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• A framework for proving facts about programs 

• Reasons about lots of little facts 

• Little or no interaction between facts 
■ Works best on properties about how program computes 

• Based on all paths through program 
■ Including infeasible paths 

• Operates on control-flow graphs, typically

Data Flow Analysis
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x := a + b; 

y := a * b; 

while (y > a) { 

    a := a + 1; 

    x := a + b 

}

Control-Flow Graph Example

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Control-Flow Graph w/Basic Blocks

• Can lead to more efficient implementations 
• But more complicated to explain, so... 

■ We’ll use single-statement blocks in lecture today

x := a + b; 
y := a * b; 
while (y > a + b) { 
    a := a + 1; 
    x := a + b 
} 

x := a + b
y := a * b

y > a

a := a + 1
x := a + b
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x := a + b; 

y := a * b; 

while (y > a) { 

    a := a + 1; 

    x := a + b 

} 

• All nodes without a (normal) 
predecessor should be pointed 
to by entry 

•All nodes without a successor 
should point to exit

Example with Entry and Exit

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit

entry



Notes on Entry and Exit
• Typically, we perform data flow analysis on a 

function body 
• Functions usually have 

■ A unique entry point 
■ Multiple exit points 

• So in practice, there can be multiple exit nodes in 
the CFG 
■ For the rest of these slides, we’ll assume there’s only one 
■ In practice, just treat all exit nodes the same way as if 

there’s only one exit node
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Available Expressions
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• An expression e is available at program point p if 
■ e is computed on every path to p, and 
■ the value of e has not changed since the last time e was 

computed on the paths to p

Available Expressions
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• An expression e is available at program point p if 
■ e is computed on every path to p, and 
■ the value of e has not changed since the last time e was 

computed on the paths to p

• Optimization 
■ If an expression is available, need not be recomputed 

- (At least, if it’s still in a register somewhere)

Available Expressions
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• Is expression e available? 
• Facts: 

■ a + b is available 
■ a * b is available 
■ a + 1 is available

Data Flow Facts

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit

entry
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• What is the effect of each 
statement on the set of facts?

Gen and Kill

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

a := a + 1
a + 1,
a + b,
a * b

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit

entry
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Computing Available Expressions

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit
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Computing Available Expressions

∅
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y := a * b

y > a

a := a + 1

x := a + b

entry

exit
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∅
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Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit
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Terminology
• A joint point is a program point where two branches 

meet 

• Available expressions is a forward must problem 
■ Forward = Data flow from in to out 
■ Must = At join point, property must hold on all paths that are 

joined
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• Let s be a statement 
■ succ(s) =  { immediate successor statements of s } 
■ pred(s) = { immediate predecessor statements of s} 
■ in(s) = program point just before executing s 
■ out(s) = program point just after executing s 

• in(s) = ∩s′ ∊ pred(s) out(s′) 

• out(s) = gen(s) ∪ (in(s) - kill(s)) 

■ Note:  These are also called transfer functions

Data Flow Equations
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Liveness Analysis
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• A variable v is live at program point p if 
■ v will be used on some execution path originating from p... 
■ before v is overwritten

Liveness Analysis
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• A variable v is live at program point p if 
■ v will be used on some execution path originating from p... 
■ before v is overwritten

• Optimization 
■ If a variable is not live, no need to keep it in a register 
■ If variable is dead at assignment, can eliminate assignment

Liveness Analysis
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• Available expressions is a forward must analysis 
■ Data flow propagate in same dir as CFG edges 
■ Expr is available only if available on all paths 

• Liveness is a backward may problem 
■ To know if variable live, need to look at future uses 
■ Variable is live if used on some path 

• out(s) = ∪s′ ∊ succ(s) in(s′) 

• in(s) = gen(s) ∪ (out(s) - kill(s))

Data Flow Equations
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• What is the effect of each 
statement on the set of facts?

Gen and Kill

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Computing Live Variables

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Computing Live Variables

{x}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Computing Live Variables

{x}

{x, y, a}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Computing Live Variables

{x}

{x, y, a}

{x, y, a}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Computing Live Variables

{x}

{x, y, a}

{x, y, a}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Computing Live Variables

{x}

{x, y, a}

{x, y, a}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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Computing Live Variables

{x}

{x, y, a}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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{x, y, a, b}

Computing Live Variables

{x}

{x, y, a}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b



 16

{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
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{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x, y, a, b}
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{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

{x, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x, y, a, b}
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{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

{x, a, b}

{a, b}
x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x, y, a, b}
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• An expression e is very busy at point p if 
■ On every path from p, expression e is evaluated before the 

value of e is changed 

• Optimization 
■ Can hoist very busy expression computation 

• What kind of problem? 
■ Forward or backward? 
■ May or must?

