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• A type system is some mechanism for distinguishing 
good programs from bad 
■ Good programs = well typed 
■ Bad programs = ill-typed or not typable 

• Examples: 
■ 0 + 1       // well typed 
■ false 0      // ill-typed:  can’t apply a boolean 
■ 1 + (if true then 0 else false) // ill-typed:  can’t add boolean to 

integer 
- Notice that the type system may be conservative — it may report programs 

as erroneous if they could run without type errors

What is a Type System?
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“A type system is a tractable syntactic method for 
proving the absence of certain program behaviors by 
classifying phrases according to the kinds of values 
they compute.” 

– Benjamin Pierce, Types and Programming Languages

A Definition of Type Systems



The Plan
• Start with lambda calculus (yay!) 
• Add types to it 

■ Simply-typed lambda calculus 

• Prove type soundness 
■ So we know what our types mean 
■ We’ll learn about structural induction here 

• Discuss issues of types in real languages 
■ E.g., null, array bounds checks, etc 

• Explain type inference 
• Add subtyping (for OO) to all of the above
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• We’ll use lambda calculus are a “core language” to 
explain type systems 
■ Has essential features (functions) 
■ No overlapping constructs 
■ And none of the cruft 

- Extra features of full language can be defined in terms of the core 
language (“syntactic sugar”) 

• We will add features to lambda calculus as we go on

Lambda calculus
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• e ::= n | x | λx:t.e | e e 
■ Functions include the type of their argument 
■ We’ve added integers, so we can have (obvious) type errs 
■ We don’t really need this, but it will come in handy 

• t ::= int | t → t 
■ t1 → t2 is a the type of a function that, given an argument of 

type t1, returns a result of type t2 
- t1 is the domain, and t2 is the range

Simply-Typed Lambda Calculus
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• Our type system will prove judgments of the form 
■ A ⊢ e : t 
■ “In type environment A, expression e has type t”

Type Judgments
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• A type environment is a map from variables to types (a 
kind of symbol table) 
■ · is the empty type environment

- A closed term e is well-typed if · ⊢ e : t for some t 

- We’ll abbreviate this as ⊢ e : t 

■ x:t, A is just like A, except x now has type t 
- The type of x in x:t, A is t 

- The type of z≠x in x:t, A in the type of z in A 

• When we see a variable in a program, we look in 
the type environment to find its type

Type Environments
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Type Rules

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′

A ⊢ e1 : t→t′    A ⊢ e2 : t

A ⊢ e1 e2 : t′
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Example

-∊dom(A)

A ⊢ 3 : intA ⊢ - : int→int

A ⊢ - 3 : int

A = - : int→int
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Another Example

+∊dom(B) x∊dom(B)

B ⊢ 3 : int

A ⊢ 4 : int

B ⊢ + : i→i→i B ⊢ x : i
B ⊢ + x : int→int 

B ⊢ + x 3 : int

A ⊢ (λx:int.+ x 3) : int→int

A ⊢ (λx:int.+ x 3) 4 : int

A = + : int→int→int
B = x : int, A 

We’d usually use infix x + 3
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• Our type rules are deterministic 
■ For each syntactic form, only one possible rule 

• They define a natural type checking algorithm 
■ TypeCheck : type env × expression → type 

TypeCheck(A, n) = int 
TypeCheck(A, x) = if x in dom(A) then A(x) else fail 
TypeCheck(A, λx:t.e) = TypeCheck((A, x:t), e) 
TypeCheck(A, e1 e2) = 
     let t1 = TypeCheck(A, e1) in 
     let t2 = TypeCheck(A, e2) in 
         if dom(t1) = t2 then range(t1) else fail

