
CMSC 430
Introduction to Compilers

Fall 2018

Type Systems

 2

• A type system is some mechanism for distinguishing
good programs from bad
■ Good programs = well typed
■ Bad programs = ill-typed or not typable

• Examples:
■ 0 + 1 // well typed
■ false 0 // ill-typed: can’t apply a boolean
■ 1 + (if true then 0 else false) // ill-typed: can’t add boolean to

integer
- Notice that the type system may be conservative — it may report programs

as erroneous if they could run without type errors

What is a Type System?

 3

“A type system is a tractable syntactic method for
proving the absence of certain program behaviors by
classifying phrases according to the kinds of values
they compute.”

– Benjamin Pierce, Types and Programming Languages

A Definition of Type Systems

The Plan
• Start with lambda calculus (yay!)
• Add types to it

■ Simply-typed lambda calculus

• Prove type soundness
■ So we know what our types mean
■ We’ll learn about structural induction here

• Discuss issues of types in real languages
■ E.g., null, array bounds checks, etc

• Explain type inference
• Add subtyping (for OO) to all of the above

 4

 5

• We’ll use lambda calculus are a “core language” to
explain type systems
■ Has essential features (functions)
■ No overlapping constructs
■ And none of the cruft

- Extra features of full language can be defined in terms of the core
language (“syntactic sugar”)

• We will add features to lambda calculus as we go on

Lambda calculus

 6

• e ::= n | x | λx:t.e | e e
■ Functions include the type of their argument
■ We’ve added integers, so we can have (obvious) type errs
■ We don’t really need this, but it will come in handy

• t ::= int | t → t
■ t1 → t2 is a the type of a function that, given an argument of

type t1, returns a result of type t2
- t1 is the domain, and t2 is the range

Simply-Typed Lambda Calculus

 7

• Our type system will prove judgments of the form
■ A ⊢ e : t
■ “In type environment A, expression e has type t”

Type Judgments

 8

• A type environment is a map from variables to types (a
kind of symbol table)
■ · is the empty type environment

- A closed term e is well-typed if · ⊢ e : t for some t

- We’ll abbreviate this as ⊢ e : t

■ x:t, A is just like A, except x now has type t
- The type of x in x:t, A is t

- The type of z≠x in x:t, A in the type of z in A

• When we see a variable in a program, we look in
the type environment to find its type

Type Environments

 9

Type Rules

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′

A ⊢ e1 : t→t′ A ⊢ e2 : t

A ⊢ e1 e2 : t′

 10

Example

-∊dom(A)

A ⊢ 3 : intA ⊢ - : int→int

A ⊢ - 3 : int

A = - : int→int

 11

Another Example

+∊dom(B) x∊dom(B)

B ⊢ 3 : int

A ⊢ 4 : int

B ⊢ + : i→i→i B ⊢ x : i
B ⊢ + x : int→int

B ⊢ + x 3 : int

A ⊢ (λx:int.+ x 3) : int→int

A ⊢ (λx:int.+ x 3) 4 : int

A = + : int→int→int
B = x : int, A

We’d usually use infix x + 3

 12

• Our type rules are deterministic
■ For each syntactic form, only one possible rule

• They define a natural type checking algorithm
■ TypeCheck : type env × expression → type

TypeCheck(A, n) = int
TypeCheck(A, x) = if x in dom(A) then A(x) else fail
TypeCheck(A, λx:t.e) = TypeCheck((A, x:t), e)
TypeCheck(A, e1 e2) =
 let t1 = TypeCheck(A, e1) in
 let t2 = TypeCheck(A, e2) in
 if dom(t1) = t2 then range(t1) else fail

