CMSC 430 Introduction to Compilers Fall 2018

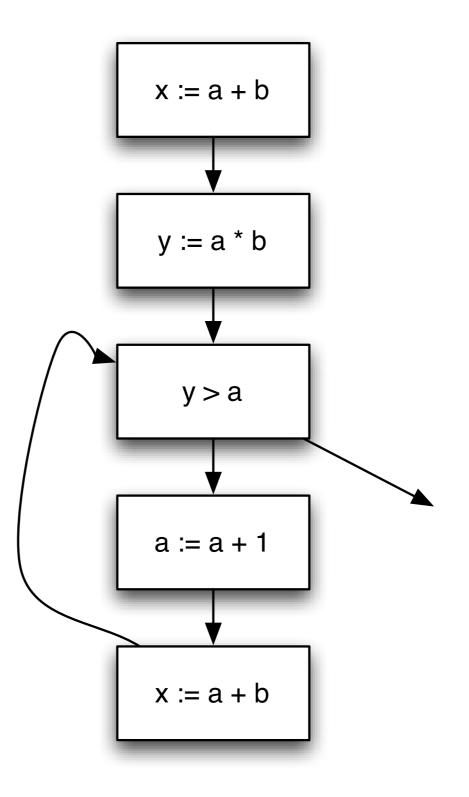
Data Flow Analysis

Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about *how* program computes
- Based on all paths through program
 - Including infeasible paths
- Operates on control-flow graphs, typically

Control-Flow Graph Example

x := a + b; y := a * b; while (y > a) { a := a + 1; x := a + b }



Control-Flow Graph w/Basic Blocks



- Can lead to more efficient implementations
- But more complicated to explain, so...
 - We'll use single-statement blocks in lecture today

Example with Entry and Exit

x := a + b; entry y := a * b; x := a + b while (y > a) { a := a + 1; y := a * b x := a + by > a • All nodes without a (normal) exit a := a + 1 predecessor should be pointed to by entry x := a + b •All nodes without a successor

should point to exit

Notes on Entry and Exit

- Typically, we perform data flow analysis on a function body
- Functions usually have
 - A unique entry point
 - Multiple exit points
- So in practice, there can be multiple exit nodes in the CFG
 - For the rest of these slides, we'll assume there's only one
 - In practice, just treat all exit nodes the same way as if there's only one exit node

Available Expressions

Available Expressions

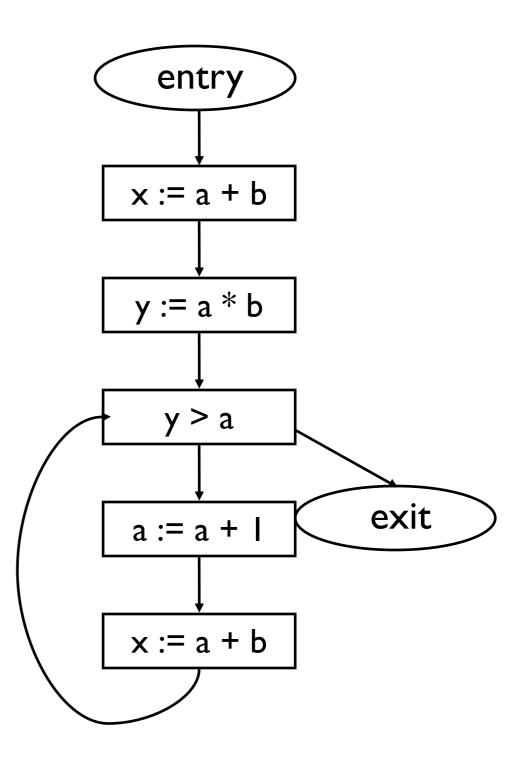
- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e was computed on the paths to p

Available Expressions

- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e was computed on the paths to p
- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it's still in a register somewhere)

Data Flow Facts

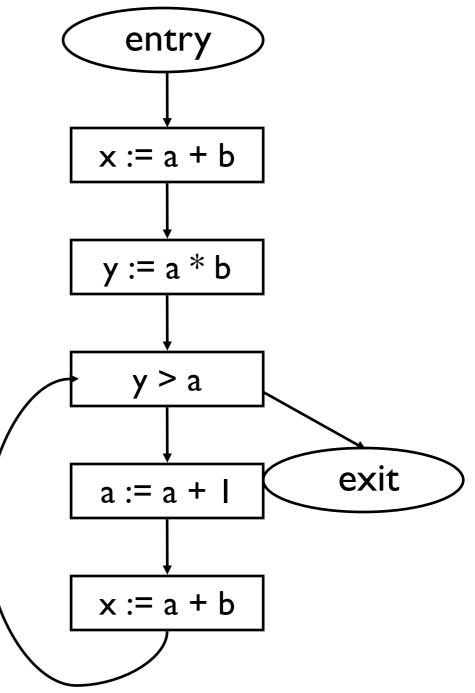
- Is expression e available?
- Facts:
 - a + b is available
 - a * b is available
 - a + 1 is available

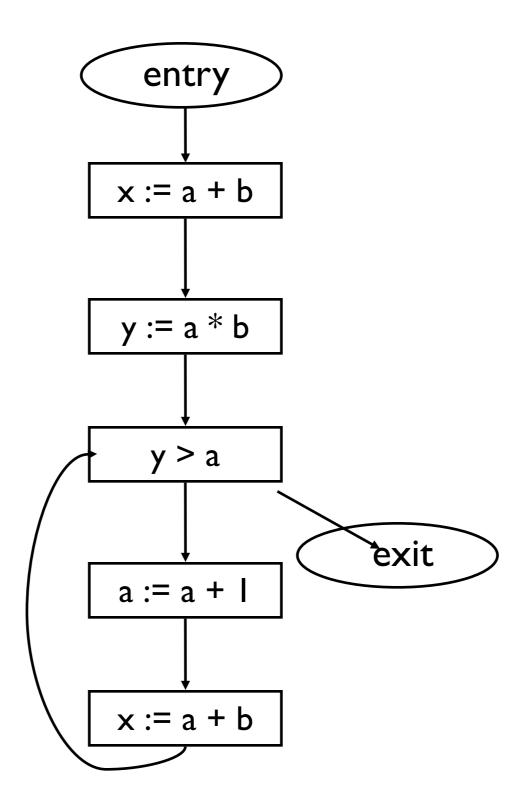


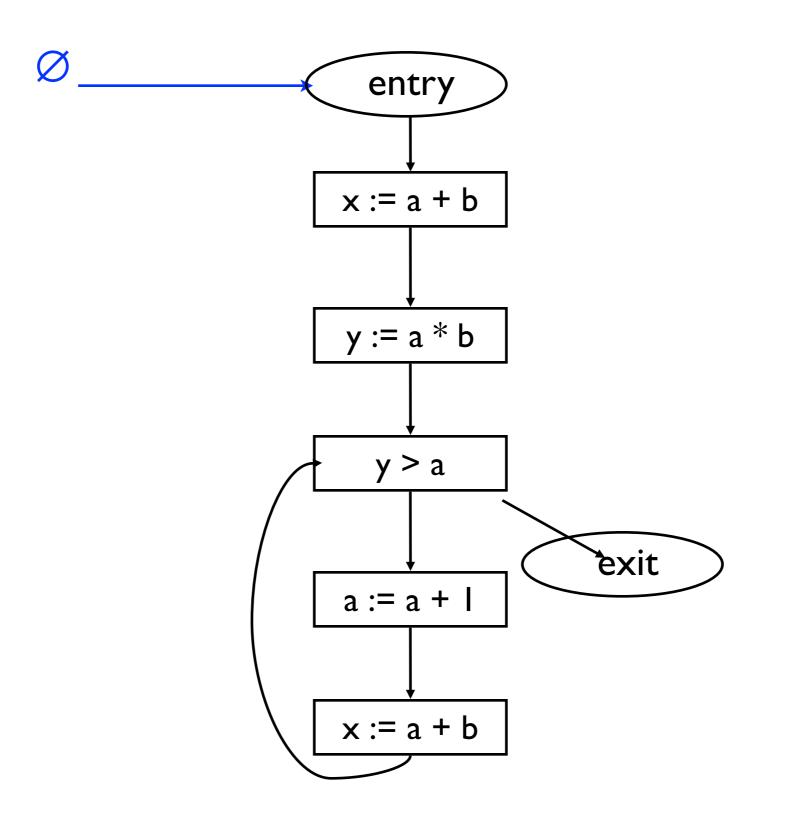
Gen and Kill

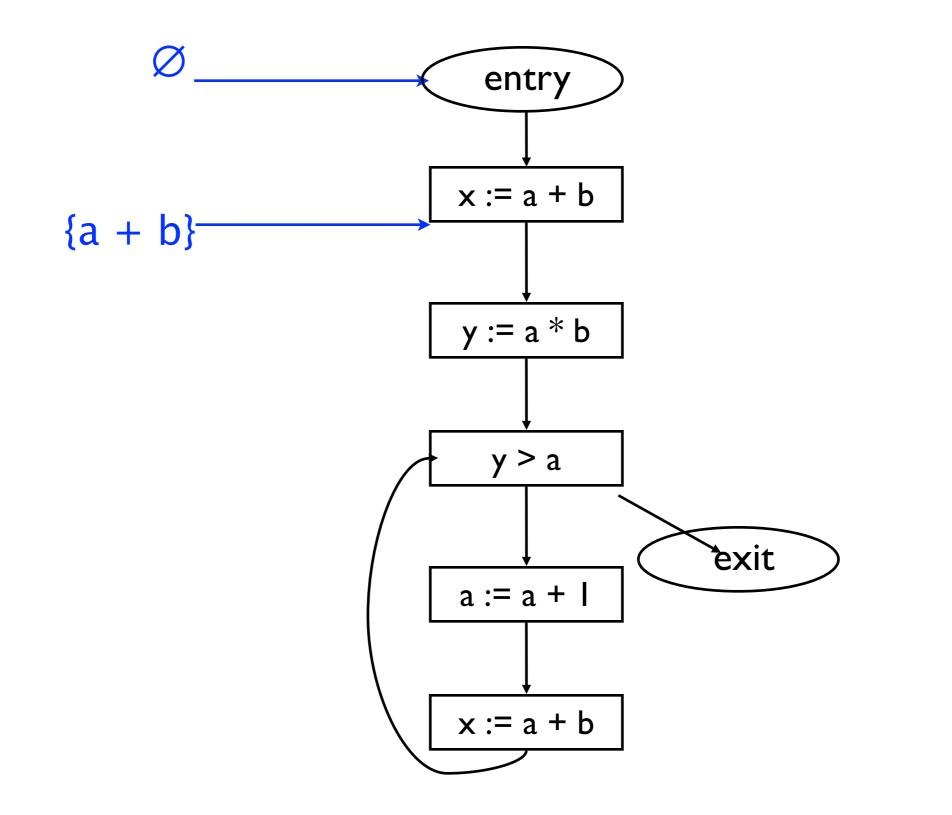
• What is the effect of each statement on the set of facts?