An Algorithm for Type Checking
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• Here is a small-step, call-by-value semantics 
■ If an expression can’t be evaluated any more and is not a 

value, then it is stuck

Semantics

(λx.e1) v2 → e1[v2\x]

e1 → e1′
e1 e2 → e1′ e2

e2 → e2′
v1 e2 → v1 e2′

e ::= v | x | e e

v ::= n | λx:t.e    values – not evaluated



Progress
• Suppose ·⊢ e : t.  Then either e is a value, or there 

exists e’ such that e → e′
• Proof by induction on e 

■ Base cases n, λx.e – these are values, so we’re done 
■ Base case x – can’t happen (empty type environment) 
■ Inductive case e1 e2 – If e1 is not a value, then by induction 

we can evaluate it, so we’re done, and similarly for e2.  
Otherwise both e1 and e2 are values.  Inspection of the 
type rules shows that e1 must have a function type, and 
therefore must be a lambda since it’s a value.  Therefore we 
can make progress.
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Preservation

• If ·⊢ e : t and e → e′ then ·⊢ e′ : t 
• Proof by induction on e → e′ 

■ Induction (easier than the base case!).  Expression e must 
have the form e1 e2. 

■ Assume ·⊢ e1 e2 : t and e1 e2 → e′.  Then we have             
·⊢ e1 : t′ → t and ·⊢ e2 : t′.

■ Then there are three cases. 
- If e1 → e1′, then by induction ·⊢ e1 : t′ → t, so e1′ e2 has type t 

- If reduction inside e2, similar

 15



Preservation, cont’d
• Otherwise (λx.e) v → e[v\x].  Then we have 

■ Thus we have 

- x : t′ ⊢ e : t 

- ·⊢ v : t′
■ Then by the substitution lemma (not shown) we have 

- ·⊢ e[v\x] : t 
■ And so we have preservation
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 x: t′ ⊢ e : t

 ⊢ λx.e : t′→t



Substitution Lemma
• If A ⊢ v : t and x:t, A ⊢ e : t′, then A ⊢ e[v\x] : t′
• Proof:  Induction on the structure of e 
• For lazy semantics, we’d prove 

■ If A ⊢ e1 : t and x:t, A ⊢ e : t′, then A ⊢ e[e1\x] : t′

 17
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• So we have 
■ Progress:  Suppose ·⊢ e : t.  Then either e is a value, or 

there exists e′ such that e → e′
■ Preservation:  If ·⊢ e : t and e → e′ then ·⊢ e′ : t 

• Putting these together, we get soundness 
■ If ·⊢ e : t then either there exists a value v such               

that e →* v, or e diverges (doesn’t terminate). 

• What does this mean? 
■ Evaluation getting stuck is bad, so 
■ “Well-typed programs don’t go wrong”

Soundness



Consequences of Soundness
• Progress—anything that can go wrong “locally” at 

run time should be forbidden in the type system 
■ E.g., can’t “call” an int as if it were a function 
■ To check this, identify all places where the semantics get 

stuck, and cross-reference with type rules 

• Preservation—running a program can’t change 
types 
■ E.g., after beta reduction, types still the same 
■ To check this, ensure that for each possible way the 

semantics can take a step, types are preserved 

• These problems greatly influence the way type 
systems are designed

 19
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e ::= ... | true | false | if e then e else e

Conditionals

A ⊢ true : bool A ⊢ false : bool

A ⊢ e1 : bool     A ⊢ e2 : t     A ⊢ e3 : t

A ⊢ if e1 then e2 else e3 : t
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e ::= ... | true | false | if e then e else e 

■ Notice how need to satisfy progress and preservation 
influences type system, and interplay between operational 
semantics and types

Conditionals (op sem)

if true then e2 else e3 → e2

if false then e2 else e3 → e3

e1 → e1’
if e1 then e2 else e3 →
if e1’ then e2 else e3
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e ::= ... | (e, e) | fst e | snd e 

• Or, maybe, just add functions 
■ pair : t → t′ → t × t′
■ fst : t × t′ → t 
■ snd : t × t′ → t′

Product Types (Tuples)

A ⊢ e : t × t′

A ⊢ fst e : t

A ⊢ e : t × t′

A ⊢ snd e : t′

A ⊢ e1 : t     A ⊢ e2 : t′

A ⊢ (e1,e2) : t × t′
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e ::= ... | inLt2 e | inRt1 e 

     | (case e of x1:t1 → e1| x2:t2 → e2)

Sum Types (Tagged Unions)

A ⊢ e : t1

A ⊢ inLt2 e : t1 + t2

A ⊢ e : t2

A ⊢ inRt1 e : t1 + t2

A ⊢ e : t1 + t2
x1:t1, A ⊢ e1 : t   x2:t2, A ⊢ e2 : t

A ⊢ (case e of x1:t1 → e1 | x2:t2 → e2) : t
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• Self application is not checkable in our system 

■ It would require a type t such that t = t→t′
- (We’ll see this next, but so far...) 

