CMSC 430
 Introduction to Compilers

Fall 2018

Data Flow Analysis

Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
- Works best on properties about how program computes
- Based on all paths through program
- Including infeasible paths
- Operates on control-flow graphs, typically

Control-Flow Graph Example

$x:=a+b ;$
$y:=a * b ;$
while $(y>a)\{$
$a:=a+1 ;$
$x:=a+b$
\}

Control-Flow Graph w/Basic Blocks

$$
\begin{aligned}
& x:=a+b ; \\
& y:=a * b ; \\
& \text { while }(y>a+b)\{ \\
& \quad a:=a+1 ; \\
& \quad x:=a+b \\
& \}
\end{aligned}
$$

- Can lead to more efficient implementations
- But more complicated to explain, so...
- We'll use single-statement blocks in lecture today

Example with Entry and Exit

$$
\begin{aligned}
& x:=a+b ; \\
& y:=a * b ; \\
& \text { while }(y>a)\{ \\
& \quad a:=a+1 ; \\
& x:=a+b
\end{aligned}
$$

- All nodes without a (normal) predecessor should be pointed to by entry
-All nodes without a successor should point to exit

Notes on Entry and Exit

- Typically, we perform data flow analysis on a function body
- Functions usually have
- A unique entry point
- Multiple exit points
- So in practice, there can be multiple exit nodes in the CFG
- For the rest of these slides, we'll assume there's only one
- In practice, just treat all exit nodes the same way as if there's only one exit node

Available Expressions

Available Expressions

- An expression e is available at program point p if
- e is computed on every path to p, and
- the value of e has not changed since the last time e was computed on the paths to p

Available Expressions

- An expression e is available at program point p if
- e is computed on every path to p, and
- the value of e has not changed since the last time e was computed on the paths to p
- Optimization
- If an expression is available, need not be recomputed
- (At least, if it's still in a register somewhere)

Data Flow Facts

- Is expression e available?
- Facts:
- $a+b$ is available
- a * b is available
- a + 1 is available

Gen and Kill

- What is the effect of each statement on the set of facts?

Computing Available Expressions

Terminology

- A joint point is a program point where two branches meet
- Available expressions is a forward must problem
- Forward = Data flow from in to out
- Must = At join point, property must hold on all paths that are joined

Data Flow Equations

- Let s be a statement
- $\operatorname{succ}(\mathrm{s})=\{$ immediate successor statements of s$\}$
- $\operatorname{pred}(\mathrm{s})=\{$ immediate predecessor statements of $s\}$
- in(s) = program point just before executing s
- out(s) = program point just after executing s
- $\operatorname{in}(s)=\bigcap_{s^{\prime}} \in \operatorname{pred}(s) \operatorname{out}\left(s^{\prime}\right)$
- out(s) $=$ gen(s) $\cup(i n(s)-k i l l(s))$
- Note: These are also called transfer functions

Liveness Analysis

Liveness Analysis

- A variable v is live at program point p if
- v will be used on some execution path originating from p...
- before v is overwritten

Liveness Analysis

- A variable v is live at program point p if
- v will be used on some execution path originating from p...
- before v is overwritten
- Optimization
- If a variable is not live, no need to keep it in a register
- If variable is dead at assignment, can eliminate assignment

Data Flow Equations

- Available expressions is a forward must analysis
- Data flow propagate in same dir as CFG edges
- Expr is available only if available on all paths
- Liveness is a backward may problem
- To know if variable live, need to look at future uses
- Variable is live if used on some path
- $\operatorname{out}(\mathrm{s})=\bigcup_{s^{\prime}} \in \operatorname{succ}(\mathrm{s}) \operatorname{in}\left(s^{\prime}\right)$
- $\operatorname{in}(\mathrm{s})=$ gen(s) $\cup($ out(s) - kill(s))

Gen and Kill

- What is the effect of each statement on the set of facts?

Stmt	Gen	Kill
$x:=a+b$	a, b	x
$y:=a * b$	a, b	y
$y>a$	a, y	a

Computing Live Variables

Very Busy Expressions

- An expression e is very busy at point p if
- On every path from p, expression e is evaluated before the value of e is changed
- Optimization
- Can hoist very busy expression computation
- What kind of problem?
- Forward or backward?
- May or must?

Very Busy Expressions

- An expression e is very busy at point p if
- On every path from p, expression e is evaluated before the value of e is changed
- Optimization
- Can hoist very busy expression computation
- What kind of problem?
- Forward or backward? backward
- May or must?

Very Busy Expressions

- An expression e is very busy at point p if
- On every path from p, expression e is evaluated before the value of e is changed
- Optimization
- Can hoist very busy expression computation
- What kind of problem?
- Forward or backward? backward
- May or must?

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
- There is some path from the definition to p such that there is no intervening assignment to v on the path
- Also called def-use information
- What kind of problem?
- Forward or backward?
- May or must?