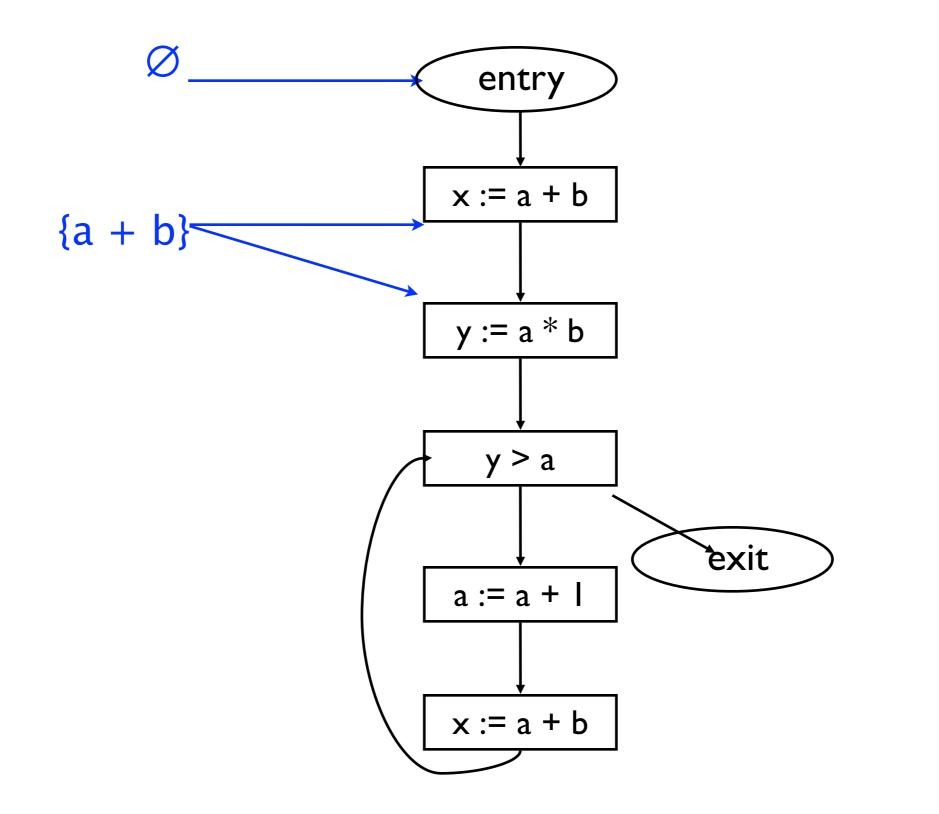
Stmt	Gen	Kill
x := a + b	a + b	
y := a * b	a * b	
a := a + 1		a + 1, a + b, a * b

