
CMSC 430
Introduction to Compilers

Fall 2018

Data Flow Analysis

 2

• A framework for proving facts about programs

• Reasons about lots of little facts

• Little or no interaction between facts
■ Works best on properties about how program computes

• Based on all paths through program
■ Including infeasible paths

• Operates on control-flow graphs, typically

Data Flow Analysis

 3

x := a + b;

y := a * b;

while (y > a) {

 a := a + 1;

 x := a + b

}

Control-Flow Graph Example

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 4

Control-Flow Graph w/Basic Blocks

• Can lead to more efficient implementations
• But more complicated to explain, so...

■ We’ll use single-statement blocks in lecture today

x := a + b;
y := a * b;
while (y > a + b) {
 a := a + 1;
 x := a + b
}

x := a + b
y := a * b

y > a

a := a + 1
x := a + b

 5

x := a + b;

y := a * b;

while (y > a) {

 a := a + 1;

 x := a + b

}

• All nodes without a (normal)
predecessor should be pointed
to by entry

•All nodes without a successor
should point to exit

Example with Entry and Exit

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit

entry

Notes on Entry and Exit
• Typically, we perform data flow analysis on a

function body
• Functions usually have

■ A unique entry point
■ Multiple exit points

• So in practice, there can be multiple exit nodes in
the CFG
■ For the rest of these slides, we’ll assume there’s only one
■ In practice, just treat all exit nodes the same way as if

there’s only one exit node

 6

 7

Available Expressions

 7

• An expression e is available at program point p if
■ e is computed on every path to p, and
■ the value of e has not changed since the last time e was

computed on the paths to p

Available Expressions

 7

• An expression e is available at program point p if
■ e is computed on every path to p, and
■ the value of e has not changed since the last time e was

computed on the paths to p

• Optimization
■ If an expression is available, need not be recomputed

- (At least, if it’s still in a register somewhere)

Available Expressions

 8

• Is expression e available?
• Facts:

■ a + b is available
■ a * b is available
■ a + 1 is available

Data Flow Facts

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit

entry

 9

• What is the effect of each
statement on the set of facts?

Gen and Kill

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

a := a + 1
a + 1,
a + b,
a * b

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit

entry

 10

Computing Available Expressions

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}
x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}
x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

{a + b, a * b}

Ø

{a + b}

{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

Ø

{a + b}

{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

Ø

{a + b}

{a + b}
{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

Ø

{a + b}

{a + b}
{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 10

Computing Available Expressions

∅

{a + b}

{a + b, a * b}

Ø

{a + b}

{a + b}
{a + b}
{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

 11

Terminology
• A joint point is a program point where two branches

meet

• Available expressions is a forward must problem
■ Forward = Data flow from in to out
■ Must = At join point, property must hold on all paths that are

joined

 12

• Let s be a statement
■ succ(s) = { immediate successor statements of s }
■ pred(s) = { immediate predecessor statements of s}
■ in(s) = program point just before executing s
■ out(s) = program point just after executing s

• in(s) = ∩s′ ∊ pred(s) out(s′)

• out(s) = gen(s) ∪ (in(s) - kill(s))

■ Note: These are also called transfer functions

Data Flow Equations

 13

Liveness Analysis

 13

• A variable v is live at program point p if
■ v will be used on some execution path originating from p...
■ before v is overwritten

Liveness Analysis

 13

• A variable v is live at program point p if
■ v will be used on some execution path originating from p...
■ before v is overwritten

• Optimization
■ If a variable is not live, no need to keep it in a register
■ If variable is dead at assignment, can eliminate assignment

Liveness Analysis

 14

• Available expressions is a forward must analysis
■ Data flow propagate in same dir as CFG edges
■ Expr is available only if available on all paths

• Liveness is a backward may problem
■ To know if variable live, need to look at future uses
■ Variable is live if used on some path

• out(s) = ∪s′ ∊ succ(s) in(s′)

• in(s) = gen(s) ∪ (out(s) - kill(s))

Data Flow Equations

 15

• What is the effect of each
statement on the set of facts?

Gen and Kill

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

Computing Live Variables

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

Computing Live Variables

{x}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

Computing Live Variables

{x}

{x, y, a}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

Computing Live Variables

{x}

{x, y, a}

{x, y, a}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

Computing Live Variables

{x}

{x, y, a}

{x, y, a}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

Computing Live Variables

{x}

{x, y, a}

{x, y, a}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

Computing Live Variables

{x}

{x, y, a}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

{x, y, a, b}

Computing Live Variables

{x}

{x, y, a}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

 16

{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x, y, a, b}

 16

{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

{x, a, b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x, y, a, b}

 16

{x, y, a, b}

Computing Live Variables

{x}

{y, a, b}

{y, a, b}

{x, a, b}

{a, b}
x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x, y, a, b}

 17

• An expression e is very busy at point p if
■ On every path from p, expression e is evaluated before the

value of e is changed

• Optimization
■ Can hoist very busy expression computation

• What kind of problem?
■ Forward or backward?
■ May or must?

