
CMSC 430 – Compilers
Fall 2018

PL: A Whirlwind Tour

Semantics and Foundations

CMSC 430

Program Semantics

• To analyze programs, we must know what they mean
■ Semantics comes from the Greek semaino, “to mean”

• Most language semantics informal. But we can do
better by making them formal. Two main styles:
■ Operational semantics (major focus)

- Like an interpreter

■ Denotational semantics

- Like a compiler

■ Axiomatic semantics

- Like a logic
 3

CMSC 430

Denotational Semantics

• The meaning of a program is defined as a
mathematical object, e.g., a function or number

• Typically define an interpretation function ⟦ ⟧

■ Meaning of program fragment (arg) in a given state

■ E.g., ⟦ x+4 ⟧σ = 7

- σ is the state — a map from variables to values

- Here σ(x) = 3

• Gets interesting when we try to find denotations
of loops or recursive functions

 4

CMSC 430

Denotational Semantics Example

• b ::= true | false | b ∨ b | b ∧ b | e = e

• e ::= 0 | 1 | ... | x | e + e | e * e

• s ::= e | x := e | if b then s else s | while b do s

 Semantics (booleans):
■ ⟦ true ⟧σ = true

■ ⟦ b1 ∨ b2 ⟧σ =

■ ⟦ e1 = e2 ⟧σ =

 5

true if ⟦b1⟧ = true or ⟦b2⟧ = true
false otherwise{
true if ⟦e1⟧σ = ⟦e2⟧σ
false otherwise{

CMSC 430

Denotational Semantics cont’d

■ ⟦ x ⟧σ = σ(x)

■ ⟦ x := e ⟧σ = σ[x ↦ ⟦e⟧σ]

■ ⟦ if b then s1 else s2 ⟧ =

 6

⟦s1⟧σ if ⟦b⟧σ = true
⟦s2⟧σ if ⟦b⟧σ = false{

(remap x to ⟦e⟧σ in σ)

CMSC 430

Complication: Recursion

• The denotation of a loop is decomposed into
the denotation of the loop itself
⟦ while b do s end ⟧σ =

■ Recursive functions introduce a similar problem

• Solution: Denotation not in terms of sets of
values, but as complete partial orders (CPOs).
■ Poset with some additional properties. Dana Scott

(CMU) applied these to PL semantics (Scott domains)

■ Ensures we can always solve the recursive equation

 7

{ ⟦s; while b do s end⟧σ if ⟦b⟧σ = true
σ if ⟦b⟧σ = false

CMSC 430

Applications

• More powerful than operational semantics in
some applications, notably equational reasoning
■ The Foundational Cryptography Framework

(probabilistic programs)

- http://adam.petcher.net/papers/FCF.pdf

■ A Semantic Account of Metric Preservation (privacy)

- https://www.cis.upenn.edu/~aarthur/metcpo.pdf

■ Basic Reasoning (equivalence)

- https://www.microsoft.com/en-us/research/publication/some-
domain-theory-and-denotational-semantics-in-coq/

 8

https://www.microsoft.com/en-us/research/publication/some-domain-theory-and-denotational-semantics-in-coq/
https://www.microsoft.com/en-us/research/publication/some-domain-theory-and-denotational-semantics-in-coq/

CMSC 430 9

• {P} S {Q}

■ If statement S is executed in a state satisfying
precondition P, then S will terminate, and Q will hold
of the resulting state

■ Partial correctness: ignore termination

• Such Hoare triples proved via set of rules

■ Rules proved sound WRT denotational or
operational semantics

Axiomatic Semantics Can use as a basic for
automated reasoning!

CMSC 430 10

• Example rules
■ Assignment: {Q[E↦x]} x := E {Q}

■ Conditional:

• Example proof (simplified)

Proofs of Hoare Triples

{P ∧ B} S1 {Q} {P ∧ ¬B} S2 {Q}

{P} if B then S1 else S2 {Q}

{y>3} x := y {x>3} {¬(y>3)} x := 4 {x>3}

{} if y>3 then x := y else x := 4 {x>3}

CMSC 430

Extensions

• Separation logic
■ For reasoning about the heap in a modular way

■ Contrasts with rules due to John McCarthy

• “modifies” clauses for method calls, side effects

• Dijkstra monads
■ Extends Hoare-style reasoning to functional programs

(i.e., those with functions that can take functions as
arguments)