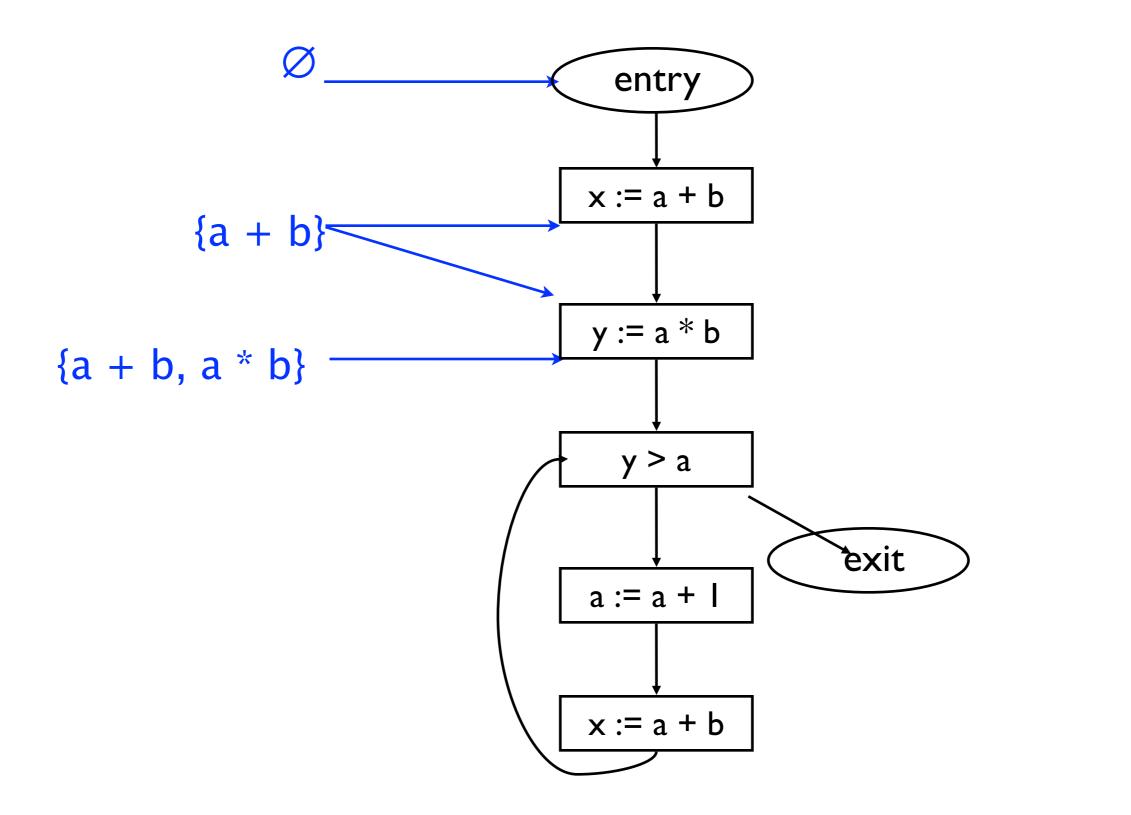


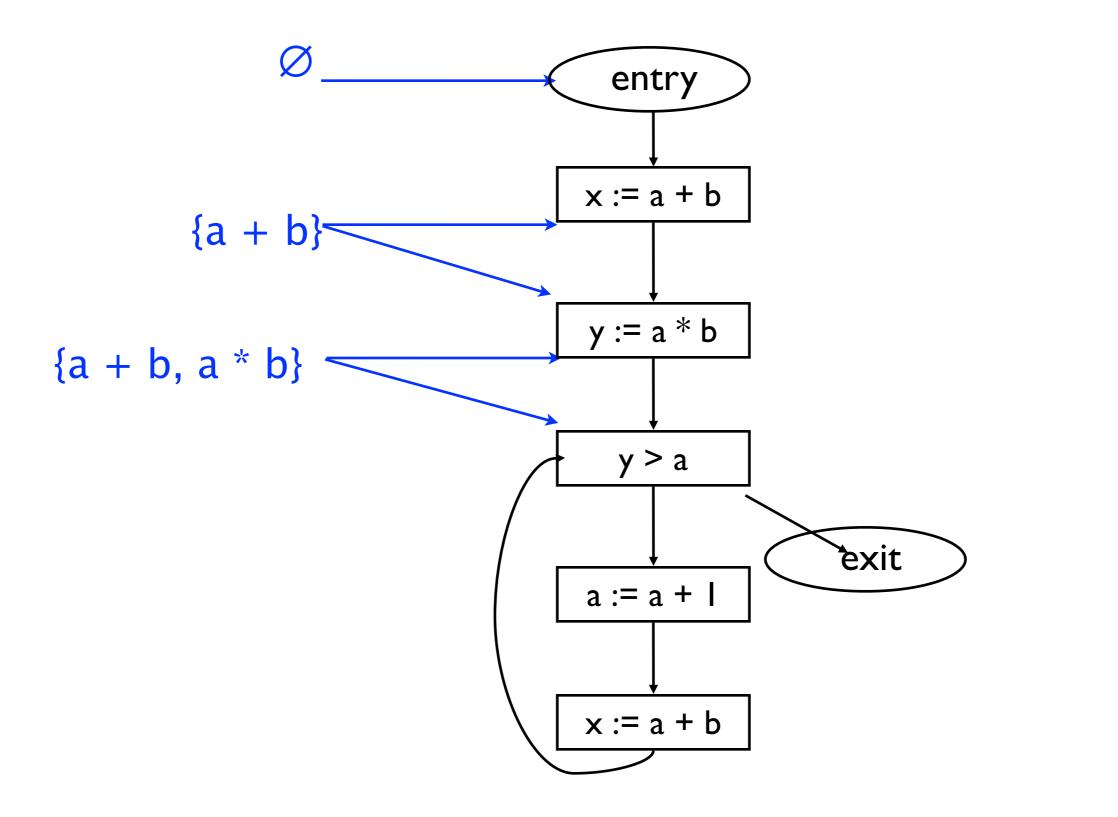


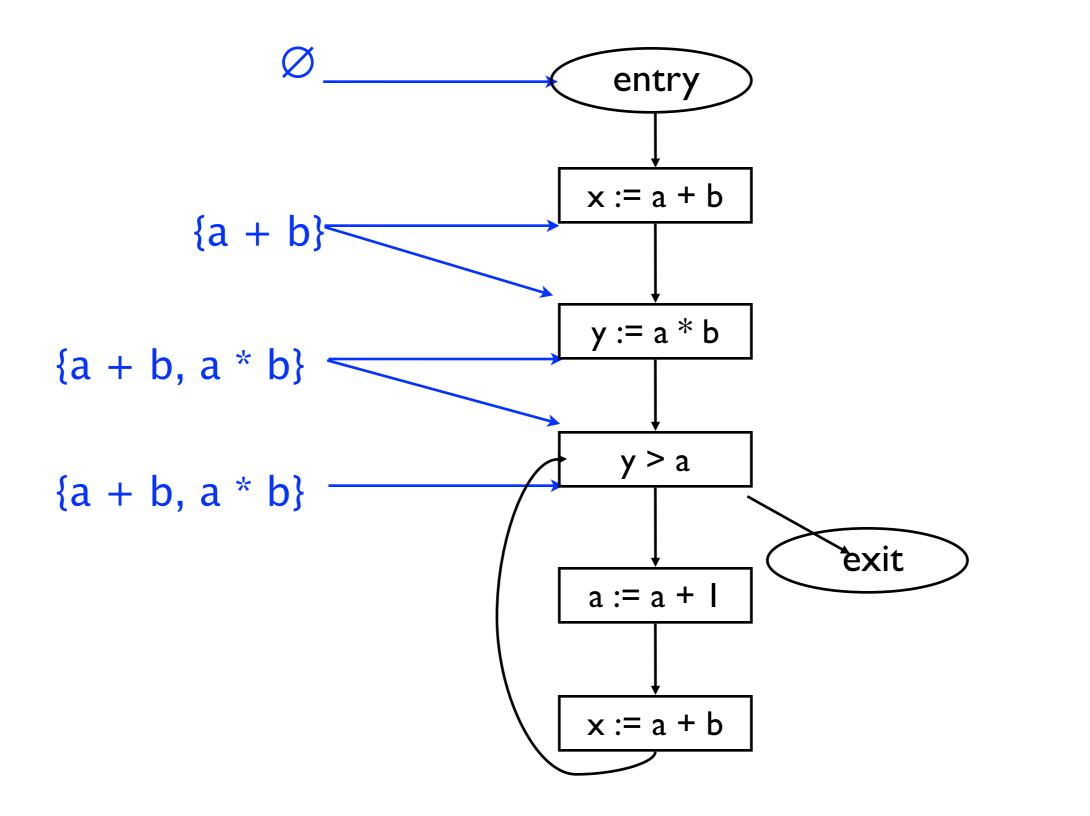


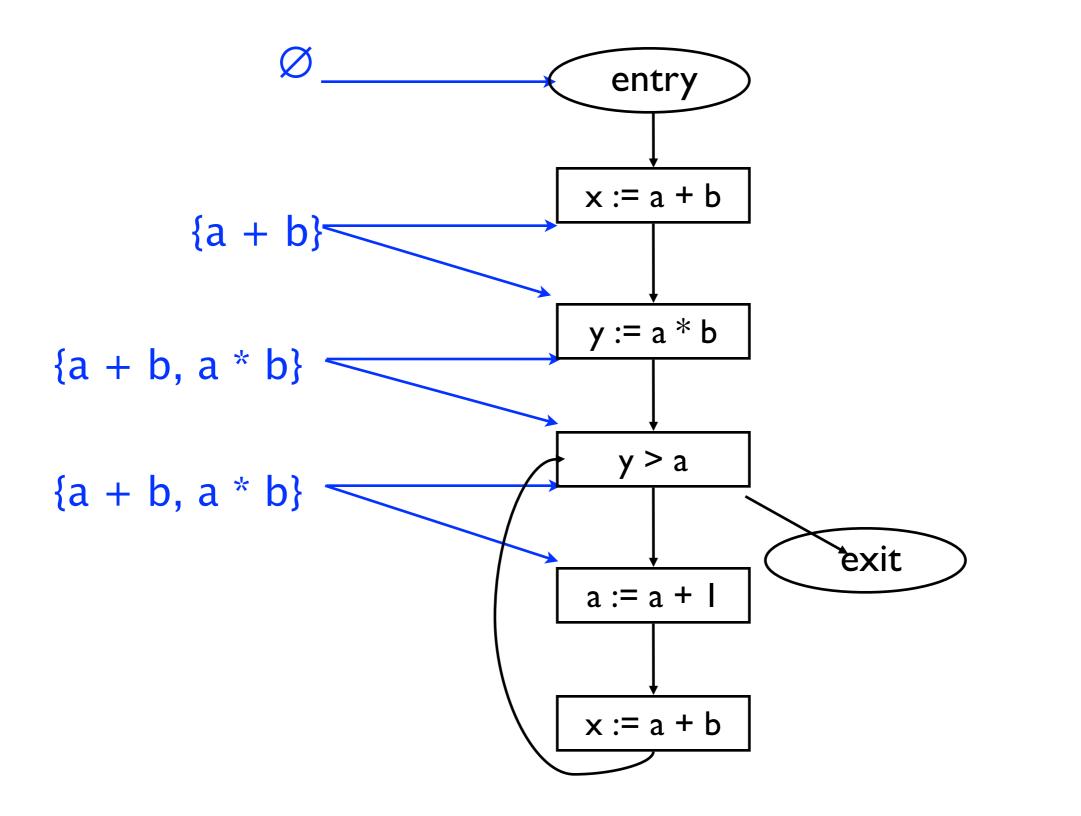


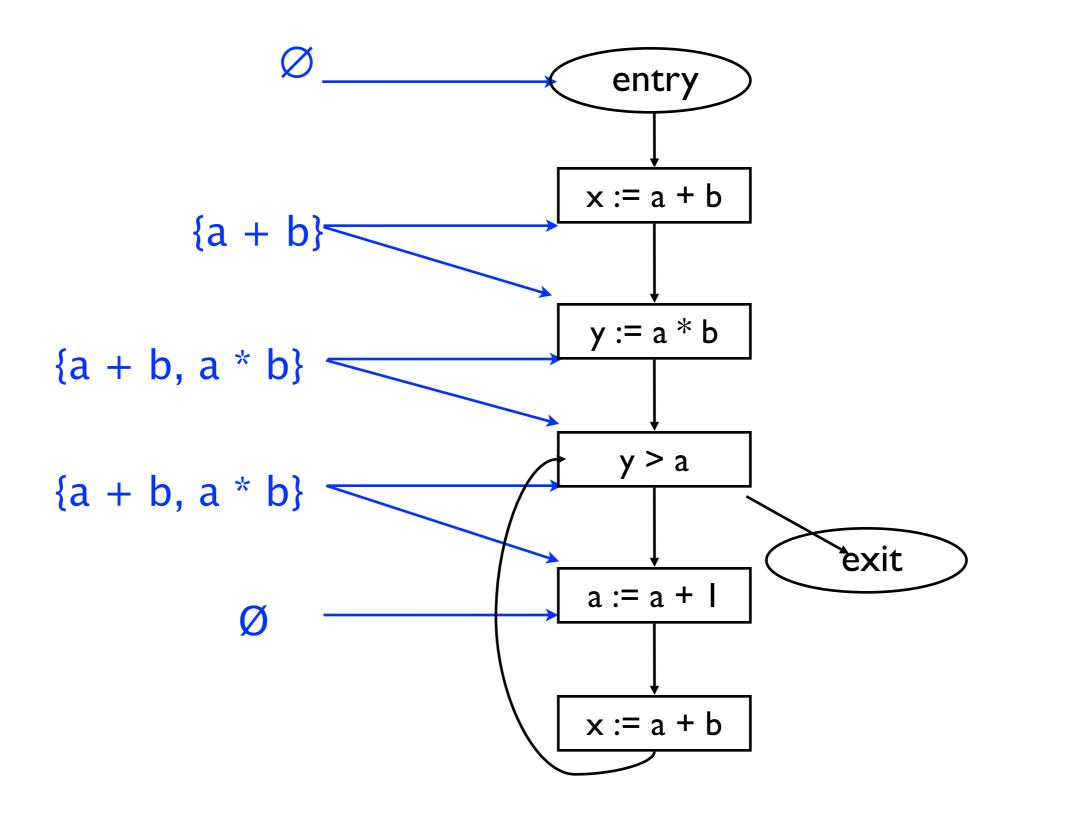


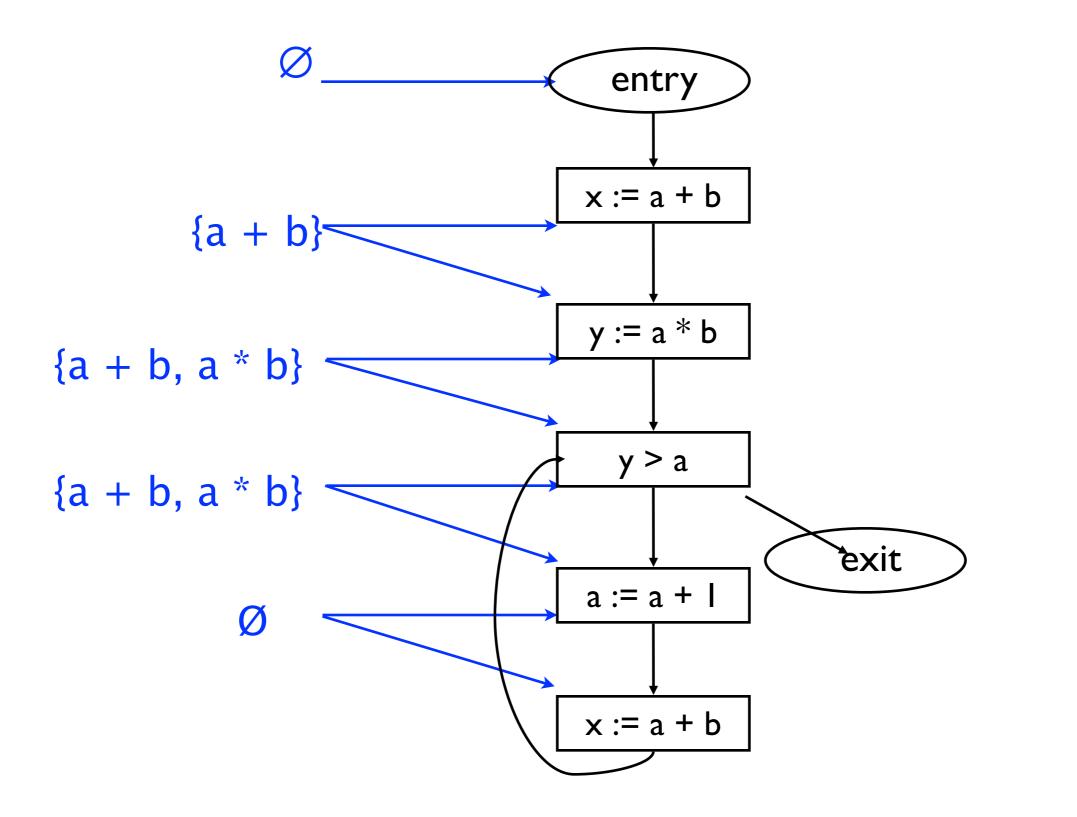


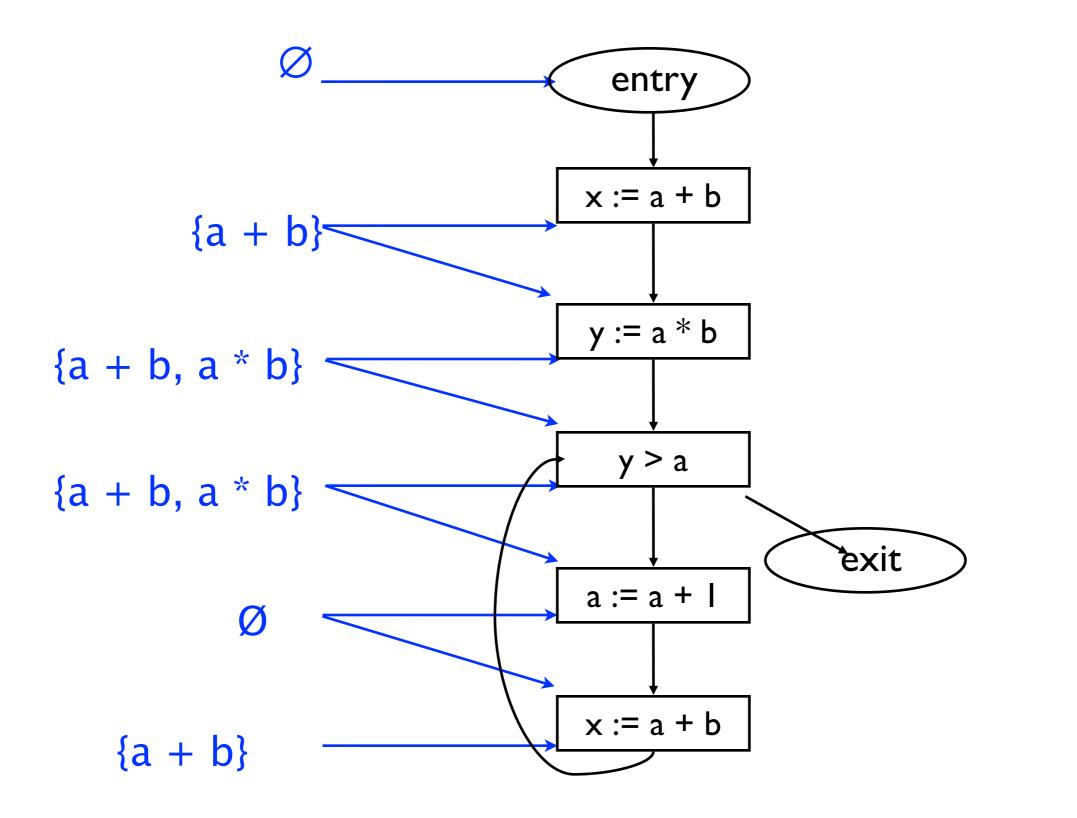


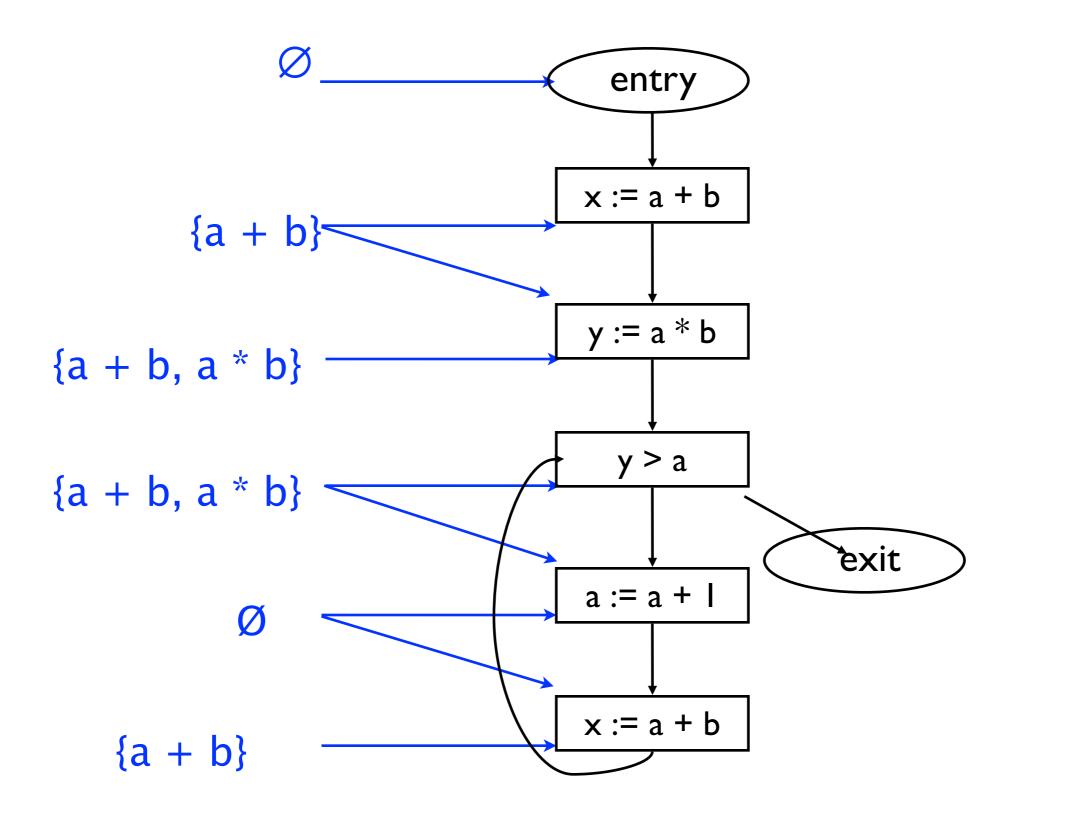


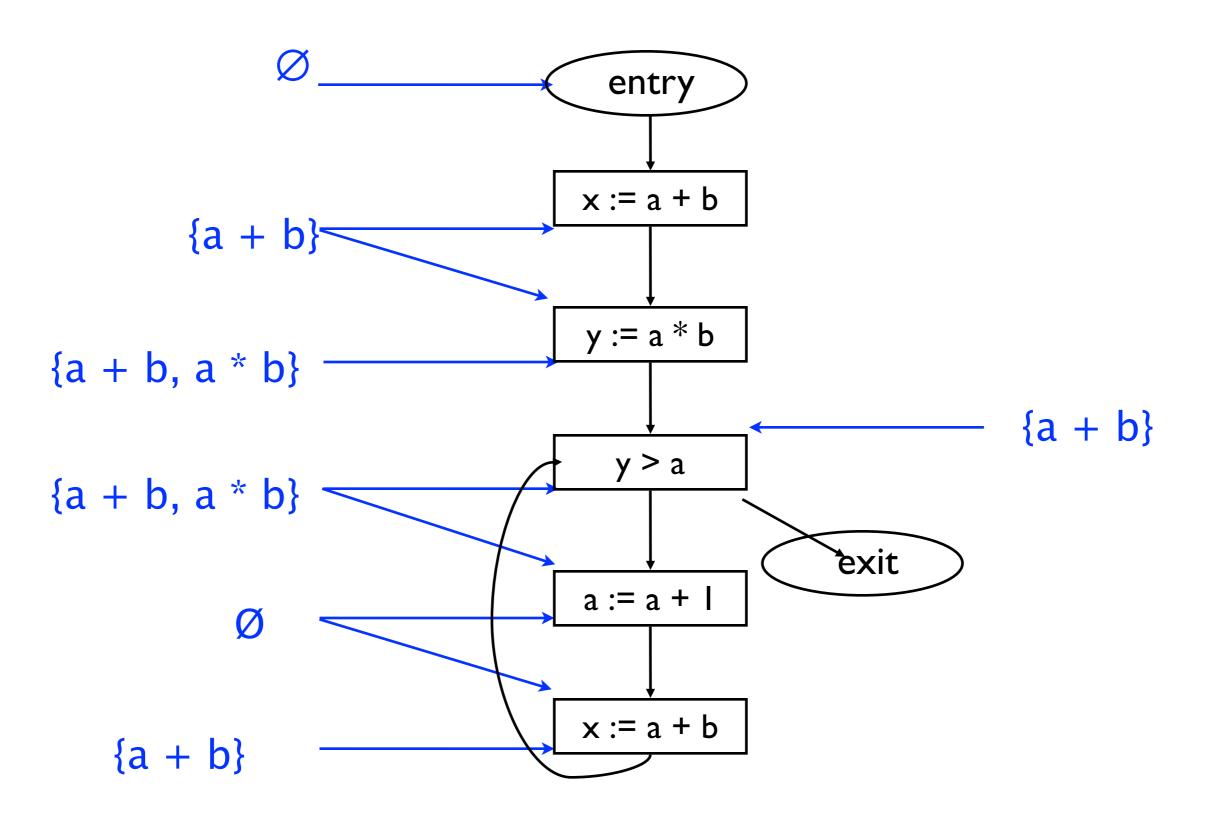


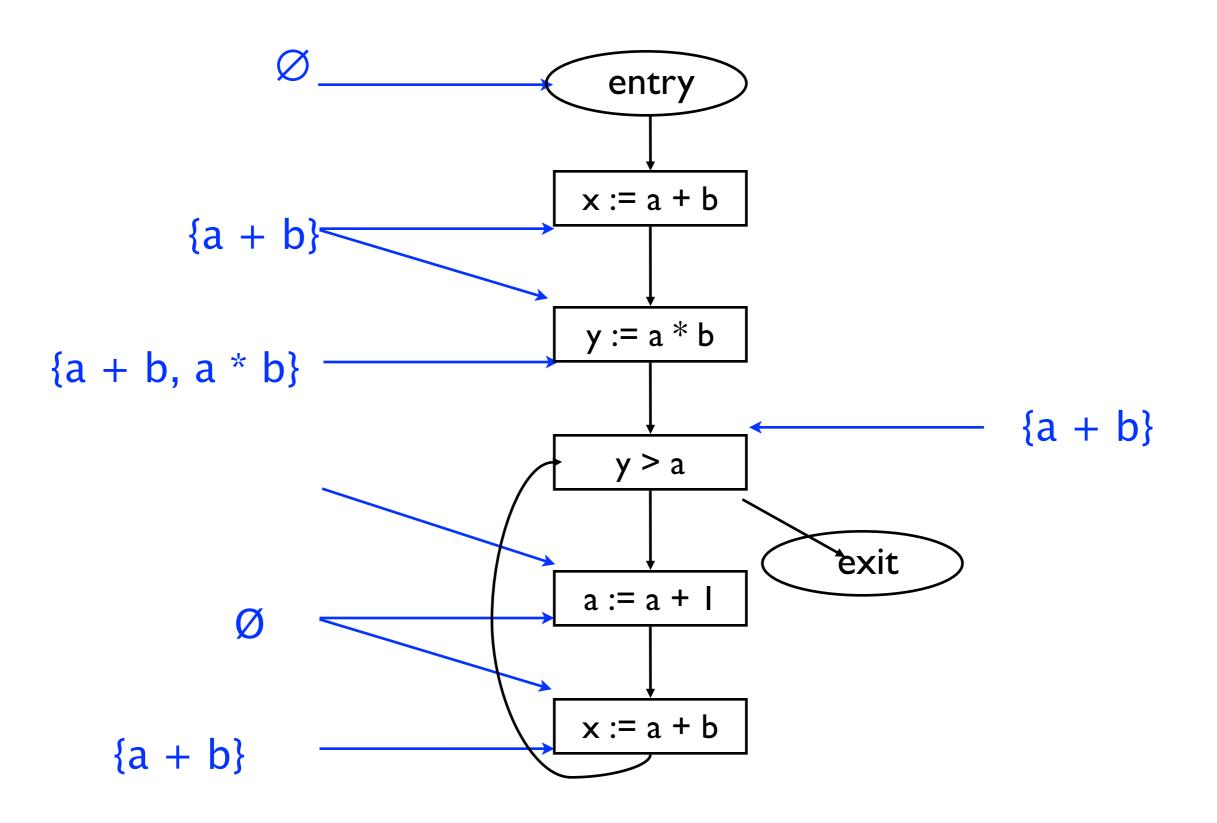


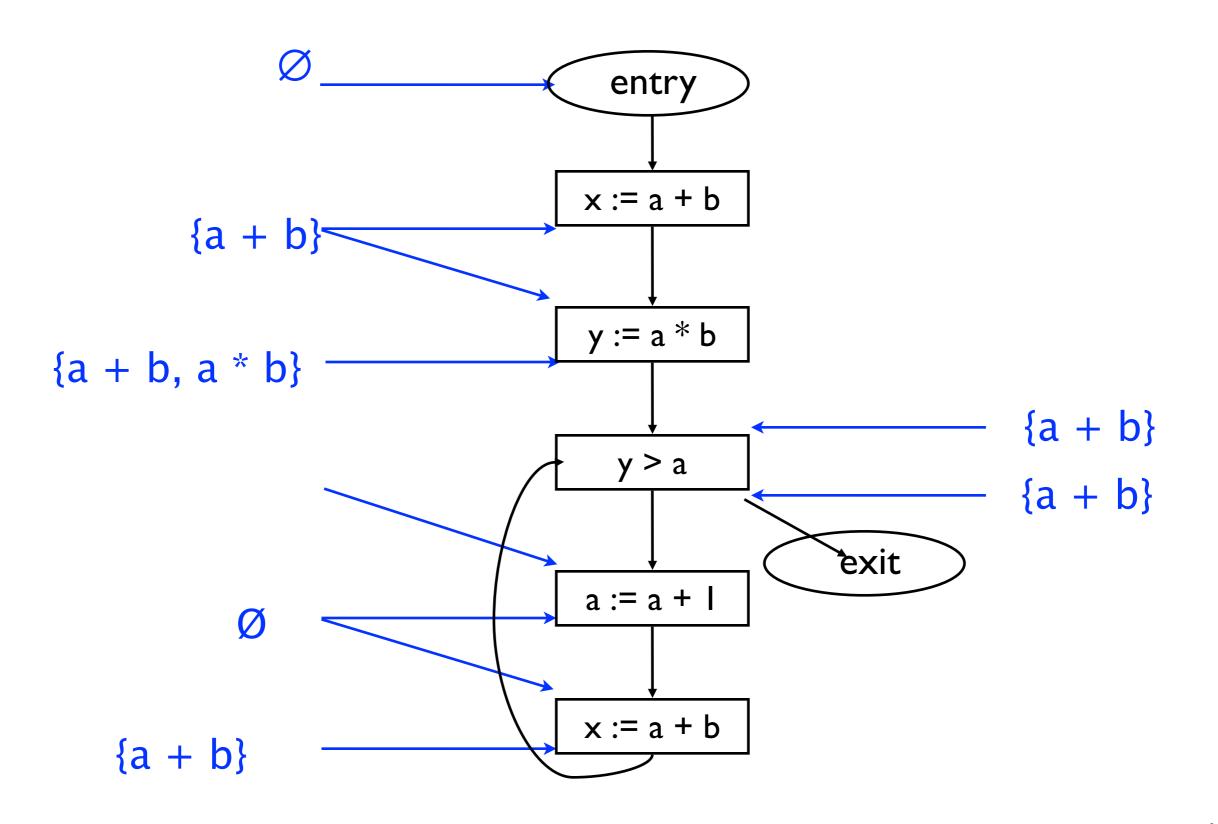


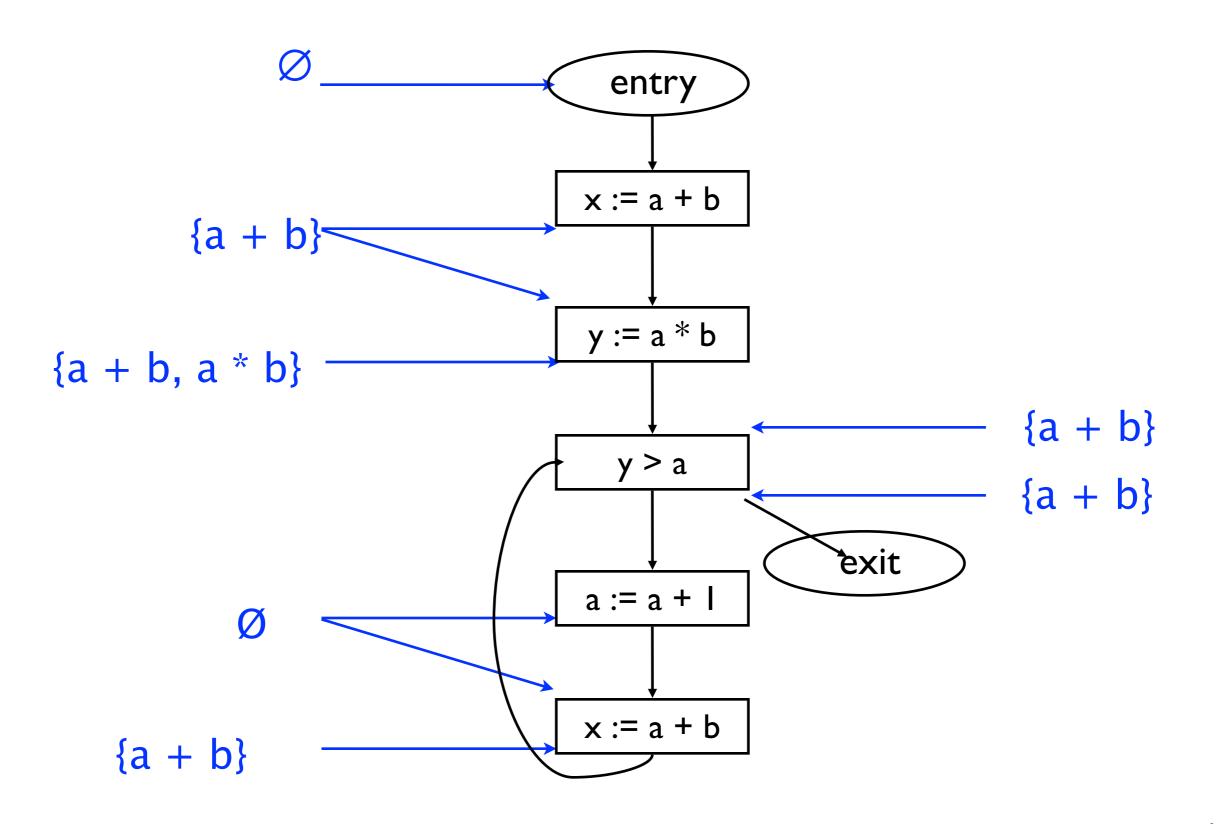


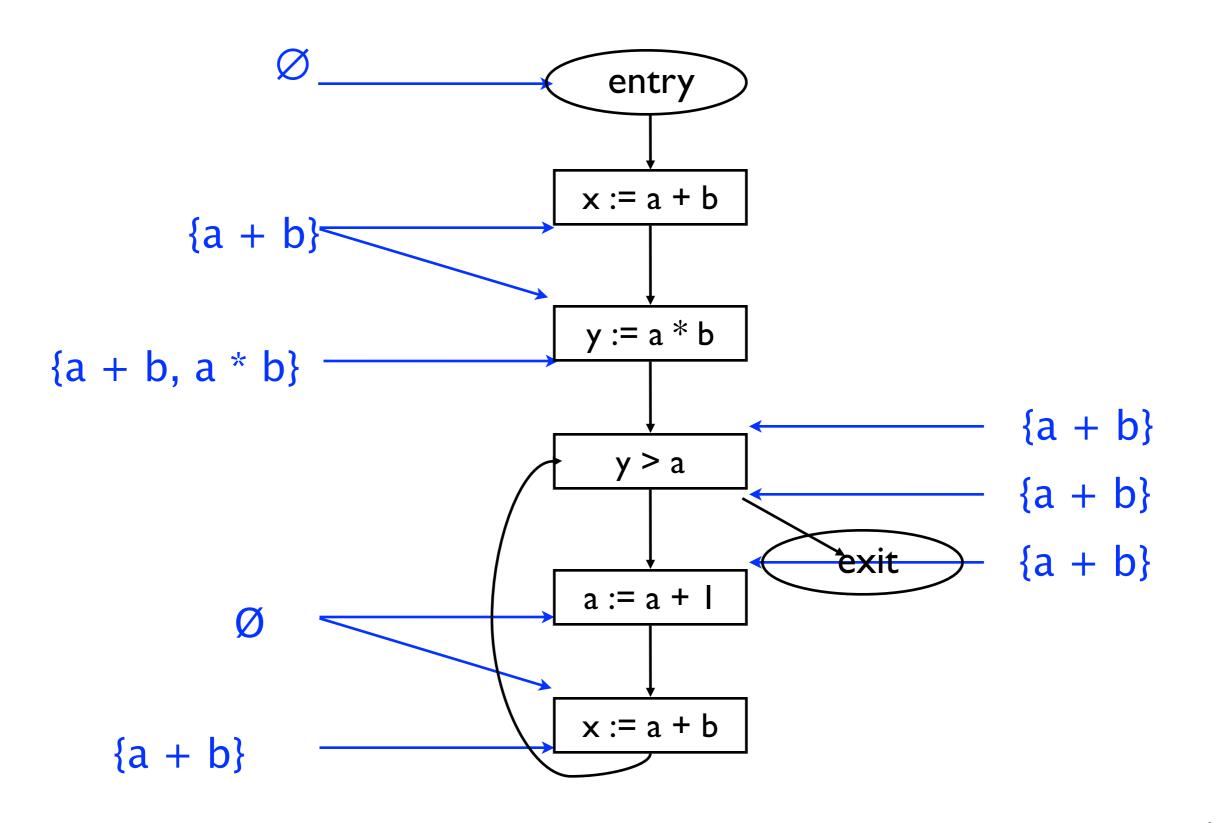












Terminology