An Algorithm for Type Checking

 13

• Here is a small-step, call-by-value semantics
■ If an expression can’t be evaluated any more and is not a

value, then it is stuck

Semantics

(λx.e1) v2 → e1[v2\x]

e1 → e1′
e1 e2 → e1′ e2

e2 → e2′
v1 e2 → v1 e2′

e ::= v | x | e e

v ::= n | λx:t.e values – not evaluated

Progress
• Suppose ·⊢ e : t. Then either e is a value, or there

exists e’ such that e → e′
• Proof by induction on e

■ Base cases n, λx.e – these are values, so we’re done
■ Base case x – can’t happen (empty type environment)
■ Inductive case e1 e2 – If e1 is not a value, then by induction

we can evaluate it, so we’re done, and similarly for e2.
Otherwise both e1 and e2 are values. Inspection of the
type rules shows that e1 must have a function type, and
therefore must be a lambda since it’s a value. Therefore we
can make progress.

 14

Preservation

• If ·⊢ e : t and e → e′ then ·⊢ e′ : t
• Proof by induction on e → e′

■ Induction (easier than the base case!). Expression e must
have the form e1 e2.

■ Assume ·⊢ e1 e2 : t and e1 e2 → e′. Then we have
·⊢ e1 : t′ → t and ·⊢ e2 : t′.

■ Then there are three cases.
- If e1 → e1′, then by induction ·⊢ e1 : t′ → t, so e1′ e2 has type t

- If reduction inside e2, similar

 15

Preservation, cont’d
• Otherwise (λx.e) v → e[v\x]. Then we have

■ Thus we have

- x : t′ ⊢ e : t

- ·⊢ v : t′
■ Then by the substitution lemma (not shown) we have

- ·⊢ e[v\x] : t
■ And so we have preservation

 16

 x: t′ ⊢ e : t

 ⊢ λx.e : t′→t

Substitution Lemma
• If A ⊢ v : t and x:t, A ⊢ e : t′, then A ⊢ e[v\x] : t′
• Proof: Induction on the structure of e
• For lazy semantics, we’d prove

■ If A ⊢ e1 : t and x:t, A ⊢ e : t′, then A ⊢ e[e1\x] : t′

 17

 18

• So we have
■ Progress: Suppose ·⊢ e : t. Then either e is a value, or

there exists e′ such that e → e′
■ Preservation: If ·⊢ e : t and e → e′ then ·⊢ e′ : t

• Putting these together, we get soundness
■ If ·⊢ e : t then either there exists a value v such

that e →* v, or e diverges (doesn’t terminate).

• What does this mean?
■ Evaluation getting stuck is bad, so
■ “Well-typed programs don’t go wrong”

Soundness

Consequences of Soundness
• Progress—anything that can go wrong “locally” at

run time should be forbidden in the type system
■ E.g., can’t “call” an int as if it were a function
■ To check this, identify all places where the semantics get

stuck, and cross-reference with type rules

• Preservation—running a program can’t change
types
■ E.g., after beta reduction, types still the same
■ To check this, ensure that for each possible way the

semantics can take a step, types are preserved

• These problems greatly influence the way type
systems are designed

 19

 20

e ::= ... | true | false | if e then e else e

Conditionals

A ⊢ true : bool A ⊢ false : bool

A ⊢ e1 : bool A ⊢ e2 : t A ⊢ e3 : t

A ⊢ if e1 then e2 else e3 : t

 21

e ::= ... | true | false | if e then e else e

■ Notice how need to satisfy progress and preservation
influences type system, and interplay between operational
semantics and types

Conditionals (op sem)

if true then e2 else e3 → e2

if false then e2 else e3 → e3

e1 → e1’
if e1 then e2 else e3 →
if e1’ then e2 else e3

 22

e ::= ... | (e, e) | fst e | snd e

• Or, maybe, just add functions
■ pair : t → t′ → t × t′
■ fst : t × t′ → t
■ snd : t × t′ → t′

Product Types (Tuples)

A ⊢ e : t × t′

A ⊢ fst e : t

A ⊢ e : t × t′

A ⊢ snd e : t′

A ⊢ e1 : t A ⊢ e2 : t′

A ⊢ (e1,e2) : t × t′

 23

e ::= ... | inLt2 e | inRt1 e

 | (case e of x1:t1 → e1| x2:t2 → e2)