• Rely-guarantee reasoning for multiple threads

 11

Automated Reasoning

CMSC 430

Static Program Analysis

• Method for proving properties about a
program’s executions
■ Works by analyzing the program without running it

• Static analysis can prove the absence of bugs
■ Testing can only establish their presence

• Many techniques
■ Abstract interpretation

■ Dataflow analysis

■ Symbolic execution

■ Type systems, …
 13

CMSC 430

Soundness and Completeness

• Suppose a static analysis S attempts to prove
property R of program P
■ E.g., R = “program has no run-time failures”

■ S(P) = true implies P has no run-time failures

• An analysis is sound iff
■ for all P, if S(P) = true then P exhibits R

• An analysis is complete iff
■ for all P, if P exhibits R then S(P) = true

 14

http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/

CMSC 430 16

• Rice’s Theorem: Any non-trivial program
property is undecidable
■ Never sound and complete. Talk about intractable …

• Need to make some kind of approximation
■ Abstract the behavior of the program

■ ...and then analyze the abstraction in a sound way

- Proof about abstract program —> proof of real one

- I.e., sound (but not complete)

• Seminal papers: Cousot and Cousot, 1977, 1979

Abstract Interpretation

CMSC 430 17

e ::= n | e + e

• Notice the need for ? value
• Arises because of the abstraction

Example

+ - 0 +

- - - ?

0 - 0 +

+ ? + +

↵(n) =

8
<

:

� n < 0
0 n = 0
+ n > 0

Abstract semantics:

CMSC 430

Abstract Domains, and Semantics

• Many abstractions possible
■ Signs (previous slide)

■ Intervals: α(n) = [l,u] where l ≤ n ≤ u

- l can be -∞ and u can be +∞

■ Convex polyhedra: α(σ) = affine formula over
variables in domain of σ, e.g., x ≤ 2y + 5

- where σ is a state mapping variables to numbers

- relational domain

• Abstract semantics for standard PL constructs
■ Assignments, sequences, loops, conditionals, etc.

 18

CMSC 430 19

• ASTREE (ENS, others) http://www.astree.ens.fr/

■ Detects all possible runtime failures (divide by zero,
null pointer deref, array bounds) on embedded code

■ Used regularly on Airbus avionics software

• RacerD (Facebook) https://fbinfer.com/docs/racerd.html

■ Uses Infer.AI framework to reason about memory and
pointer use in Java, C, Objective C programs

■ In particular, looks for data races

■ Neither sound nor complete, but very effective

Applications: Abstract Interpretation

CMSC 430 20

• Classic style of program analysis

• Used in optimizing compilers
■ Constant propagation

■ Common sub-expression elimination

■ Loop unrolling and code motion

• Efficiently implementable
■ At least, intraprocedurally (within a single proc.)

■ Use bit-vectors, fixpoint computation

Dataflow Analysis

CMSC 430 21

• Abstract interpretation was originally developed
as a formal justification for data flow analysis

• As such, mechanics are similar:
■ Abstract domain, organized as a lattice

■ Transfer functions = abstract semantics

■ Fixed point computation

- “join” at terminus of conditional, while

- iterate until abstract state unchanged

Relating Dataflow and AbsInterp

CMSC 430

Symbolic Execution

• Testing works
■ But, each test only explores one possible execution

- assert(f(3) == 5)

■ We hope test cases generalize, but no guarantees

• Symbolic execution generalizes testing
■ Allows unknown symbolic variables in evaluation

- y = α; assert(f(y) == 2*y-1);

■ If execution path depends on unknown, conceptually
fork symbolic executor

- int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }

 22

CMSC 430 23

• Symbolic execution is a kind of abstract
interpretation, where
■ Abstract domain may not be a lattice (includes

concrete elements)

- so no guarantee of termination

- No joins at control merge points

- again, challenges termination

• But lack of termination permits completeness
■ No correct program is implicated falsely

Relating SymExe and AbsInterp

CMSC 430

Applications: Symbolic Execution

 24

• SAGE (Microsoft)
■ Used as a fuzz tester to find buffer overruns etc. in file

parsers. Now industrial product

■ https://www.microsoft.com/en-us/security-risk-detection/

• KLEE (Imperial), Angr (UCSB), Triton (Inria), ...
■ Research systems used to enforce security specifications,

find vulnerabilities, explore configuration spaces, and
more

https://www.microsoft.com/en-us/security-risk-detection/

CMSC 430

Abstracting Abstract Machines

• Instead of abstracting a normal programming
language, we can abstract its abstract machine
■ E.g., a CESK machine, or SECD machine