- A joint point is a program point where two branches meet
- Available expressions is a forward must problem
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined

Data Flow Equations

- Let s be a statement
 - succ(s) = { immediate successor statements of s }
 - pred(s) = { immediate predecessor statements of s}
 - in(s) = program point just before executing s
 - out(s) = program point just after executing s
- $in(s) = \bigcap_{s' \in pred(s)} out(s')$
- $out(s) = gen(s) \cup (in(s) kill(s))$
 - Note: These are also called transfer functions

Liveness Analysis

Liveness Analysis

- A variable v is live at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten

Liveness Analysis

- A variable v is live at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten
- Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment

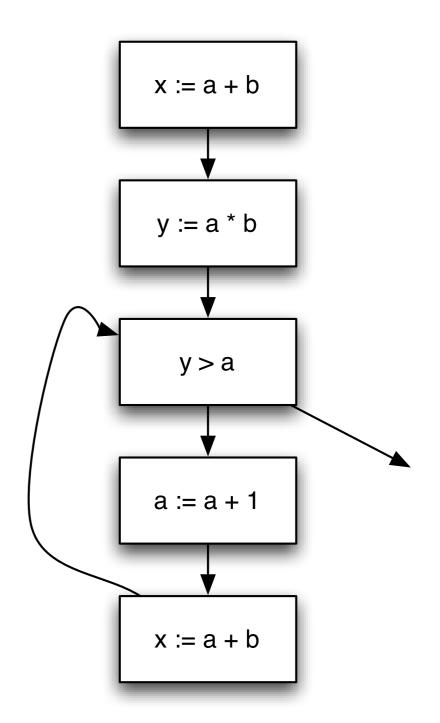
Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths
- Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path
- $out(s) = U_{s' \in succ(s)} in(s')$
- in(s) = gen(s) ∪ (out(s) kill(s))

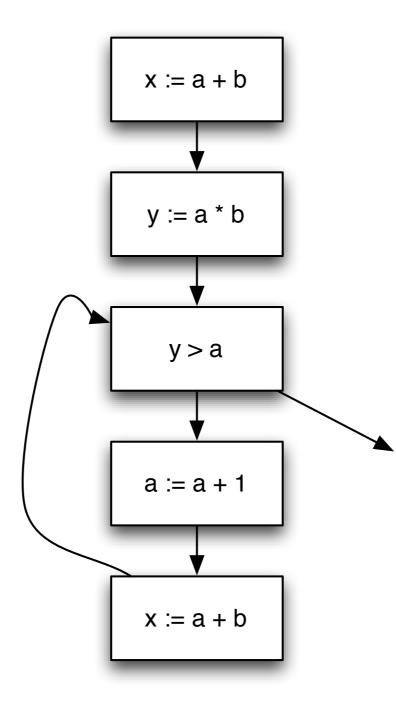
Gen and Kill

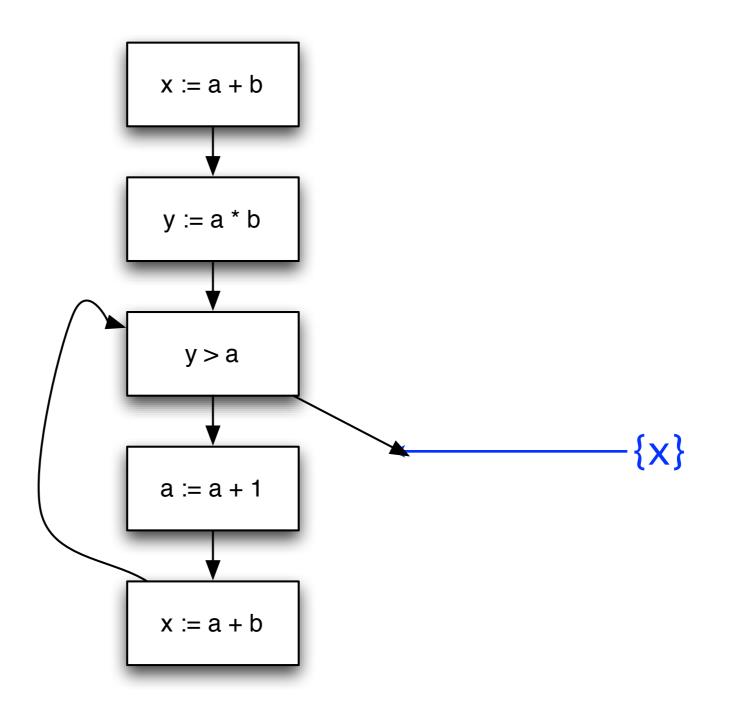
• What is the effect of each statement on the set of facts?