• The simply-typed lambda calculus is strongly normalizing
■ Every program has a normal form 
■ I.e., every program halts!

Self Application and Types

x:?, A  ⊢ x : t→t′ x:?, A  ⊢ x : t
x:?, A  ⊢ x x : ...

A ⊢ λx:?.x x : ...
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• We can type self application if we have a type to 
represent the solution to equations like t = t→t′
■ We define the type μα.t to be the solution to the (recursive) 

equation α = t 
■ Example: μα.int→α

Recursive Types

→

int

int

int

int

→

→

→

or →

int
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• In the pure lambda calculus, every term is typable with 
recursive types 
■ (Pure = variables, functions, applications only) 

• Most languages have some kind of “recursive” type 
■ E.g., for data structures like lists, tree, etc. 

• However, usually two recursive types that define the 
same structure but use a different name are considered 
different 
■ E.g., in C, struct foo { int x; struct foo *next; } is different from      

struct bar { int x; struct bar *next; }

Discussion



Subtyping
• The Liskov Substitution Principle (paraphrased): 

• In other words 

• Common used in object-oriented programming 
■ Subclasses can be used where superclasses expected 
■ This is a kind of polymorphism
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Let q(x) be a property provable about objects x of type T. 
If S is a subtype of T, then q(y) should be provable for 

objects y of type S.

If S is a subtype of T, then an S can 
be used anywhere a T is expected
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• Parametric polymorphism 
■ Generics in Java, `a types in OCaml 

• Another popular form is subtype polymorphism 
■ As in OO programming 
■ These two can be combined (c.f. Java) 

• Some languages also have ad-hoc polymorphism
■ E.g., + operator that works on ints and floats 
■ E.g., overloading in Java

Kinds of Polymorphism
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• e ::= n | f | x | λx:t.e | e e 
■ We now have both floating point numbers and integers 
■ We want to be able to implicitly use an integer wherever a 

floating point number is expected 
■ Warning: This is a bad design! Don’t do this in real life 

• t ::= int | float | t → t 
■ We want int to be a subtype of float

Lambda Calc with Subtyping



Subtyping
• We’ll write t1 ≤ t2 if t1 is a subtype of t2 
• Define subtyping by more inference rules 
• Base case 

■ (notice reverse is not allowed) 

• What about function types?
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int ≤ float

???

t1 → t1′ ≤ t2 → t2′



Replacing “f x” by “g x”
• Suppose g : t1 → t1′ and f : t2 → t2′ 
• When is t1 → t1′ ≤ t2 → t2′? 

• Return type: 
■ We are expecting t2′ (f’s return type) 
■ So we can return at most t2′ 
■ So need t1′ ≤ t2′

• Examples 
■ If we’re expecting float, can return int or float 
■ If we’re expecting int, can only return int
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Replacing “f x” by “g x”
• Suppose g : t1 → t1′ and f : t2 → t2′ 
• When is t1 → t1′ ≤ t2 → t2′? 

• Argument type: 
■ We are supposed to accept expecting t2 (f’s arg type) 
■ So we must accept at least t2 
■ So need t2 ≤ t1

• Examples 
■ A function that accepts an int can be replaced by one that 

accepts int, or one that accepts float 
■ A function that accepts a float can only be replaced by one 

that accepts float
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Subtyping on Function Types

• We say that arrow is 
■ Covariant in the range (subtyping dir the same) 
■ Contravariant in the domain (subtyping dir flips) 

• Some languages have gotten this wrong 
■ Eiffel allows covariant parameter types
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t2 ≤ t1    t1′ ≤ t2′

t1 → t1′ ≤ t2 → t2′



Similar Pattern for Pre/Post-conds
• class A { int f(int x) { ... } } 
• class B extends A { int f(int x) { ... } } 

• A.f — precondition Pre_A, postcondition Post_A 
• B.f — precondition Pre_B, postcondition Post_B 
• Relationship among {Pre,Post}_{A,B}? 