• This can be done systematically

• Great tutorial at https://dvanhorn.github.io/
redex-aam-tutorial/

 25

https://dvanhorn.github.io/redex-aam-tutorial/
https://dvanhorn.github.io/redex-aam-tutorial/
https://dvanhorn.github.io/redex-aam-tutorial/

CMSC 430 26

• A type system is
■ a tractable syntactic method for proving the absence of

certain program behaviors by classifying phrases
according to the kinds of values they compute. --Pierce

• They are good for
■ Detecting errors (don’t add an integer and a string)

■ Abstraction (hiding representation details)

■ Documentation (tersely summarize an API)

• Designs trade off efficiency, readability, power

Type Systems

CMSC 430 27

e ::= x | n | λx:τ.e | e e

τ ::= int | τ → τ

A ::= · | A, x:τ

Simply-typed λ-calculus

A n : int

x ∊ dom(A)

A x : A(x)

A e1 : τ→τ′ A e2 : τ

A e1 e2 : τ′

`

`
`

`

` `
`

A, τ:x e : τ′

A λx:τ.e : τ→τ′

`
 in type environment A,
expression e has type τ

A e : τ

CMSC 430

Type Safety

• If · ⊢ e : τ then either

■ there exists a value v of type τ such that e →* v, or

■ e diverges (doesn’t terminate)

• Corollary: e will never get “stuck”

■ never evaluates to a normal form that is not a value

■ i.e., sound (but not complete)

• Proof by induction on the typing derivation

 28

CMSC 631 29

• Given a bare term (with no type annotations),
can we reconstruct a valid typing for it, or show
that it has no valid typing?
■ Introduce type vars, constraints: solve

Type Inference

A, x:α ⊢ e : t′ α fresh

A ⊢ λx.e : α→t′

A ⊢ e1 : t1 A ⊢ e2 : t2
t1 = t2 →β β fresh

A ⊢ e1 e2 : β

“Generated” constraint

CMSC 430

Scaling up

• Type inference works well in limited settings
■ Hindley-Milner (polymorphic) type inference in ML

seems to be a sweet spot

• The more fancy the type language, the more
difficult it gets to do well
■ Higher-order functions and subtyping, dependent

types, linear types, …

- Full polymorphic type inference (System F) undecidable

• Connection:
■ Whole-program type inference = static analysis

 30

CMSC 430

Types, Types, Types, Oh my!

• Sums τ1+ τ2

• Products τ1*τ2

• Unions τ1 ∪ τ2

• Intersections τ1 ∩ τ2

• References τ ref

• Recursive types μα.τ

• Universals ∀α.τ

• Existentials ∃α.τ

• Dependent functions Πx:τ1.τ2

• Dependent products Σx:τ1.τ2

 31

α list =

∀α.μβ.unit+(α*β)

CMSC 430

Refinement Types

• Normal types accompanied by logical formula to
refine the set of legal values

• Example: { n:int | n ≥ 0 }

■ Type for non-negative integers

■ This is a kind of dependent type (next)

• Present in several languages

■ Liquid Haskell, F*

 32

Back to types …

CMSC 430

Dependent Types

• Useful for expressing properties of programs
■ [1;2;3] : int list

■ [1;2;3] : int 3 list

■ append: ‘a n list -> ‘a m list -> ‘a (m+n) list

• The above types are encoded using the primitive
concepts above (plus a little more)

• Gives stronger assurances of correct usage
■ Prove impossibility of run-time match failures

 33

CMSC 430

Dependent Types for Verification

• Dependent types form a practical foundation for
the concept of propositions as types

■ A type = a logical proposition

■ A program P with a type T = proof of the
proposition corresponding to T

■ So: if P : T then proof of proposition is correct

- Type checking is proof checking!