Very Busy Expressions

 17

• An expression e is very busy at point p if
■ On every path from p, expression e is evaluated before the

value of e is changed

• Optimization
■ Can hoist very busy expression computation

• What kind of problem?
■ Forward or backward?
■ May or must?

Very Busy Expressions

backward

 17

• An expression e is very busy at point p if
■ On every path from p, expression e is evaluated before the

value of e is changed

• Optimization
■ Can hoist very busy expression computation

• What kind of problem?
■ Forward or backward?
■ May or must?

Very Busy Expressions

backward

must

 18

• A definition of a variable v is an assignment to v
• A definition of variable v reaches point p if

■ There is some path from the definition to p such that there is
no intervening assignment to v on the path

• Also called def-use information

• What kind of problem?
■ Forward or backward?
■ May or must?

Reaching Definitions

 18

• A definition of a variable v is an assignment to v
• A definition of variable v reaches point p if

■ There is some path from the definition to p such that there is
no intervening assignment to v on the path

• Also called def-use information

• What kind of problem?
■ Forward or backward?
■ May or must?

Reaching Definitions

forward

 18

• A definition of a variable v is an assignment to v
• A definition of variable v reaches point p if

■ There is some path from the definition to p such that there is
no intervening assignment to v on the path

• Also called def-use information

• What kind of problem?
■ Forward or backward?
■ May or must?

Reaching Definitions

forward

may

 19

• Most data flow analyses can be classified this way
■ A few don’t fit: bidirectional analysis

• Lots of literature on data flow analysis

Space of Data Flow Analyses

May Must

Forward Reaching
definitions

Available
expressions

Backward Live
variables

Very busy
expressions

Solving data flow equations
• Let’s start with forward may analysis

■ Dataflow equations:
- in(s) = ∪s′ ∈ pred(s) out(s′)

- out(s) = gen(s) ∪ (in(s) - kill(s))

• Need algorithm to compute in and out at each stmt
• Key observation: out(s) is monotonic in in(s)

■ gen(s) and kill(s) are fixed for a given s
■ If, during our algorithm, in(s) grows, then out(s) grows
■ Furthermore, out(s) and in(s) have max size

• Same with in(s)
■ in terms of out(s’) for precedessors s’

 20

Solving data flow equations (cont’d)
• Idea: fixpoint algorithm

■ Set out(entry) to emptyset
- E.g., we know no definitions reach the entry of the program

■ Initially, assume in(s), out(s) empty everywhere else, also
■ Pick a statement s

- Compute in(s) from predecessors’ out’s

- Compute new out(s) for s

■ Repeat until nothing changes

• Improvement: use a worklist
■ Add statements to worklist if their in(s) might change
■ Fixpoint reached when worklist is empty

 21

 22

Forward May Data Flow Algorithm
out(entry) = ∅
for all other statements s
 out(s) = ∅
W = all statements // worklist
while W not empty
 take s from W
 in(s) = ∪s′∈pred(s) out(s′)

 temp = gen(s) ∪ (in(s) - kill(s))
 if temp ≠ out(s) then
 out(s) = temp
 W := W ∪ succ(s)
 end
end

Generalizing

 23

May Must

Forward

in(s) = ∪s′ ∈ pred(s) out(s′)

out(s) = gen(s) ∪ (in(s) - kill(s))

out(entry) = ∅

initial out elsewhere = ∅

in(s) = ∩s′ ∈ pred(s) out(s′)

out(s) = gen(s) ∪ (in(s) - kill(s))

out(entry) = ∅

initial out elsewhere = {all facts}

Backward

out(s) = ∪s′ ∈ succ(s) in(s′)

in(s) = gen(s) ∪ (out(s) - kill(s))

in(exit) = ∅

initial in elsewhere = ∅

out(s) = ∩s′ ∈ succ(s) in(s′)

in(s) = gen(s) ∪ (out(s) - kill(s))

in(exit) = ∅

initial in elsewhere = {all facts}

 24

Forward Analysis
out(entry) = ∅
for all other statements s
 out(s) = all facts
W = all statements
while W not empty
 take s from W
 in(s) = ∩s′∈pred(s) out(s′)

 temp = gen(s) ∪ (in(s) - kill(s))
 if temp ≠ out(s) then
 out(s) = temp
 W := W ∪ succ(s)
 end
end

out(entry) = ∅
for all other statements s
 out(s) = ∅
W = all statements // worklist
while W not empty
 take s from W
 in(s) = ∪s′∈pred(s) out(s′)

 temp = gen(s) ∪ (in(s) - kill(s))
 if temp ≠ out(s) then
 out(s) = temp
 W := W ∪ succ(s)
 end
end