Sum Types (Tagged Unions)

A ⊢ e : t1

A ⊢ inLt2 e : t1 + t2

A ⊢ e : t2

A ⊢ inRt1 e : t1 + t2

A ⊢ e : t1 + t2
x1:t1, A ⊢ e1 : t x2:t2, A ⊢ e2 : t

A ⊢ (case e of x1:t1 → e1 | x2:t2 → e2) : t

 24

• Self application is not checkable in our system

■ It would require a type t such that t = t→t′
- (We’ll see this next, but so far...)

• The simply-typed lambda calculus is strongly normalizing
■ Every program has a normal form
■ I.e., every program halts!

Self Application and Types

x:?, A ⊢ x : t→t′ x:?, A ⊢ x : t
x:?, A ⊢ x x : ...

A ⊢ λx:?.x x : ...

 25

• We can type self application if we have a type to
represent the solution to equations like t = t→t′
■ We define the type μα.t to be the solution to the (recursive)

equation α = t
■ Example: μα.int→α

Recursive Types

→

int

int

int

int

→

→

→

or →

int

 26

• In the pure lambda calculus, every term is typable with
recursive types
■ (Pure = variables, functions, applications only)

• Most languages have some kind of “recursive” type
■ E.g., for data structures like lists, tree, etc.

• However, usually two recursive types that define the
same structure but use a different name are considered
different
■ E.g., in C, struct foo { int x; struct foo *next; } is different from

struct bar { int x; struct bar *next; }

Discussion

Subtyping
• The Liskov Substitution Principle (paraphrased):

• In other words

• Common used in object-oriented programming
■ Subclasses can be used where superclasses expected
■ This is a kind of polymorphism

 27

Let q(x) be a property provable about objects x of type T.
If S is a subtype of T, then q(y) should be provable for

objects y of type S.

If S is a subtype of T, then an S can
be used anywhere a T is expected

 28

• Parametric polymorphism
■ Generics in Java, `a types in OCaml

• Another popular form is subtype polymorphism
■ As in OO programming
■ These two can be combined (c.f. Java)

• Some languages also have ad-hoc polymorphism
■ E.g., + operator that works on ints and floats
■ E.g., overloading in Java

Kinds of Polymorphism

 29

• e ::= n | f | x | λx:t.e | e e
■ We now have both floating point numbers and integers
■ We want to be able to implicitly use an integer wherever a

floating point number is expected
■ Warning: This is a bad design! Don’t do this in real life

• t ::= int | float | t → t
■ We want int to be a subtype of float

Lambda Calc with Subtyping

Subtyping
• We’ll write t1 ≤ t2 if t1 is a subtype of t2
• Define subtyping by more inference rules
• Base case

■ (notice reverse is not allowed)

• What about function types?

 30

int ≤ float

???

t1 → t1′ ≤ t2 → t2′

Replacing “f x” by “g x”
• Suppose g : t1 → t1′ and f : t2 → t2′
• When is t1 → t1′ ≤ t2 → t2′?

• Return type:
■ We are expecting t2′ (f’s return type)
■ So we can return at most t2′
■ So need t1′ ≤ t2′

• Examples
■ If we’re expecting float, can return int or float
■ If we’re expecting int, can only return int

 31

Replacing “f x” by “g x”
• Suppose g : t1 → t1′ and f : t2 → t2′
• When is t1 → t1′ ≤ t2 → t2′?