Very Busy Expressions
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• An expression e is very busy at point p if 
■ On every path from p, expression e is evaluated before the 

value of e is changed 

• Optimization 
■ Can hoist very busy expression computation 

• What kind of problem? 
■ Forward or backward? 
■ May or must?

Very Busy Expressions

backward

must
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• A definition of a variable v is an assignment to v 
• A definition of variable v reaches point p if 

■ There is some path from the definition to p such that there is 
no intervening assignment to v on the path 

• Also called def-use information 

• What kind of problem? 
■ Forward or backward? 
■ May or must?

Reaching Definitions
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• A definition of a variable v is an assignment to v 
• A definition of variable v reaches point p if 

■ There is some path from the definition to p such that there is 
no intervening assignment to v on the path 

• Also called def-use information 

• What kind of problem? 
■ Forward or backward? 
■ May or must?

Reaching Definitions

forward

may
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• Most data flow analyses can be classified this way 
■ A few don’t fit:  bidirectional analysis 

• Lots of literature on data flow analysis

Space of Data Flow Analyses

May Must

Forward Reaching 
definitions

Available 
expressions

Backward Live 
variables

Very busy 
expressions



Solving data flow equations
• Let’s start with forward may analysis 

■ Dataflow equations: 
- in(s) = ∪s′ ∈ pred(s) out(s′) 

- out(s) = gen(s) ∪ (in(s) - kill(s)) 

• Need algorithm to compute in and out at each stmt 
• Key observation: out(s) is monotonic in in(s) 

■ gen(s) and kill(s) are fixed for a given s 
■ If, during our algorithm, in(s) grows, then out(s) grows 
■ Furthermore, out(s) and in(s) have max size 

• Same with in(s) 
■ in terms of out(s’) for precedessors s’
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Solving data flow equations (cont’d)
• Idea: fixpoint algorithm 

■ Set out(entry) to emptyset 
- E.g., we know no definitions reach the entry of the program 

■ Initially, assume in(s), out(s) empty everywhere else, also 
■ Pick a statement s 

- Compute in(s) from predecessors’ out’s 

- Compute new out(s) for s 

■ Repeat until nothing changes 

• Improvement: use a worklist 
■ Add statements to worklist if their in(s) might change 
■ Fixpoint reached when worklist is empty 

 21
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Forward May Data Flow Algorithm
out(entry) = ∅ 
for all other statements s 
  out(s) = ∅ 
W = all statements     // worklist 
while W not empty 
  take s from W 
    in(s) = ∪s′∈pred(s) out(s′) 

    temp = gen(s) ∪ (in(s) - kill(s)) 
    if temp ≠ out(s) then 
      out(s) = temp 
      W := W ∪ succ(s) 
    end 
end



Generalizing
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May Must

Forward

in(s) = ∪s′ ∈ pred(s) out(s′) 

out(s) = gen(s) ∪ (in(s) - kill(s)) 

out(entry) = ∅ 

initial out elsewhere = ∅

in(s) = ∩s′ ∈ pred(s) out(s′) 

out(s) = gen(s) ∪ (in(s) - kill(s)) 

out(entry) = ∅ 

initial out elsewhere = {all facts}

Backward

out(s) = ∪s′ ∈ succ(s) in(s′) 

in(s) = gen(s) ∪ (out(s) - kill(s)) 

in(exit) = ∅ 

initial in elsewhere = ∅

out(s) = ∩s′ ∈ succ(s) in(s′) 

in(s) = gen(s) ∪ (out(s) - kill(s)) 

in(exit) = ∅ 

initial in elsewhere = {all facts}
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Forward Analysis
out(entry) = ∅ 
for all other statements s 
  out(s) = all facts 
W = all statements 
while W not empty 
  take s from W 
    in(s) = ∩s′∈pred(s) out(s′) 

    temp = gen(s) ∪ (in(s) - kill(s)) 
    if temp ≠ out(s) then 
      out(s) = temp 
      W := W ∪ succ(s) 
    end 
end

out(entry) = ∅ 
for all other statements s 
  out(s) = ∅ 
W = all statements     // worklist 
while W not empty 
  take s from W 
    in(s) = ∪s′∈pred(s) out(s′) 

    temp = gen(s) ∪ (in(s) - kill(s)) 
    if temp ≠ out(s) then 
      out(s) = temp 
      W := W ∪ succ(s) 
    end 
end

