CMSC 430

Introduction to Compilers
Fall 2018

LLVM Compiler Framework

Overview

* We've focused on building a compiler, end to end

 |n practice, there are a lot of tools we can leverage

» Today we’ll discuss one of the most popular: LLVM
» |ntroduction to the framework
= Jour of the IR
» Using command-line tools
= Writing optimization passes
» Using and extending the static analyzer
= Symbolic execution with Klee

LLVM Overview

* From http://llvm.org/: “The LLVM Project is a collection
of modular and reusable compiler and toolchain

technologies.”

« Started in 2000 as a research project at the University
of lllinois (Lattner and Adve)

= Still actively used in compiler and PL research

* Has grown into an industrial scale collection of
compilers, libraries, and tools

= Used and supported by Apple, Adobe, Intel, etc.

 Written in C++, well-documented

http://llvm.org/

Compiler architecture

» Specialized parsers (frontends) and code
generators (backends), common optimizers

C Frontend X86 Backend - X86

Common

- PowerPC Backend | - PowerPC
Optimizer

Fortran -#| Fortran Frontend

Ada | Ada Frontend ARM Backend - ARM

http://www.aosabook.org/en/llvm.html

http://www.aosabook.org/en/llvm.html

Getting LLVM

* The project changes frequently
= And contains a lot of code

» Typically, build from source
= But this can take a while...

» Binary distributions are also available

* Macs ship with a subset, installed with Xcode
= |n particular, clang/clang++ (aliased as gcc)

http://llvm.org/docs/GettingStarted.html#checkout
http://releases.llvm.org/download.html

LLVM IR

* Low-level, similar to RISC-like assembly
» With enough structure to see high-level features

» Strongly-typed: every value has a type

» includes support for structures

* Infinite temporary registers

» SSA -- static single assignment
= Can only assign to each variable once
» Simplifies program analysis

http://llvm.org/docs/LangRef.html

http://llvm.org/docs/LangRef.html

int add(int a, int b)

{

return a + b;

clang -S add.c -emit-1lvm -0 add.1l

; Function Attrs: noinline nounwind optnone ssp uwtable
define i32 @add(i32, i32) #0 {

%3 = alloca 132, align 4

%4 = alloca 132, align 4

store 132 %0, 132% %3, align 4

store 132 %1, 132% %4, align 4

%5 load 132, 132% %3, align 4

%0 load 132, 132% %4, align 4

%7 add nsw 132 %5, %6

ret 132 %7

}

LLVM Tools

Three IR formats: ASCII (.ll), Bitcode (.bc), and in-
memory representation

clang/clang++: compile C to LLVM IR (different
frontends for other high-level languages)

llvm-as: translate .ll into .bc
llvm-dis: convert back from .bc to .lI
llvm-link: combine multiple .bc files
lli: interpreter and dynamic compiler
llc: .bc to native assembly (.s)

opt: LLVM optimizer/analyzer

https://llvm.org/docs/CommandGuide/

https://llvm.org/docs/CommandGuide/

opt tool

« opt can be used for both optimization and analysis

» loop.c example: -03, —analyze —-loops

 Extensible via DLLs

= Can write new analyses as “passes’
m opt -load LLVMHello.dylib -hello funcs.1ll1l

http://llvm.org/docs/VWritingAnLLYMPass.html#quick-start-writing-hello-world

http://llvm.org/docs/WritingAnLLVMPass.html#quick-start-writing-hello-world

Static Analyzer

 LLVM can be used to build static analysis tools, e.g.,
http://clang-analyzer.llvm.org/

vold test(int z) {
if (z == 0) {
int x =1/ z;

$ scan-build clang —c div@.c
scan-build: Using 'clang-7' for static analysis
div@.c:3:9: warning: Value stored to 'x' during 1its
initialization is never read

int x =1/ z;

N [Vg Vig V1g Vi V]

div@.c:3:15: warning: Division by zero
int x =1/ z;

2 warnings generated.

scan—-build: 2 bugs found.

http://clang-analyzer.llvm.org/

Address Sanitizer

» LLVM/clang can be used to implement runtime
instrumentation for safety, performance
measurement, etc.

» https://clang.llvm.org/docs/AddressSanitizer.html

int main(int argc, char **argv) {
int *array = new int[100];
delete [] array;
return arraylargcl; // BOOM

J

clang++ -01 —-g —-fsanitize=address —-fno-omit-frame-pointer UseAfterFree.cc

==65223==ERROR: AddressSanitizer: heap-use-after-free on address 0x614000000044 at pc..
READ of size 4 at 0x614000000044 thread TO

#0 0x108d6af@7 in main UseAfterFree.cc:4

#1 0x7fff67e3a014 in start (libdyld.dylib:x86_64+0x1014)

https://clang.llvm.org/docs/AddressSanitizer.html

Klee: Symbolic Execution

http://klee.github.io/tutorials/testing-function/