• Argument type:
■ We are supposed to accept expecting t2 (f’s arg type)
■ So we must accept at least t2
■ So need t2 ≤ t1

• Examples
■ A function that accepts an int can be replaced by one that

accepts int, or one that accepts float
■ A function that accepts a float can only be replaced by one

that accepts float

 32

Subtyping on Function Types

• We say that arrow is
■ Covariant in the range (subtyping dir the same)
■ Contravariant in the domain (subtyping dir flips)

• Some languages have gotten this wrong
■ Eiffel allows covariant parameter types

 33

t2 ≤ t1 t1′ ≤ t2′

t1 → t1′ ≤ t2 → t2′

Similar Pattern for Pre/Post-conds
• class A { int f(int x) { ... } }
• class B extends A { int f(int x) { ... } }

• A.f — precondition Pre_A, postcondition Post_A
• B.f — precondition Pre_B, postcondition Post_B
• Relationship among {Pre,Post}_{A,B}?

■ Post_A ⇒ Post_B

■ Pre_B ⇒ Pre_A

• Example:
■ Pre_A = (x > 42), Post_A = (ret > 42)
■ Pre_B = (x > 0), Post_B = (ret > 100)

 34

 35

Type Rules, with Subtyping

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′

A ⊢ e1 : t1→t1′ A ⊢ e2 : t2 t2 ≤ t1

A ⊢ e1 e2 : t1′

A ⊢ f : float

Soundness
• Progress and preservation still hold

■ Slight tweak: as evaluation proceeds, expression’s type
may “decrease” in the subtyping sense

■ Example:
- (if true then n else f) : float

- But after taking one step, will have type int ≤ float

• Proof: exercise for the reader

 36

 37

Subtyping, again

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′

A ⊢ e1 : t1→t1′ A ⊢ e2 : t2

A ⊢ e1 e2 : t1′

A ⊢ f : float

A ⊢ e : t t ≤ t′

A ⊢ e : t′

Subtyping, again (cont’d)
• Rule with subtyping is called subsumption

■ Very clearly captures subtyping property

• But system is no longer syntax driven
■ Given an expression e, there are two rules that apply to e

(“regular” type rule, and subsumption rule)

• Can prove that the two systems are equivalent
■ Exercise left to the reader

 38

 39

• e ::= ... | ref e | !e | e := e
■ ML-style updatable references

- ref e — allocate memory and set its contents to e; return pointer

- !e — dereference pointer and return contents

- e1 := e2 — update contents pointed to by e1 with e2

• t ::= ... | t ref
■ A t ref is a pointer to contents of type t

Lambda Calc with Updatable Refs

 40

Type Rules for Refs

A ⊢ e : t

A ⊢ ref e : t ref

A ⊢ e1 : t1 ref A ⊢ e2 : t2 t2 ≤ t1

A ⊢ e1 := e2 : t1

A ⊢ e : t ref

A ⊢ !e : t

Subtyping Refs
• The wrong rule for subtyping refs is

• Counterexample
 let x = ref 3 in (* x : int ref *)
 let y = x in (* y : float ref *)
 y := 3.14 (* oops! !x is now a float *)

 41

t1 ≤ t2

t1 ref ≤ t2 ref

Aliasing
• We have multiple names for the same memory

location
■ But they have different types
■ This we can write into the same memory at different types

 42

x y
int float

CMSC 631 37

Solution #1: Java’s Approach
• Java uses this subtyping rule

– If S is a subclass of T, then S[] is a subclass of T[]

• Counterexample:
– Foo[] a = new Foo[5];
– Object[] b = a;
– b[0] = new Object(); // forbidden at runtime
– a[0].foo(); // …so this can’t happen

CMSC 631 38

Solution #2: Purely Static
• Reason from rules for functions

– A reference is like an object with two methods:
• get : unit → t

• set : t → unit

– Notice that t occurs both co- and contravariantly
– Thus it is non-variant

• The right rule:

t1 ≤ t2 t2 ≤ t1

t1 ref ≤ t2 ref

t1 = t2

t1 ref ≤ t2 ref
or

 45

• Let’s consider the simply typed lambda calculus with
integers
■ e ::= n | x | λx:t.e | e e

• Type inference: Given a bare term (with no type
annotations), can we reconstruct a valid typing for it, or
show that it has no valid typing?