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
- There is some path from the definition to p such that there is no intervening assignment to v on the path
- Also called def-use information
- What kind of problem?
- Forward or backward?
- May or must?

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
- There is some path from the definition to p such that there is no intervening assignment to v on the path
- Also called def-use information
- What kind of problem?
- Forward or backward?
- May or must?

forward

may

Space of Data Flow Analyses

	May	Must
Forward	Reaching definitions	Available expressions
Backward	Live variables	Very busy expressions

- Most data flow analyses can be classified this way
- A few don't fit: bidirectional analysis
- Lots of literature on data flow analysis

Solving data flow equations

- Let's start with forward may analysis
- Dataflow equations:
- \quad in(s) $=U_{s^{\prime} \in \operatorname{pred}(s)}$ out(s')
- out(s) = gen(s) $\cup(i n(s)-k i l l(s))$
- Need algorithm to compute in and out at each stmt
- Key observation: out(s) is monotonic in in(s)
- gen(s) and kill(s) are fixed for a given s
- If, during our algorithm, in(s) grows, then out(s) grows
- Furthermore, out(s) and in(s) have max size
- Same with in(s)
- in terms of out(s') for precedessors s'

Solving data flow equations (cont'd)

- Idea: fixpoint algorithm
- Set out(entry) to emptyset
- E.g., we know no definitions reach the entry of the program
- Initially, assume in(s), out(s) empty everywhere else, also
- Pick a statement s
- Compute in(s) from predecessors' out's
- Compute new out(s) for s
- Repeat until nothing changes
- Improvement: use a worklist
- Add statements to worklist if their in(s) might change
- Fixpoint reached when worklist is empty

Forward May Data Flow Algorithm

```
out(entry) = \varnothing
for all other statements s
    out(s) = \varnothing
W = all statements // worklist
while W not empty
    take s from W
        in(s) = U s'\inpred(s)
        temp = gen(s) \cup(in(s) - kill(s))
        if temp = out(s) then
        out(s) = temp
        W := W v succ(s)
    end
end
```


Generalizing

	May	Must
Forward	$\begin{aligned} & \operatorname{in}(s)=U_{s^{\prime} \in \operatorname{pred}(s)} \text { out(s') } \\ & \text { out(s) }=\operatorname{gen}(s) \cup(\operatorname{in}(s)-\operatorname{kill}(s)) \\ & \text { out(entry })=\varnothing \\ & \text { initial out elsewhere }=\varnothing \end{aligned}$	$\begin{aligned} & \operatorname{in}(s)=\cap_{s^{\prime} \in \operatorname{pred}(\mathrm{s})} \text { out(s') } \\ & \operatorname{out}(\mathrm{s})=\operatorname{gen}(\mathrm{s}) \cup(\operatorname{in}(\mathrm{s})-\text { kill(s) }) \\ & \text { out(entry })=\varnothing \\ & \text { initial out elsewhere }=\{\text { all facts }\} \end{aligned}$
Backward	$\begin{aligned} & \operatorname{out}(s)=U_{s^{\prime} \in \operatorname{succ}(s)} \operatorname{in}\left(s^{\prime}\right) \\ & \operatorname{in}(s)=\operatorname{gen}(s) \cup(\operatorname{out}(s)-\operatorname{kill}(s)) \\ & \operatorname{in}(\text { exit })=\varnothing \\ & \text { initial in elsewhere }=\varnothing \end{aligned}$	$\begin{aligned} & \text { out(s) }=\cap_{s^{\prime} \in \operatorname{succ}(s)} \text { in(s') } \\ & \operatorname{in}(s)=\operatorname{gen}(s) \cup(\operatorname{out}(s)-\text { kill(s)) } \\ & \operatorname{in}(\text { exit })=\varnothing \\ & \text { initial in elsewhere }=\{\text { all facts }\} \end{aligned}$

Forward Analysis

```
out(entry) = \varnothing
for all other statements s
    out(s) = \varnothing
W = all statements // worklist
while W not empty
    take s from W
        in(s) = us'\inpred(s)
        temp = gen(s) \cup (in(s) - kill(s))
\[
\text { if temp } \neq \text { out(s) then }
\]
        if temp = out(s) then
        out(s) = temp
        W := W \cup succ(s)
    end
end
```


out(entry) $=\varnothing$

```
for all other statements s
\[
\operatorname{out}(\mathrm{s})=\varnothing
\]
W = all statements // worklist
while W not empty
take s from W
\[
\begin{aligned}
& \text { in(s) }=u_{s^{\prime} \in \operatorname{pred}(s)} \text { out(s') } \\
& \text { temp }=\operatorname{gen}(s) \cup(\operatorname{in}(s)-\text { kill(s) })
\end{aligned}
\]
out(s) = temp
\[
\mathrm{W}:=\mathrm{W} \cup \operatorname{succ}(\mathrm{~s})
\]
end
end
```

```
out(entry) = \varnothing
for all other statements s
    out(s) = all facts
W = all statements
while W not empty
    take s from W
    in(s) = \cap _s'\inpred(s)
    temp = gen(s) \cup (in(s) - kill(s))
    if temp # out(s) then
        out(s) = temp
        W := W \cup succ(s)
    end
end
```