• Foundation of proof systems in Coq and Agda
■ coq.inria.fr

■ http://wiki.portal.chalmers.se/agda/pmwiki.php
 34

http://coq.inria.fr
http://wiki.portal.chalmers.se/agda/pmwiki.php

https://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf

CMSC 430

Verification Systems

• Verified software

■ CompCert compiler

- developed and proved correct in Coq

■ Everest TLS infrastructure

- developed and proved correct in F*

■ Liquid Haskell (smaller scale)

• Verified mathematical developments (many)

■ E.g., encode type system, semantics, etc. and
perform the proof in Coq, LH, Agda, etc.

 36

CMSC 430 37

• Dafny (Microsoft)
■ Can perform deep reasoning about programs

- Array out-of-bounds, null pointer errors, failure to satisfy
internal invariants; based Hoare logic

■ Employs the Z3 SMT solver
■ Ironclad project: https://www.microsoft.com/en-us/

research/project/ironclad/

• Long line of other tools, e.g., Spec# (Microsoft),
F* (Microsoft), ESC/Java (many)
■ Project Everest: https://www.microsoft.com/en-us/

research/project/project-everest-verified-secure-
implementations-https-ecosystem/

Applications: Solver-aided languages

https://www.microsoft.com/en-us/research/project/ironclad/
https://www.microsoft.com/en-us/research/project/ironclad/
https://www.microsoft.com/en-us/research/project/ironclad/
https://www.microsoft.com/en-us/research/project/project-everest-verified-secure-implementations-https-ecosystem/
https://www.microsoft.com/en-us/research/project/project-everest-verified-secure-implementations-https-ecosystem/
https://www.microsoft.com/en-us/research/project/project-everest-verified-secure-implementations-https-ecosystem/
https://www.microsoft.com/en-us/research/project/project-everest-verified-secure-implementations-https-ecosystem/

CMSC 430

Goodness Properties by Typing

• Formulate an operational semantics for which violation
of a useful property results in a stuck state. Eg,

■ The program divides by zero, dereferences a null
pointer, accesses an array out of bounds

■ A thread attempts to dereference a pointer
without holding a lock first

■ The program uses tainted data (potentially from
an adversary) where untainted data expected (e.g., as a
format string)

• Then formulate a type system that enforces the property,
and prove type safety

 38

CMSC 430

Linear Types for Safe Memory

• Garbage collection is used by most languages to
help ensure type safety
■ But it can add memory overhead, excessive pause

times, and general overhead

• Manual memory management is faster, but a
frequent source of bugs
■ Use-after-free bugs, (some) memory leaks

• Idea: Enforce correct use of manual memory
management through the type system

 39

CMSC 430

Rust

• Actively developed by Mozilla

• Ownership in Rust =~ linearity
■ Only one variable can own a free-able resource

■ Assignment transfers ownership

■ Temporary aliasing allowed within a limited program
scope; called borrowing

- https://rustbyexample.com/scope/borrow.html

 40

https://rustbyexample.com/scope/borrow.html

CMSC 430

Proof of Soundness

• Operational semantics wherein memory is
tagged with whether it’s valid or not
■ Freeing memory makes it invalid

■ We use memory once—ignore recycling

• Whenever a pointer is dereferenced, check that
the target in memory is valid; stuck if not

• Type safety: non-stuckness implies no freed
memory is ever used

 42

CMSC 430

Dynamic Enforcement

• Implement “monitoring” semantics via literally, via
instrumentation
■ Accepts more (all!) programs. Defers error checks to

run-time (which adds overhead)

• Many examples
■ Phosphor for Java (taint analysis)

■ RoadRunner for Java (data race detector): http://www.cs.williams.edu/
~freund/rr/

■ Recent work by Nguyen and Van Horn: Dynamically monitor size-change,
which correlates with termination

- Amazing: Flag non-terminating program at run-time !

 43

http://www.cs.williams.edu/~freund/rr/
http://www.cs.williams.edu/~freund/rr/

CMSC 430

Secure Information Flow

• Secure information flow (secrecy)
■ password: secret int, guess: public int

■ type system ensures secret values can’t be inferred by
observing public values

• Dual: Avoiding undue influence (integrity)
■ user_pass: tainted string, db_query: untainted string

■ Make sure that tainted data does not get used where
untainted data is required

 44

Kinds of Information Flows
• How can information flow from H to L?
• Direct flows

• Implicit flows

– The low order bit of h was copied through the pc!