■ Post_A ⇒ Post_B 

■ Pre_B ⇒ Pre_A 

• Example:  
■ Pre_A = (x > 42), Post_A = (ret > 42) 
■ Pre_B = (x > 0), Post_B = (ret > 100)

 34
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Type Rules, with Subtyping

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′

A ⊢ e1 : t1→t1′    A ⊢ e2 : t2       t2 ≤ t1

A ⊢ e1 e2 : t1′

A ⊢ f : float



Soundness
• Progress and preservation still hold 

■ Slight tweak: as evaluation proceeds, expression’s type 
may “decrease” in the subtyping sense 

■ Example: 
- (if true then n else f) : float 

- But after taking one step, will have type int ≤ float 

• Proof: exercise for the reader

 36
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Subtyping, again

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′

A ⊢ e1 : t1→t1′    A ⊢ e2 : t2

A ⊢ e1 e2 : t1′

A ⊢ f : float

A ⊢ e : t      t ≤ t′

A ⊢ e : t′



Subtyping, again (cont’d)
• Rule with subtyping is called subsumption 

■ Very clearly captures subtyping property 

• But system is no longer syntax driven 
■ Given an expression e, there are two rules that apply to e 

(“regular” type rule, and subsumption rule) 

• Can prove that the two systems are equivalent 
■ Exercise left to the reader

 38
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• e ::= ... | ref e | !e | e := e 
■ ML-style updatable references 

- ref e — allocate memory and set its contents to e; return pointer 

- !e — dereference pointer and return contents 

- e1 := e2 — update contents pointed to by e1 with e2 

• t ::= ... | t ref 
■ A t ref is a pointer to contents of type t

Lambda Calc with Updatable Refs
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Type Rules for Refs

A ⊢ e : t

A ⊢ ref e : t ref

A ⊢ e1 : t1 ref    A ⊢ e2 : t2       t2 ≤ t1

A ⊢ e1 := e2 : t1

A ⊢ e : t ref

A ⊢ !e : t



Subtyping Refs
• The wrong rule for subtyping refs is 

• Counterexample 
          let x = ref 3 in   (* x : int ref *) 
            let y = x in      (* y : float ref *) 
              y := 3.14       (* oops! !x is now a float *)
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t1 ≤ t2

t1 ref ≤ t2 ref



Aliasing
• We have multiple names for the same memory 

location 
■ But they have different types 
■ This we can write into the same memory at different types
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x y
int float
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Solution #1:  Java’s Approach
• Java uses this subtyping rule 

– If S is a subclass of T, then S[] is a subclass of T[] 

• Counterexample: 
– Foo[] a = new Foo[5]; 
– Object[] b = a; 
– b[0] = new Object(); // forbidden at runtime 
– a[0].foo();             // …so this can’t happen
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Solution #2:  Purely Static
• Reason from rules for functions 

– A reference is like an object with two methods: 
• get    : unit → t 

• set    :  t → unit 

– Notice that t occurs both co- and contravariantly 
– Thus it is non-variant 

• The right rule:

t1 ≤ t2     t2 ≤ t1

t1 ref ≤ t2 ref

t1 = t2

t1 ref ≤ t2 ref
or
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• Let’s consider the simply typed lambda calculus with 
integers 
■ e ::= n | x | λx:t.e | e e 

• Type inference:  Given a bare term (with no type 
annotations), can we reconstruct a valid typing for it, or 
show that it has no valid typing?