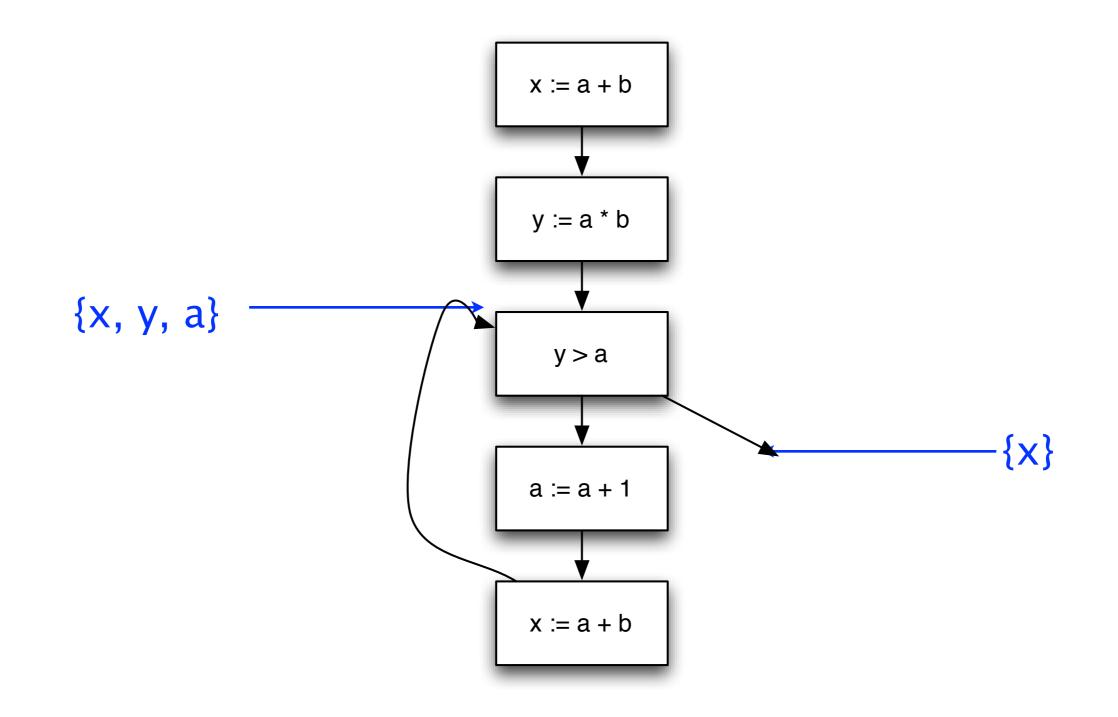
Stmt	Gen	Kill
x := a + b	a, b	X
y := a * b	a, b	у
y > a	a, y	
a := a + 1	а	a