!45

h := l;
x := l; y := x; h := y;

h := h mod 2;
l := 0;
if h == 1 then l := 1 else skip

Preventing Explicit Flows
• Goal: Build a program analysis that will prevent flows

from high security inputs to low security outputs
– But first, let’s generalize from just two security levels

(high, low) to many

• Security labels:
– Lattice (S, ≤)

– S is the set of labels
– s1 ≤ s2 if s1 allowed to flow to s2

» e.g., let f (x:s2) = ... in f (y:s1)
– confidentiality: s1 is “less secret” than s2
– integrity: s1 is “more trusted” than s2

!46

Preventing Explicit Flows by Typing
• Build a type system that rejects programs with bad

explicit flows
– e ::= x | e op e | n
– c ::= skip | x := e | if e then c1 else c2 | while e do c
– t ::= int S types tagged with security level
– A : vars → t

!47

Preventing Explicit Flows (cont’d)

!48

A ⊢ skip

A ⊢ e : int S A(x) = int S’ S ≤ S’

A ⊢ x := e

A ⊢ e : int S A ⊢ c1 A ⊢ c2

A ⊢ if e then c1 else c2

A ⊢ e : int S A ⊢ c

A ⊢ while (e) do c

A ⊢ x : A(x) A ⊢ n : int S

A ⊢ e1 : int S1 A ⊢ e2 : int S2

A ⊢ e1 op e2 : int (S1 ⊔ S2)

A ⊢ x : t

A ⊢ c

Notes
• Here we assume all variables have some type in A at the

beginning of execution
– So, essentially this type systems checks whether the

annotations in A are correct
• Lets L be assigned to H, but not vice-versa (see

assignment rule)
• Can be generalized to other types aside from int

– See type qualifiers papers
• Does not prevent implicit flows

– Nothing interesting going on for if, while

!49

Proof of Soundness
• Develop an operational semantics that tags data with its

security label, and likewise tags storage/channels
– Track tags through program operations (using ⊔ operator)
– When storing data, or writing to a channel, make sure

tags are compatible; if not program is stuck
– Similar to Perl, Ruby, etc. taint mode

• Prove that a type-correct program never gets stuck

!50

Implicit Flows
• Intuition: The program counter conveys sensitive

information if we branch on a high-security value

• Slightly more complicated: information flow depends
both on what is done and what is not done

– Fortunately, we are doing static analysis, so we can
look at both branches

– Much harder in a dynamic setting!
!51

if h > 0 then l := 1 else l := 0;

l := 0;
if h > 0 then l := 1 else skip;

Preventing Implicit Flows (cont’d)

!52

A, Spc ⊢ skip

A ⊢ e : int S A(x) = int S’ S ⊔ Spc ≤ S’

A, Spc ⊢ x := e

A ⊢ e : int S
A, Spc ⊔ S ⊢ c1 A, Spc ⊔ S ⊢ c2

A, Spc ⊢ if e then c1 else c2

A ⊢ e : int S A, Spc ⊔ S ⊢ c

A, Spc ⊢ while (e) do c

A ⊢ x : A(x) A ⊢ n : int S

A ⊢ e1 : int S1 A ⊢ e2 : int S2

A ⊢ e1 op e2 : int (S1 ⊔ S2)

A ⊢ x : A(x) (same as before)

A, S ⊢ c

CMSC 430

Application to Java

• Jif (Java+Information Flow)
■ Annotate standard types with additional security

labels, where type correctness implies correct
protection of sensitive data

• Jif is at the core of a number of other projects too

■ Fabric framework, for cloud computing

■ Civitas, secure remote voting system

 53

CMSC 430

Application to Haskell

• LIO (Labeled IO)
■ Only reference cells are labeled directly

■ Current expression protected by an ambient “current
label”

■ Attempts at IO are checked against the current label

• LWeb: Extension of LIO to web applications
■ Need to protect data stored in DB properly

 54

https://www.cs.umd.edu/~mwh/papers/parker19lweb.html

CMSC 430

Proof of Security

• The property that we have no explicit flows is
not strong enough for real security.