Backward Analysis

```
in(exit) = \varnothing
for all other statements s
    in(s) = \varnothing
W = all statements
while W not empty
    take s from W
        out(s)= Us'\insucc(s) in(s')
        temp = gen(s) u (out(s) - kill(s))
        if temp }\not=\textrm{in}(\textrm{s})\mathrm{ then
        in(s) = temp
        W := W u pred(s)
    end
end
\[
\operatorname{in}(\text { exit })=\varnothing
\]
for all other statements s
\[
\operatorname{in}(s)=\varnothing
\]
\(\mathrm{W}=\) all statements
while W not empty take s from W
out(s) \(=\cup_{s^{\prime} \in \operatorname{succ}(s)} \operatorname{in}\left(s^{\prime}\right)\)
temp \(=\) gen(s) \(\cup(\operatorname{out}(s)-\operatorname{kill}(s))\)
if temp \(\neq \operatorname{in}(s)\) then
in(s) \(=\) temp
\(W:=W\) pred(s)
end
end
```

May
in(exit) $=\varnothing$
for all other statements s
in(s) = all facts
W = all statements
while W not empty take s from W

$$
\begin{aligned}
& \text { out(s) } \left.=\cap_{s^{\prime} \in \operatorname{succ}(s)} \text { in(s' }^{\prime}\right) \\
& \text { temp }=\text { gen(s) } \cup(\operatorname{out}(s)-\text { kill(s)) } \\
& \text { if temp } \neq \text { in(s) then } \\
& \text { in }(s)=\text { temp } \\
& W:=W \text { pred(s) } \\
& \text { end }
\end{aligned}
$$

end

Practical Implementation

- Represent set of facts as bit vector
- Fact ${ }_{i}$ represented by bit i
- Intersection = bitwise and, union = bitwise or, etc
- "Only" a constant factor speedup
- But very useful in practice

Basic Blocks

- Recall a basic block is a sequence of statements s.t.
- No statement except the last in a branch
- There are no branches to any statement in the block except the first
- In some data flow implementations,
- Compute gen/kill for each basic block as a whole
- Compose transfer functions
- Store only in/out for each basic block
- Typical basic block ~5 statements
- At least, this used to be the case...

Order Matters

- Assume forward data flow problem
- Let $G=(V, E)$ be the CFG
- Let k be the height of the lattice
- If G acyclic, visit in topological order
- Visit head before tail of edge
- Running time O(|E|)
- No matter what size the lattice

Order Matters - Cycles

- If G has cycles, visit in reverse postorder
- Order from depth-first search
- (Reverse for backward analysis)
- Let Q = max \# back edges on cycle-free path
- Nesting depth
- Back edge is from node to ancestor in DFS tree
- In common cases, running time can be shown to be $\mathrm{O}((\mathrm{Q}+1)|\mathrm{E}|)$
- Proportional to structure of CFG rather than lattice

Flow-Sensitivity

- Data flow analysis is flow-sensitive
- The order of statements is taken into account
- l.e., we keep track of facts per program point
- Alternative: Flow-insensitive analysis
- Analysis the same regardless of statement order
- Standard example: types
- /* x: int */x:= .../*x:int */

Data Flow Analysis and Functions

- What happens at a function call?
- Lots of proposed solutions in data flow analysis literature
- In practice, only analyze one procedure at a time
- Consequences
- Call to function kills all data flow facts
- May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

- An analysis that models only a single function at a time is intraprocedural
- An analysis that takes multiple functions into account is interprocedural
- An analysis that takes the whole program into account is whole program
- Note: global analysis means "more than one basic block," but still within a function
- Old terminology from when computers were slow...

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
- But what about values stored in the heap?
- Not modeled in traditional data flow
- In practice: *x := e
- Assume all data flow facts killed (!)
- Or, assume write through x may affect any variable whose address has been taken
- In general, hard to analyze pointers

Proebsting's Law

Proebsting's Law

- Moore’s Law: Hardware advances double computing power every 18 months.

Proebsting's Law

- Moore’s Law: Hardware advances double computing power every 18 months.
- Proebsting's Law: Compiler advances double computing power every 18 years.

Proebsting's Law

- Moore’s Law: Hardware advances double computing power every 18 months.
- Proebsting's Law: Compiler advances double computing power every 18 years.
- Not so much bang for the buck!

DFA and Defect Detection

- LCLint - Evans et al. (UVa)
- METAL - Engler et al. (Stanford, now Coverity)
- ESP - Das et al. (MSR)
- FindBugs - Hovemeyer, Pugh (Maryland)
- For Java. The first three are for C.
- Many other one-shot projects
- Memory leak detection
- Security vulnerability checking (tainting, info. leaks)