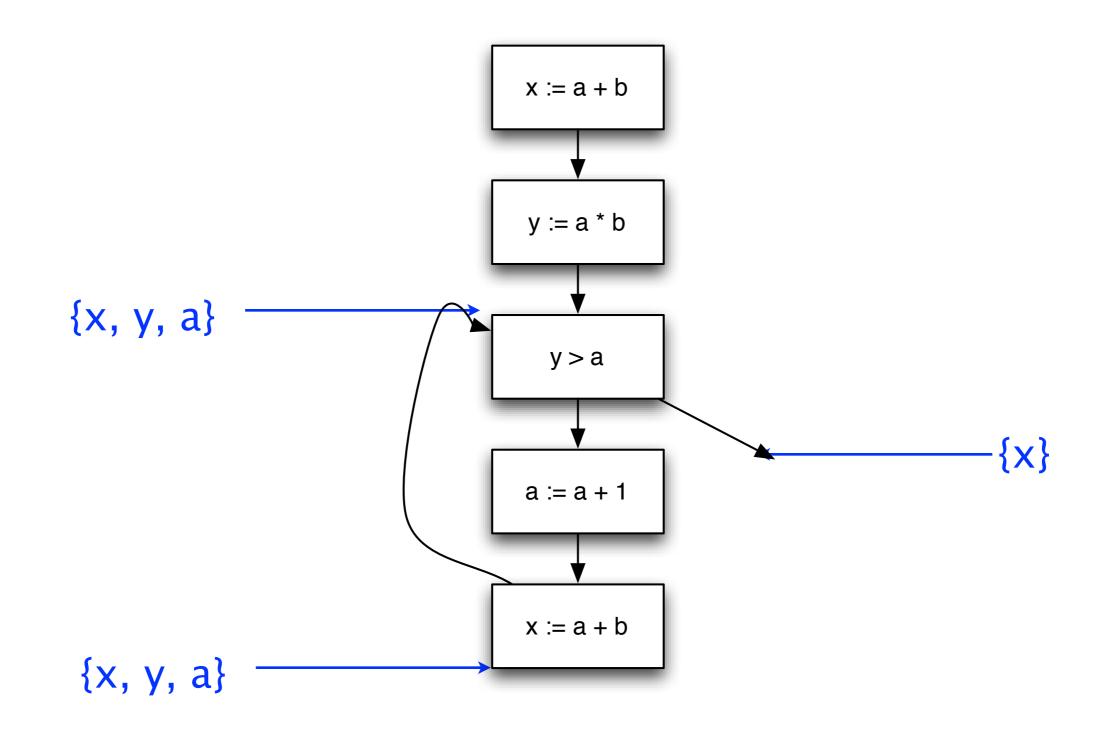


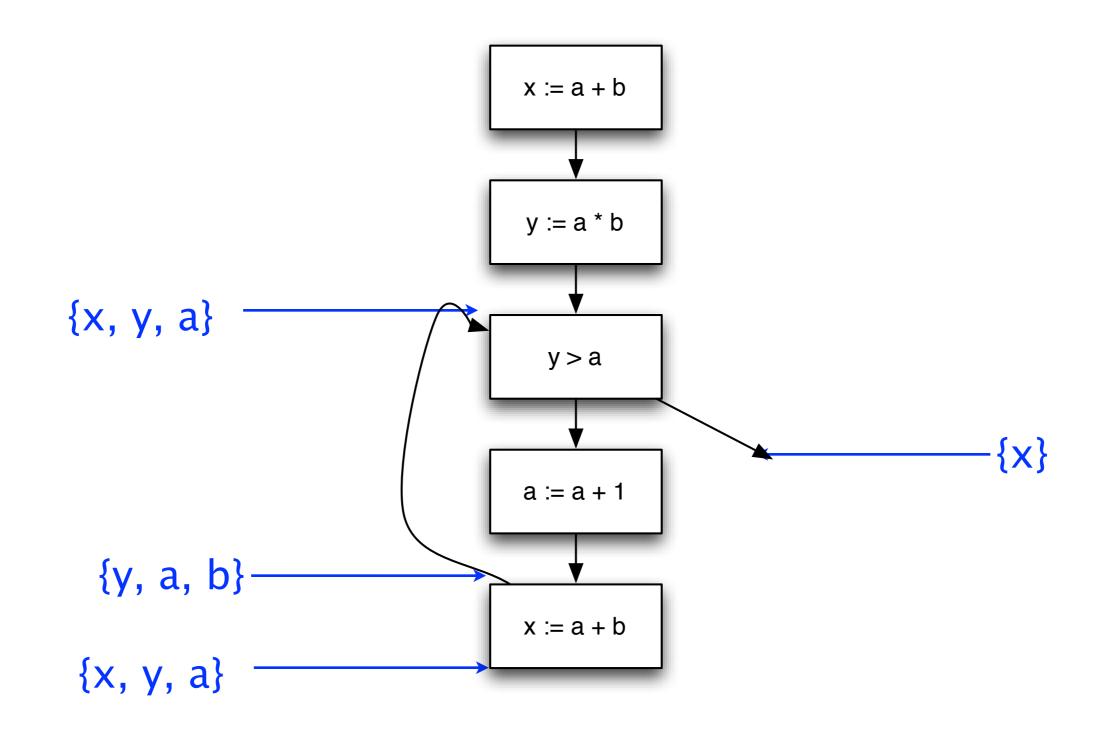
Computing Live Variables

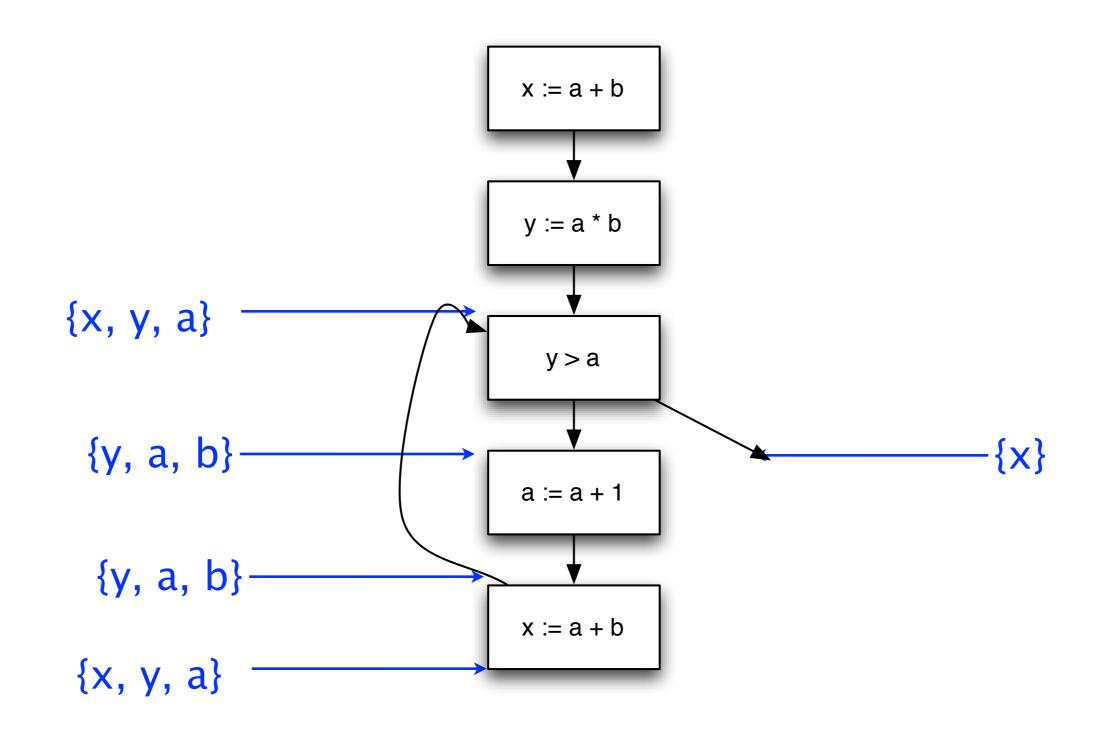


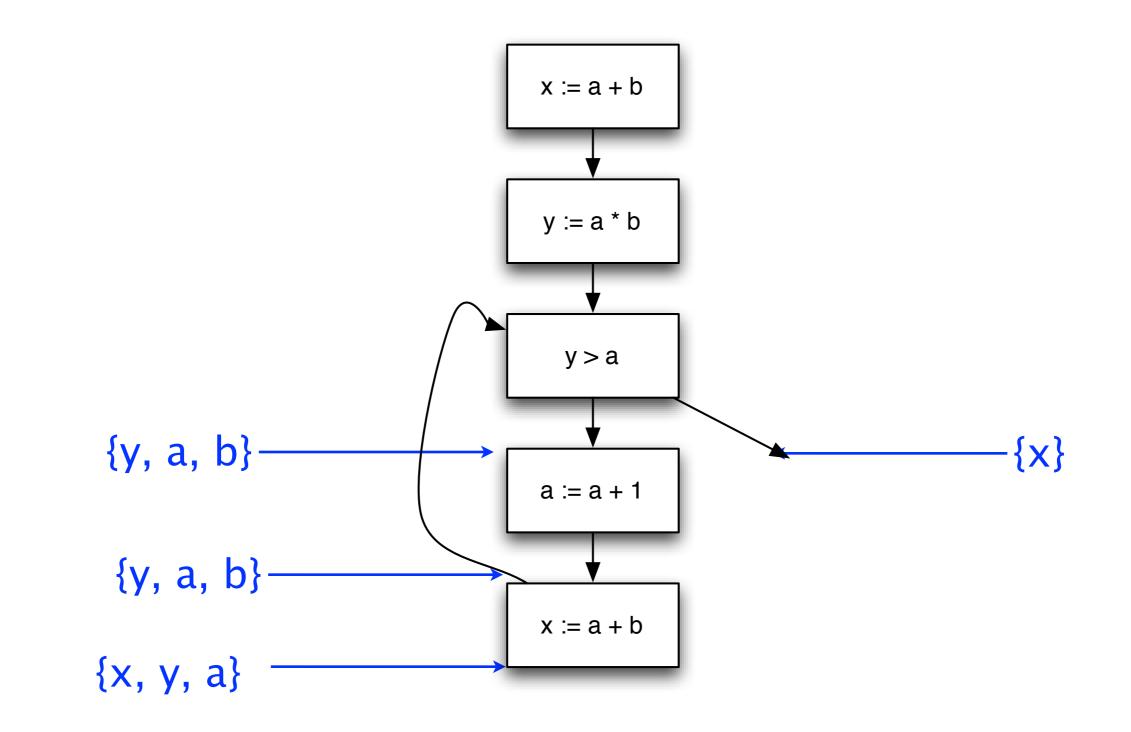


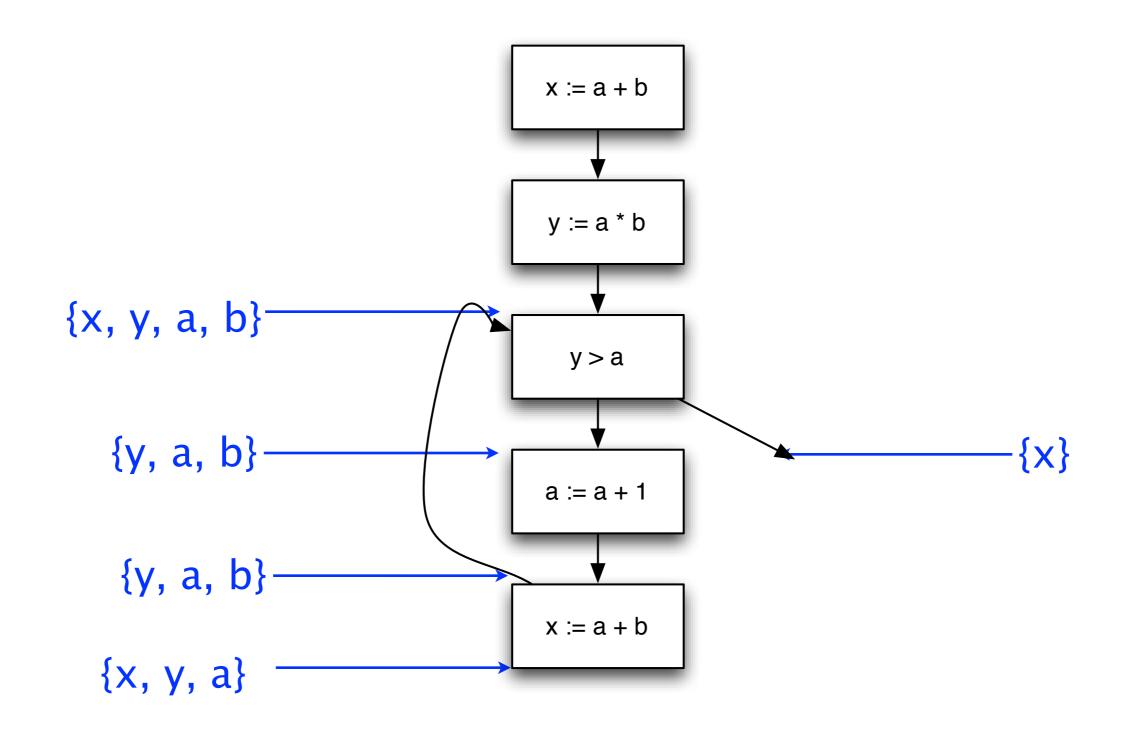


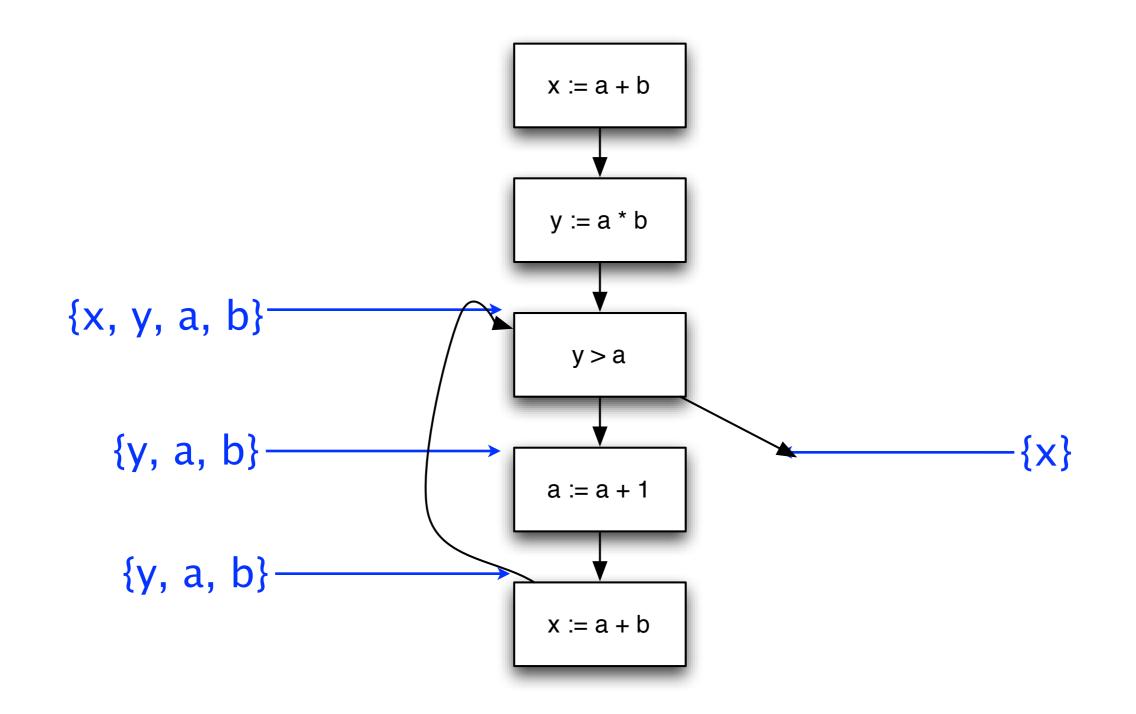


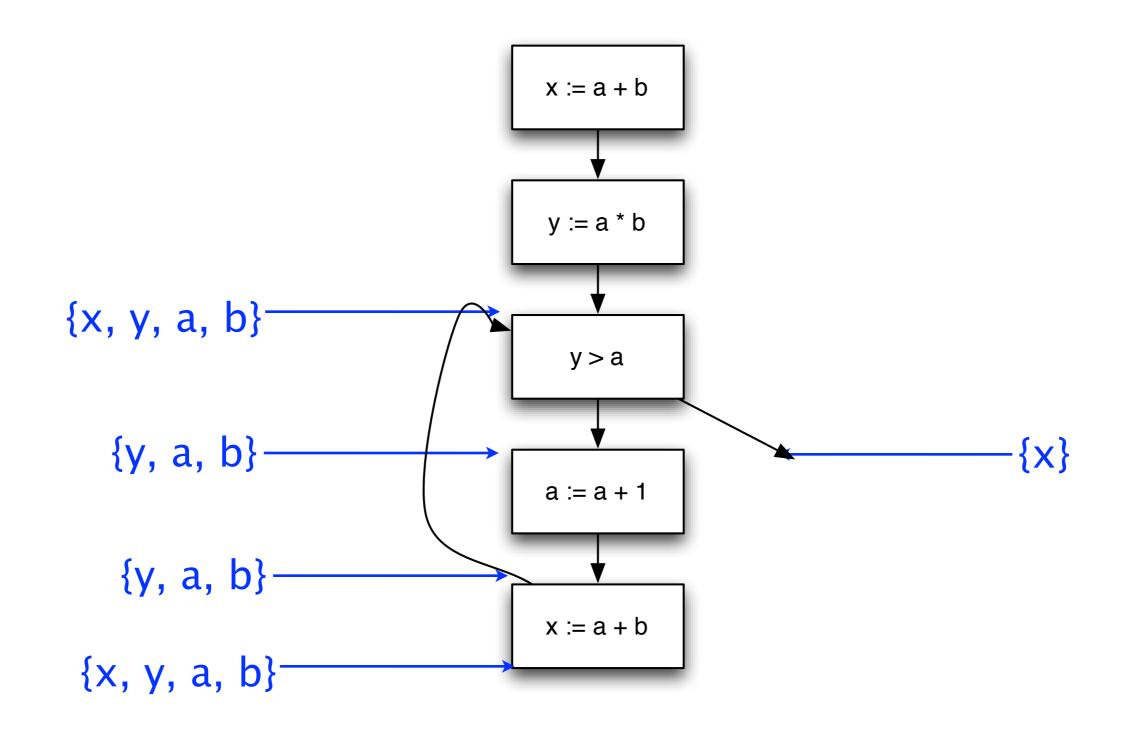


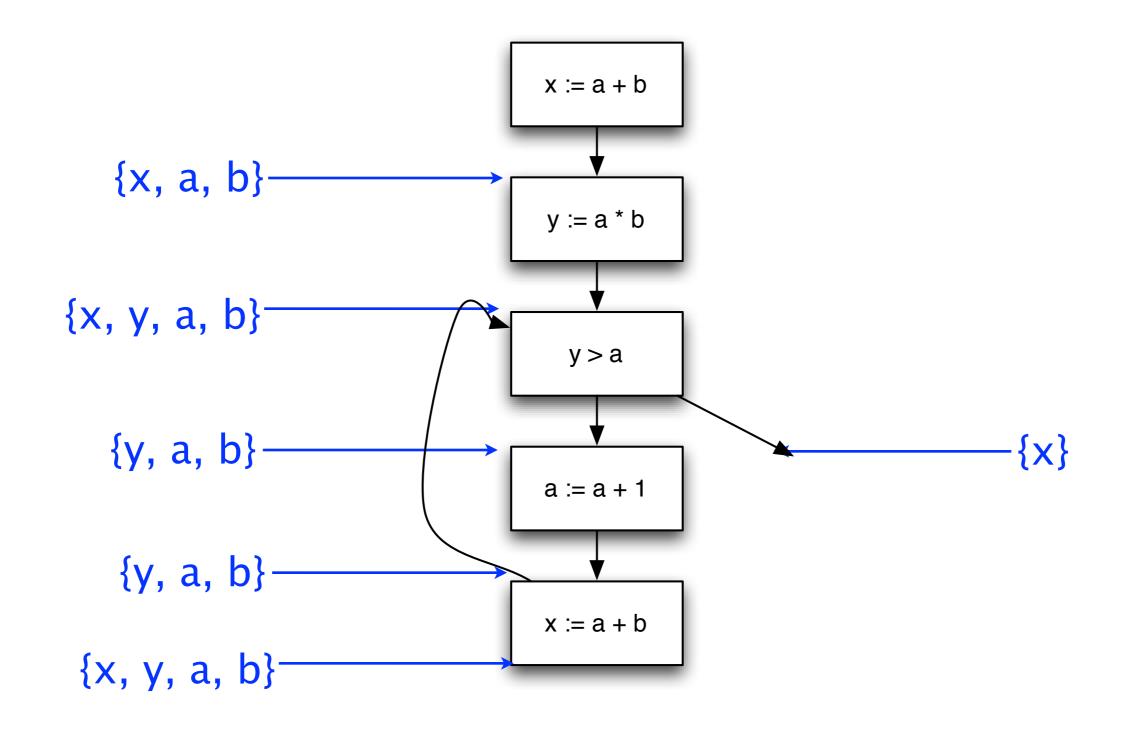


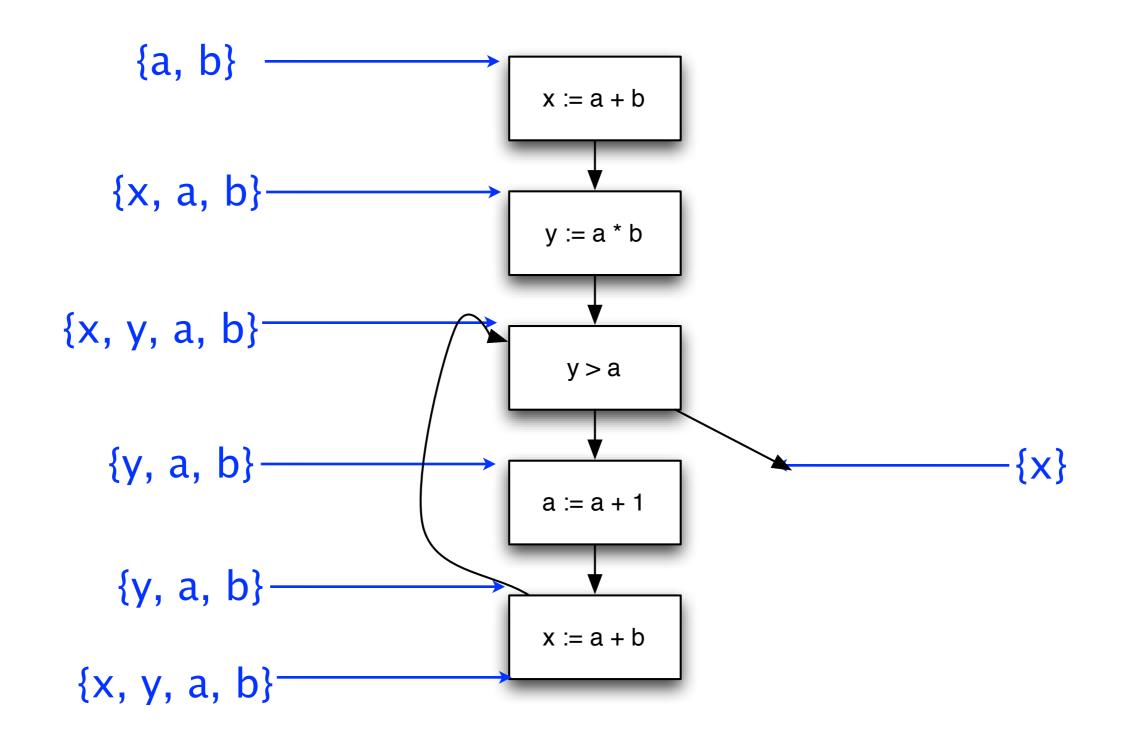












Very Busy Expressions

- An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed
- Optimization
 - Can hoist very busy expression computation
- What kind of problem?
 - Forward or backward?
 - May or must?

Very Busy Expressions

- An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed
- Optimization
 - Can hoist very busy expression computation
- What kind of problem?
 - Forward or backward?
 - backward

May or must?

Very Busy Expressions

- An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed
- Optimization
 - Can hoist very busy expression computation
- What kind of problem?
 - Forward or backward?
 backward
 - May or must?

must

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is some path from the definition to p such that there is no intervening assignment to v on the path
- Also called def-use information
- What kind of problem?
 - Forward or backward?
 - May or must?

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is some path from the definition to p such that there is no intervening assignment to v on the path
- Also called def-use information
- What kind of problem?
 - Forward or backward?
 - May or must?

forward

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is some path from the definition to p such that there is no intervening assignment to v on the path
- Also called def-use information
- What kind of problem?
 - Forward or backward?
 - May or must?

forward

may

Space of Data Flow Analyses

	May	Must
Forward	Reaching definitions	Available expressions
Backward	Live variables	Very busy expressions

- Most data flow analyses can be classified this way
 - A few don't fit: bidirectional analysis
- Lots of literature on data flow analysis

Solving data flow equations

- Let's start with forward may analysis
 - Dataflow equations:
 - $in(s) = U_{s' \in pred(s)} out(s')$
 - $out(s) = gen(s) \cup (in(s) kill(s))$
- Need algorithm to compute in and out at each stmt
- Key observation: out(s) is monotonic in in(s)
 - gen(s) and kill(s) are fixed for a given s
 - If, during our algorithm, in(s) grows, then out(s) grows
 - Furthermore, out(s) and in(s) have max size
- Same with in(s)
 - in terms of out(s') for precedessors s'

Solving data flow equations (cont'd)

- Idea: fixpoint algorithm
 - Set out(entry) to emptyset
 - E.g., we know no definitions reach the entry of the program
 - Initially, assume in(s), out(s) empty everywhere else, also
 - Pick a statement s
 - Compute in(s) from predecessors' out's
 - Compute new out(s) for s
 - Repeat until nothing changes
- Improvement: use a worklist
 - Add statements to worklist if their in(s) might change
 - Fixpoint reached when worklist is empty

Forward May Data Flow Algorithm

```
out(entry) = \emptyset
for all other statements s
 out(s) = \emptyset
W = all statements // worklist
while W not empty
 take s from W
  in(s) = \bigcup_{s' \in pred(s)} out(s')
  temp = gen(s) \cup (in(s) - kill(s))
  if temp \neq out(s) then
    out(s) = temp
    W := W \cup succ(s)
  end
end
```

	May	Must
Forward	$out(s) = gen(s) \cup (in(s) - kill(s))$ $out(entry) = \emptyset$	$\begin{split} &\text{in}(s) = \bigcap_{s' \in \text{pred}(s)} \text{out}(s') \\ &\text{out}(s) = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s)) \\ &\text{out}(\text{entry}) = \varnothing \\ &\text{initial out elsewhere} = \{\text{all facts}\} \end{split}$
Backward	$out(s) = U_{s' \in succ(s)} in(s')$ in(s) = gen(s) ∪ (out(s) - kill(s)) in(exit) = Ø initial in elsewhere = Ø	$out(s) = \bigcap_{s' \in succ(s)} in(s')$ $in(s) = gen(s) \cup (out(s) - kill(s))$ $in(exit) = \emptyset$ $initial in elsewhere = {all facts}$

Forward Analysis

```
out(entry) = \emptyset