Type Inference
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• Problem:  Consider the rule for functions 

• Without type annotations, where do we get t? 
■ We’ll use type variables to stand for as-yet-unknown types 

- t ::= α | int | t → t 
■ We’ll generate equality constraints t = t among the types and 

type variables 
- And then we’ll solve the constraints to compute a typing

Type Language

x:t, A ⊢ e : t′

A ⊢ λx:t.e : t→t′
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Type Inference Rules

A ⊢ n : int

x∊dom(A)

A ⊢ x : A(x)

x:α, A ⊢ e : t′    α fresh

A ⊢ λx.e : α→t′

A ⊢ e1 : t1    A ⊢ e2 : t2
t1 = t2 →β     β fresh

A ⊢ e1 e2 : β

“Generated” constraint
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• We collect all constraints appearing in the derivation 
into some set C to be solved 

• Here, C contains just α→α = int →β
■ Solution: α = int = β

• Thus this program is typable, and we can derive a 
typing by replacing α and β by int in the proof tree

Example

x:α, A ⊢ x:α
A ⊢ 3 : int   α→α = int →βA ⊢ (λx.x) :  α→α 

A ⊢ (λx.x) 3 : β
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• We can solve the equality constraints using the 
following rewrite rules, which reduce a larger set of 
constraints to a smaller set 
■ C ∪ {int=int} ⇒ C 

■ C ∪ {α=t} ⇒ C[t\α] 

■ C ∪ {t=α} ⇒ C[t\α] 

■ C ∪ {t1→t2=t1′→t2′} ⇒ C ∪ {t1=t1′} ∪ {t2=t2′} 
■ C ∪ {int=t1→t2} ⇒ unsatisfiable 

■ C ∪ {t1→t2=int} ⇒ unsatisfiable 

Solving Equality Constraints
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Termination
• We can prove that the constraint solving algorithm 

terminates. 
• For each rewriting rule, either 

■ We reduce the size of the constraint set 
■ We reduce the number of “arrow” constructors in the 

constraint set 

• As a result, the constraint always gets “smaller” and 
eventually becomes empty 
■ A similar argument is made for strong normalization in the 

simply-typed lambda calculus
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• We don’t have recursive types, so we shouldn’t infer 
them 

• So in the operation C[t\α], require that α∉FV(t)

■ (Except if t = a, in which case there’s no recursion 
in the types, so unification should succeed) 

• In practice, it may better to allow α∊FV(t) and do the 
occurs check at the end 
■ But that can be awkward to implement

Occurs Check
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• Computing C[t\α] by substitution is inefficient 

• Instead, use a union-find data structure to represent 
equal types 
■ The terms are in a union-find forest 
■ When a variable and a term are equated, we union them so 

they have the same ECR (equivalence class representative) 
- Want the ECR to be the concrete type with which variables have been 

unified, if one exists.  Can read off solution by reading the ECR of each 
set.

Unifying a Variable and a Type
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Example

α γ

α=int→β
γ =int→int

α= γ

β

→

int int

→

int



 54

• The process of finding a solution to a set of equality 
constraints is called unification
■ Original algorithm due to Robinson 

- But his algorithm was inefficient 

■ Often written out in different form 
- See Algorithm W 

■ Constraints usually solved on-line 
- As type inference rules applied

Unification
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• The algorithm we’ve given finds the most general type 
of a term 
■ Any other valid type is “more specific,” e.g., 

- λx.x : int → int

■ Formally, any other valid type can be gotten from the most 
general type by applying a substitution to the type variables 

• This is still a monomorphic type system 
■ α stands for “some particular type, but it doesn’t matter exactly 

which type it is”

Discussion
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• Handles higher-order functions 
• Handles data structures smoothly 
• Works in infinite domains 

■ Set of types is unlimited 

• No forward/backward distinction 
■ (Compare to data flow analysis, next)

Benefits of Type Inference
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• Flow-insensitive 
■ Types are the same at all program points 
■ May produce coarse results 
■ Type inference failure can be hard to understand 

• Polymorphism may not scale 
■ Exponential in worst case 
■ Seems fine in practice (witness ML)

Drawbacks to Type Inference