May Must

 25

Backward Analysis
in(exit) = ∅
for all other statements s
 in(s) = ∅
W = all statements
while W not empty
 take s from W
 out(s) = ∪s′∈succ(s) in(s′)

 temp = gen(s) ∪ (out(s) - kill(s))
 if temp ≠ in(s) then
 in(s) = temp
 W := W ∪ pred(s)
 end
end

in(exit) = ∅
for all other statements s
 in(s) = all facts
W = all statements
while W not empty
 take s from W
 out(s) = ∩s′∈succ(s) in(s′)

 temp = gen(s) ∪ (out(s) - kill(s))
 if temp ≠ in(s) then
 in(s) = temp
 W := W ∪ pred(s)
 end
end

May Must

 26

• Represent set of facts as bit vector
■ Facti represented by bit i

■ Intersection = bitwise and, union = bitwise or, etc

• “Only” a constant factor speedup
■ But very useful in practice

Practical Implementation

 27

• Recall a basic block is a sequence of statements s.t.
■ No statement except the last in a branch
■ There are no branches to any statement in the block except

the first

• In some data flow implementations,
■ Compute gen/kill for each basic block as a whole

- Compose transfer functions

■ Store only in/out for each basic block
■ Typical basic block ~5 statements

- At least, this used to be the case...

Basic Blocks

 28

• Assume forward data flow problem
■ Let G = (V, E) be the CFG
■ Let k be the height of the lattice

• If G acyclic, visit in topological order
■ Visit head before tail of edge

• Running time O(|E|)
■ No matter what size the lattice

Order Matters

Order Matters — Cycles
• If G has cycles, visit in reverse postorder

■ Order from depth-first search
■ (Reverse for backward analysis)

• Let Q = max # back edges on cycle-free path
■ Nesting depth
■ Back edge is from node to ancestor in DFS tree

• In common cases, running time can be shown to be
O((Q+1)|E|)
■ Proportional to structure of CFG rather than lattice

 29

 30

• Data flow analysis is flow-sensitive
■ The order of statements is taken into account
■ I.e., we keep track of facts per program point

• Alternative: Flow-insensitive analysis
■ Analysis the same regardless of statement order
■ Standard example: types

- /* x : int */ x := ... /* x : int */

Flow-Sensitivity

 31

• What happens at a function call?
■ Lots of proposed solutions in data flow analysis literature

• In practice, only analyze one procedure at a time

• Consequences
■ Call to function kills all data flow facts
■ May be able to improve depending on language, e.g.,

function call may not affect locals

Data Flow Analysis and Functions

 32

• An analysis that models only a single function at a
time is intraprocedural

• An analysis that takes multiple functions into
account is interprocedural

• An analysis that takes the whole program into
account is whole program

• Note: global analysis means “more than one basic
block,” but still within a function
■ Old terminology from when computers were slow...

More Terminology

 33

• Data Flow is good at analyzing local variables
■ But what about values stored in the heap?
■ Not modeled in traditional data flow

• In practice: *x := e
■ Assume all data flow facts killed (!)
■ Or, assume write through x may affect any variable whose

address has been taken

• In general, hard to analyze pointers

Data Flow Analysis and The Heap

 34

Proebsting’s Law

 34

Proebsting’s Law
• Moore’s Law: Hardware advances double

computing power every 18 months.

 34

Proebsting’s Law
• Moore’s Law: Hardware advances double

computing power every 18 months.

• Proebsting’s Law: Compiler advances double
computing power every 18 years.

 34

Proebsting’s Law
• Moore’s Law: Hardware advances double

computing power every 18 months.

• Proebsting’s Law: Compiler advances double
computing power every 18 years.

■ Not so much bang for the buck!

 35

DFA and Defect Detection
• LCLint - Evans et al. (UVa)
• METAL - Engler et al. (Stanford, now Coverity)
• ESP - Das et al. (MSR)
• FindBugs - Hovemeyer, Pugh (Maryland)

■ For Java. The first three are for C.

• Many other one-shot projects
■ Memory leak detection
■ Security vulnerability checking (tainting, info. leaks)