for all other statements s
 out(s) = \emptyset
W = all statements // worklist
while W not empty
 take s from W
  in(s) = ∪<sub>s'∈pred(s)</sub> out(s')
  temp = gen(s) \cup (in(s) - kill(s))
  if temp \neq out(s) then
    out(s) = temp
    W := W \cup succ(s)
   end
end
```

 $out(entry) = \emptyset$ for all other statements s out(s) = all facts W = all statements while W not empty take s from W $in(s) = \bigcap_{s' \in pred(s)} out(s')$ $temp = gen(s) \cup (in(s) - kill(s))$ if temp \neq out(s) then out(s) = temp $W := W \cup succ(s)$ end end

Backward Analysis

```
in(exit) = \emptyset
for all other statements s
 in(s) = \emptyset
W = all statements
while W not empty
 take s from W
  out(s) = \bigcup_{s' \in succ(s)} in(s')
   temp = gen(s) \cup (out(s) - kill(s))
   if temp \neq in(s) then
    in(s) = temp
    W := W \cup pred(s)
   end
end
```

```
in(exit) = \emptyset
for all other statements s
 in(s) = all facts
W = all statements
while W not empty
 take s from W
  out(s) = \bigcap_{s' \in succ(s)} in(s')
  temp = gen(s) \cup (out(s) - kill(s))
  if temp \neq in(s) then
    in(s) = temp
    W := W \cup pred(s)
  end
end
```

Practical Implementation

- Represent set of facts as bit vector
 - Fact_i represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc
- "Only" a constant factor speedup
 - But very useful in practice

Basic Blocks

- Recall a *basic block* is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first
- In some data flow implementations,
 - Compute gen/kill for each basic block as a whole
 - Compose transfer functions
 - Store only in/out for each basic block
 - Typical basic block ~5 statements
 - At least, this used to be the case...

Order Matters

- Assume forward data flow problem
 - Let G = (V, E) be the CFG
 - Let k be the height of the lattice
- If G acyclic, visit in topological order
 - Visit head before tail of edge
- Running time O(|E|)
 - No matter what size the lattice

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search
 - (Reverse for backward analysis)
- Let Q = max # back edges on cycle-free path
 - Nesting depth
 - Back edge is from node to ancestor in DFS tree

- In common cases, running time can be shown to be O((Q+1)|E|)
 - Proportional to structure of CFG rather than lattice

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - I.e., we keep track of facts per program point
- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
 - /* x : int */ x := ... /* x : int */

Data Flow Analysis and Functions

- What happens at a function call?
 - Lots of proposed solutions in data flow analysis literature
- In practice, only analyze one procedure at a time
- Consequences
 - Call to function kills all data flow facts
 - May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

- An analysis that models only a single function at a time is *intraprocedural*
- An analysis that takes multiple functions into account is *interprocedural*
- An analysis that takes the whole program into account is whole program
- Note: global analysis means "more than one basic block," but still within a function
 - Old terminology from when computers were slow...

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow
- In practice: *x := e
 - Assume all data flow facts killed (!)
 - Or, assume write through x may affect any variable whose address has been taken
- In general, hard to analyze pointers

• Moore's Law: Hardware advances double computing power every 18 months.

- Moore's Law: Hardware advances double computing power every 18 months.
- Proebsting's Law: Compiler advances double computing power every 18 years.

- Moore's Law: Hardware advances double computing power every 18 months.
- Proebsting's Law: Compiler advances double computing power every 18 years.
 - Not so much bang for the buck!

DFA and Defect Detection

- LCLint Evans et al. (UVa)
- METAL Engler et al. (Stanford, now Coverity)
- ESP Das et al. (MSR)
- FindBugs Hovemeyer, Pugh (Maryland)
 - For Java. The first three are for C.
- Many other one-shot projects
 - Memory leak detection
 - Security vulnerability checking (tainting, info. leaks)