com/gcc-mirror/gcc/blob/master/gcc/df-problems.c

• Clang:
■ https://clang.llvm.org/doxygen/LiveVariables_8cpp_source.html
■ https://github.com/llvm-mirror/clang/blob/master/lib/Analysis/LiveVariables.cpp
■ https://github.com/llvm-mirror/clang/blob/master/lib/Analysis/UninitializedValues.cpp

 8

https://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-4-cfg-cg-df.pdf
https://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-4-cfg-cg-df.pdf
https://github.com/gcc-mirror/gcc/blob/master/gcc/df-core.c
https://github.com/gcc-mirror/gcc/blob/master/gcc/df-problems.c
https://clang.llvm.org/doxygen/LiveVariables_8cpp_source.html
https://github.com/llvm-mirror/clang/blob/master/lib/Analysis/LiveVariables.cpp
https://github.com/llvm-mirror/clang/blob/master/lib/Analysis/UninitializedValues.cpp

Implementations (cont.)
• Static analysis and bug-finding tools also use DFA 

• Haskell package for LLVM: 
http://hackage.haskell.org/package/llvm-
analysis-0.3.0/docs/LLVM-Analysis-Dataflow.html

• C Intermediate Language (CIL)
■ https://github.com/cil-project/cil 

http://cil-project.github.io/cil/doc/html/cil/
■ Written in OCaml!
■ Stable but no longer directly maintained
■ Used in Frama-C: http://frama-c.com/

 9

http://hackage.haskell.org/package/llvm-analysis-0.3.0/docs/LLVM-Analysis-Dataflow.html
http://hackage.haskell.org/package/llvm-analysis-0.3.0/docs/LLVM-Analysis-Dataflow.html
https://github.com/cil-project/cil
http://cil-project.github.io/cil/doc/html/cil/

Using CIL on Grace

 10

$ ssh grace.umd.edu 

$ source /afs/glue.umd.edu/class/fall2018/cmsc/430/0201/public/.opam/opam-init/init.csh 

$ git clone https://github.com/cil-project/cil 

$ cd cil 

$./configure && make

$./bin/cilly —help | less

$./bin/cilly \
 —-save-temps \ 
 —-doLiveness \
 --live_func=main \ 
 -—live_debug \ 
 /afs/glue.umd.edu/class/fall2018/cmsc/430/0201/public/src/ex1/ex1.c

http://grace.umd.edu

ex1.c

 11

int main(int argc, char *argv[]) {
 int x, y, z, w, a;

 x = 10;
 w = 20;
 a = 100;

 y = x + 3;
 z = y + w;
 w = 42;

 while (z < a) {
 z = z + y;
 a = a - 1;
 x = x + 1;
 if (z > 5) {
 y = x + 3;
 }
 }

 return x;
}

main() CFG

 12

x = 10
w = 20
a = 100

y = x + 3
z = y + w
w = 42

z < a

loop

z = z + y
a = a - 1
x = x + 1

z > 5

break

y = x + 3

return x

1:
2: x(int),y(int),z(int),a(int),
3: x(int),y(int),z(int),a(int),
4: x(int),
5: x(int),y(int),z(int),a(int),
6: x(int),y(int),z(int),a(int),
7: x(int),z(int),a(int),
8: x(int),

1

2

3

45

6

7

8