• Want a property called noninterference
■ No matter what the secret values are, the publicly

visible ones do not change

■ I.e., secret values do not interfere with visible ones

• Proof is more involved
■ Involves a logical relation which defines an equivalence

on terms that are indistinguishable to the adversary

 55

Alternatives to Pure Static Typing
• Dynamic Types (Cardelli – CFPL 1985)

■ Dynamic-typed values pair typed values with their type
■ Dynamic values in typed positions check type at run-time

• Soft Typing (Cartwright, Fagan – PLDI 1991)
■ Adds explicit run-time checks where typechecker cannot

prove type correctness
■ Allows running possibly ill-typed programs

• Gradual Typing — many examples today
■ Parallel work

- Tobin-Hochstadt and Felleisen. Interlanguage Migration. DLS 2006.
- Siek and Taha. Gradual Typing for Objects. ECOOP 2007.

■ Focuses on providing sister typed and untyped languages
■ Allows interaction between typed and untyped modules

 56

CMSC 430

Gradual Typing Enforcement

•Static types can be used as a compile-time bug-
finder, with no run-time effect
■ Relies on underlying language semantics

•… or as a way of designating where type
checking should take place
■ I.e., at the boundary between typed/untyped code

■ Creates interesting complication for higher-values
based between typed/untyped code

- Whom to blame when something goes wrong?

 57

Gradual Type Soundness

In a gradual typing system, type soundness looks
something like the following:

For all programs, if the typed parts are well-typed,
then evaluating the program either

1. produces a value,
2. diverges,
3. produces an error that is not caught by the type system

(e.g., division by zero),
4. produces a run-time error in the untyped code, or
5. produces a contract error that blames the untyped code.

 58

CMSC 430

Gradual Typing Examples

• Flow (Facebook), Typescript (Microsoft)
■ https://flow.org/

■ https://www.typescriptlang.org/

• Dart (Google)
■ https://www.dartlang.org/dart-2

• Typed Racket (academic)
■ https://docs.racket-lang.org/ts-guide/

 59

https://flow.org/
https://www.typescriptlang.org/
https://www.dartlang.org/dart-2
https://docs.racket-lang.org/ts-guide/

CMSC 430

Checked C

• Started at Microsoft Research ~2 years ago
■ https://github.com/Microsoft/checkedc

• Focus is on annotations to enforce bounds safety

• Backward compatible with existing C
■ Like gradual (migratory) typing, but no extra checks

• Mechanized proof of blame property in Coq
■ Failures can be blamed on unchecked code

- Specially designated checked regions of code are internally
sound

- So: Make as many of these as possible
 60

https://github.com/Microsoft/checkedc

Program Synthesis

!61

CMSC 430

Contracts

• Assertions about inputs/outputs to functions
■ In a sense, a kind of refinement type

• Connection to types brings in connections to
automated reasoning
■ Prove contracts will always hold (so-called contract

verification), and remove those that do

■ Enforce those that remain similarly to gradual typing

• Interesting work here at UMD by David Van
Horn and Phil Nguyen

 62

Preparing your language for synthesis

!63

spec: int foo (int x) {
 return x + x;
}

sketch: int bar (int x) implements foo {
 return x << ??;

}

result: int bar (int x) implements foo {
 return x << 1;
}

Extend the language with two constructs

5

instead of implements, assertions over safety properties can be used

Synthesis from partial programs

spec  

sketch

program-to-formula  
translator

 solver
“synthesis engine”

code generator

Examples: Sketch (C), JSketch (Java), Flashfill (Excel!)

CMSC 430

Probabilistic Programming

• Programs operate on random and/or noisy
values

• Can interpret such a program as a distribution
■ Each run of the program is a sample from the

distribution

• Technical problem: How to get a representation
of that distribution to perform inference?

 65

Estimated Glomular Filtration Rate

 66

Estimating the possible error

 67

Can do this by applying Bayesian machine learning

Many programming languages
• Anglican
• Church
• Fun (with Infer.NET)
• IBAL
• Probabilistic Scheme
• BUGS
• HANSEI
• Factorie
• ...

 68

CMSC 430 69

• Lots of other connections between PL and ML

■ Automatic differentiation — better languages
than Tensorflow

■ ML for program analysis directly, and for
prioritizing alarms

• Performance/feature enhancement

■ Better run-times, GCs, language features,
compilers (auto-parallelization!),

• Debugging … oh my!

Other Technologies and Topics

CMSC 430 70

• PL has a great mix of theory and practice
■ Very deep theory

■ But lots of practical applications

• Recent exciting new developments
■ Focus on program correctness (and security)

- instead of speed

■ Scalability to large programs

■ In greater use in mainstream development

Conclusion