May Must



 25

Backward Analysis
in(exit) = ∅ 
for all other statements s 
  in(s) = ∅ 
W = all statements 
while W not empty 
  take s from W 
    out(s) = ∪s′∈succ(s) in(s′) 

    temp = gen(s) ∪ (out(s) - kill(s)) 
    if temp ≠ in(s) then 
      in(s) = temp 
      W := W ∪ pred(s) 
    end 
end

in(exit) = ∅ 
for all other statements s 
  in(s) = all facts 
W = all statements 
while W not empty 
  take s from W 
    out(s) = ∩s′∈succ(s) in(s′) 

    temp = gen(s) ∪ (out(s) - kill(s)) 
    if temp ≠ in(s) then 
      in(s) = temp 
      W := W ∪ pred(s) 
    end 
end

May Must
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• Represent set of facts as bit vector 
■ Facti represented by bit i 

■ Intersection = bitwise and, union = bitwise or, etc 

• “Only” a constant factor speedup 
■ But very useful in practice

Practical Implementation
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• Recall a basic block is a sequence of statements s.t. 
■ No statement except the last in a branch 
■ There are no branches to any statement in the block except 

the first 

• In some data flow implementations, 
■ Compute gen/kill for each basic block as a whole 

- Compose transfer functions 

■ Store only in/out for each basic block 
■ Typical basic block ~5 statements 

- At least, this used to be the case...

Basic Blocks
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• Assume forward data flow problem 
■ Let G = (V, E) be the CFG 
■ Let k be the height of the lattice 

• If G acyclic, visit in topological order 
■ Visit head before tail of edge 

• Running time O(|E|) 
■ No matter what size the lattice

Order Matters



Order Matters — Cycles
• If G has cycles, visit in reverse postorder 

■ Order from depth-first search 
■ (Reverse for backward analysis) 

• Let Q = max # back edges on cycle-free path 
■ Nesting depth 
■ Back edge is from node to ancestor in DFS tree 

• In common cases, running time can be shown to be 
O((Q+1)|E|) 
■ Proportional to structure of CFG rather than lattice

 29
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• Data flow analysis is flow-sensitive
■ The order of statements is taken into account 
■ I.e., we keep track of facts per program point 

• Alternative:  Flow-insensitive analysis 
■ Analysis the same regardless of statement order 
■ Standard example:  types 

- /* x : int */ x := ... /* x : int */

Flow-Sensitivity
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• What happens at a function call? 
■ Lots of proposed solutions in data flow analysis literature 

• In practice, only analyze one procedure at a time 

• Consequences 
■ Call to function kills all data flow facts 
■ May be able to improve depending on language, e.g., 

function call may not affect locals

Data Flow Analysis and Functions
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• An analysis that models only a single function at a 
time is intraprocedural

• An analysis that takes multiple functions into 
account is interprocedural

• An analysis that takes the whole program into 
account is whole program 

• Note:  global analysis means “more than one basic 
block,” but still within a function 
■ Old terminology from when computers were slow...

More Terminology
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• Data Flow is good at analyzing local variables 
■ But what about values stored in the heap? 
■ Not modeled in traditional data flow 

• In practice:  *x := e 
■ Assume all data flow facts killed (!) 
■ Or, assume write through x may affect any variable whose 

address has been taken 

• In general, hard to analyze pointers

Data Flow Analysis and The Heap
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Proebsting’s Law
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• Moore’s Law:  Hardware advances double 

computing power every 18 months.
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Proebsting’s Law
• Moore’s Law:  Hardware advances double 

computing power every 18 months.

• Proebsting’s Law:  Compiler advances double 
computing power every 18 years.

■ Not so much bang for the buck!
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DFA and Defect Detection
• LCLint - Evans et al. (UVa) 
• METAL - Engler et al. (Stanford, now Coverity) 
• ESP - Das et al. (MSR) 
• FindBugs - Hovemeyer, Pugh (Maryland) 

■ For Java.  The first three are for C. 

• Many other one-shot projects 
■ Memory leak detection 
■ Security vulnerability checking (tainting, info. leaks)