Type Inference

 46

• Problem: Consider the rule for functions

• Without type annotations, where do we get t?
■ We’ll use type variables to stand for as-yet-unknown types

- t ::= α | int | t → t
■ We’ll generate equality constraints t = t among the types and

type variables
- And then we’ll solve the constraints to compute a typing

Type Language

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′

 47

Type Inference Rules

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:α, A ⊢ e : t′ α fresh

A ⊢ λx.e : α→t′

A ⊢ e1 : t1 A ⊢ e2 : t2
t1 = t2 →β β fresh

A ⊢ e1 e2 : β

“Generated” constraint

 48

• We collect all constraints appearing in the derivation
into some set C to be solved

• Here, C contains just α→α = int →β
■ Solution: α = int = β

• Thus this program is typable, and we can derive a
typing by replacing α and β by int in the proof tree

Example

x:α, A ⊢ x:α
A ⊢ 3 : int α→α = int →βA ⊢ (λx.x) : α→α

A ⊢ (λx.x) 3 : β

 49

• We can solve the equality constraints using the
following rewrite rules, which reduce a larger set of
constraints to a smaller set
■ C ∪ {int=int} ⇒ C

■ C ∪ {α=t} ⇒ C[t\α]

■ C ∪ {t=α} ⇒ C[t\α]

■ C ∪ {t1→t2=t1′→t2′} ⇒ C ∪ {t1=t1′} ∪ {t2=t2′}
■ C ∪ {int=t1→t2} ⇒ unsatisfiable

■ C ∪ {t1→t2=int} ⇒ unsatisfiable

Solving Equality Constraints

 50

Termination
• We can prove that the constraint solving algorithm

terminates.
• For each rewriting rule, either

■ We reduce the size of the constraint set
■ We reduce the number of “arrow” constructors in the

constraint set

• As a result, the constraint always gets “smaller” and
eventually becomes empty
■ A similar argument is made for strong normalization in the

simply-typed lambda calculus

 51

• We don’t have recursive types, so we shouldn’t infer
them

• So in the operation C[t\α], require that α∉FV(t)

■ (Except if t = a, in which case there’s no recursion
in the types, so unification should succeed)

• In practice, it may better to allow α∊FV(t) and do the
occurs check at the end
■ But that can be awkward to implement

Occurs Check

 52

• Computing C[t\α] by substitution is inefficient

• Instead, use a union-find data structure to represent
equal types
■ The terms are in a union-find forest
■ When a variable and a term are equated, we union them so

they have the same ECR (equivalence class representative)
- Want the ECR to be the concrete type with which variables have been

unified, if one exists. Can read off solution by reading the ECR of each
set.

Unifying a Variable and a Type

 53

Example

α γ

α=int→β
γ =int→int

α= γ

β

→

int int

→

int

 54

• The process of finding a solution to a set of equality
constraints is called unification
■ Original algorithm due to Robinson

- But his algorithm was inefficient

■ Often written out in different form
- See Algorithm W

■ Constraints usually solved on-line
- As type inference rules applied

Unification

 55

• The algorithm we’ve given finds the most general type
of a term
■ Any other valid type is “more specific,” e.g.,

- λx.x : int → int

■ Formally, any other valid type can be gotten from the most
general type by applying a substitution to the type variables

• This is still a monomorphic type system
■ α stands for “some particular type, but it doesn’t matter exactly

which type it is”

Discussion

 56

• Handles higher-order functions
• Handles data structures smoothly
• Works in infinite domains

■ Set of types is unlimited

• No forward/backward distinction
■ (Compare to data flow analysis, next)

Benefits of Type Inference

 57

• Flow-insensitive
■ Types are the same at all program points
■ May produce coarse results
■ Type inference failure can be hard to understand

• Polymorphism may not scale
■ Exponential in worst case
■ Seems fine in practice (witness ML)

Drawbacks to Type Inference

