
CMSC 430
Introduction to Compilers

Fall 2018

Symbolic Execution

Introduction

• Static analysis is great
■ Lots of interesting ideas and tools

■ Commercial companies sell, use static analysis

■ It all looks good on paper, and in papers

• But can developers use it?
■ Our experience: Not easily

■ Results in papers describe use by static analysis experts

■ Commercial tools have a huge code mass to deal with
developer confusion, false positives, warning
management, etc 2

One Issue: Abstraction

• Abstraction lets us scale and model all possible runs
■ But it also introduces conservatism

■ *-sensitivities attempt to deal with this

- * = flow-, context-, path-, field-, etc

■ But they are never enough

• Static analysis abstraction ≠ developer abstraction
■ Because the developer didn’t have them in mind

 3

Symbolic Execution

• Testing works
■ But, each test only explores one possible execution

- assert(f(3) == 5)

■ We hope test cases generalize, but no guarantees

• Symbolic execution generalizes testing
■ Allows unknown symbolic variables in evaluation

- y = α; assert(f(y) == 2*y-1);

■ If execution path depends on unknown, conceptually
fork symbolic executor

- int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }

 4

Symbolic Execution Example

 5

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10. }
11. assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

✔

✘

β<5 ¬α∧γ

y=1✔

β<5

z=2

z=2

✔

✔

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Insight

• Each symbolic execution path stands for many
actually program runs
■ In fact, exactly the set of runs whose concrete values

satisfy the path condition

• Thus, we can cover a lot more of the program’s
execution space than testing can

 6

Early work on symbolic execution

• Robert S. Boyer, Bernard Elspas, and Karl N. Levitt.
SELECT–a formal system for testing and debugging
programs by symbolic execution. In ICRS, pages 234–245,
1975.

• James C. King. Symbolic execution and program testing.
CACM, 19(7):385–394, 1976. (most cited)

• Leon J. Osterweil and Lloyd D. Fosdick. Program testing
techniques using simulated execution. In ANSS, pages
171–177, 1976.

• William E. Howden. Symbolic testing and the DISSECT
symbolic evaluation system. IEEE Transactions on
Software Engineering, 3(4):266–278, 1977.

 7

The problem

• Computers were small (not much memory) and
slow (not much processing power) then
■ Apple’s iPad 2 is as fast as a Cray-2 from the 1980’s

• Symbolic execution is potentially extremely
expensive
■ Lots of possible program paths

■ Need to query solver a lot to decide which paths are
feasible, which assertions could be false

■ Program state has many bits

 8

Today

• Computers are much faster, memory is cheap

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success: bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs

 9

Symbolic Execution for IMP

• n ∈ N = integers, X ∈ Var = variables, bv ∈ Bool = {true, false}
• This is a typical way of presenting a language

■ Notice grammar is for ASTs
- Not concerned about issues like ambiguity, associativity, precedence

• Syntax stratified into commands (c) and expressions (a,b)
■ Expressions have no side effects

• No function calls (and no higher order functions)

 10

a ::= n | X | a0+a1 | a0-a1 | a0×a1
b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1
c ::= skip | X:=a | goto pc | if b then pc | assert b
p ::= c; ...; c

Symbolic Executor
• (See .ml file)

• ...note: could also add counterexample generation
code

• We built a pure symbolic executor
■ It never actually runs the code

 11

Path explosion
• Usually can’t run symbolic execution to exhaustion

■ Exponential in branching structure

- Ex: 3 variables, 8 program paths

■ Loops on symbolic variables even worse

- Potentially 2^31 paths through loop!

 12

1. int a = α, b = β, c = γ; // symbolic
2. if (a) ... else ...;
3. if (b) ... else ...;
4. if (c) ... else ...;

1. int a = α; // symbolic
2. while (a) do ...;
3.

Search strategies
• Need to prioritize search

■ Try to steer search towards paths more likely to contain
assertion failures

■ Only run for a certain length of time
- So if we don’t find a bug/vulnerability within time budget, too bad

• Think of program execution as a DAG
■ Nodes = program states
■ Edge(n1,n2) = can transition from state n1 to state n2

• Then we need some kind of graph exploration
strategy
■ At each step, pick among all possible paths

 13

Basic search
• Simplest ideas: algorithms 101

■ Depth-first search (DFS)
■ Breadth-first search (BFS)
■ Which of these did we implement?

• Potential drawbacks
■ Neither is guided by any higher-level knowledge

- Probably a bad sign

■ DFS could easily get stuck in one part of the program
- E.g., it could keep going around a loop over and over again

■ Of these two, BFS is a better choice

 14

Randomness
• We don’t know a priori which paths to take, so

adding some randomness seems like a good idea
■ Idea 1: pick next path to explore uniformly at random

(Random Path, RP)
■ Idea 2: randomly restart search if haven’t hit anything

interesting in a while
■ Idea 3: when have equal priority paths to explore, choose

next one at random
- All of these are good ideas, and randomness is very effective

• One drawback: reproducibility
■ Probably good to use psuedo-randomness based on seed,

and then record which seed is picked
■ (More important for symbolic execution implementers than

users)

 15

Coverage-guided heuristics
• Idea: Try to visit statements we haven’t seen before
• Approach

■ Score of statement = # times it’s been seen and how often
■ Pick next statement to explore that has lowest score

• Why might this work?
■ Errors are often in hard-to-reach parts of the program
■ This strategy tries to reach everywhere.

• Why might this not work?
■ Maybe never be able to get to a statement if proper

precondition not set up

• KLEE = RP + coverage-guided

 16

Generational search
• Hybrid of BFS and coverage-guided
• Generation 0: pick one program at random, run to

completion
• Generation 1: take paths from gen 0, negate one

branch condition on a path to yield a new path
prefix, find a solution for that path prefix, and then
take the resulting path
■ Note will semi-randomly assign to any variables not

constrained by the path prefix

• Generation n: similar, but branching off gen n-1
• Also uses a coverage heuristic to pick priority

 17

Combined search
• Run multiple searches at the same time
• Alternate between them

■ E.g., Fitnext

• Idea: no one-size-fits-all solution
■ Depends on conditions needed to exhibit bug
■ So will be as good as “best” solution, which a constant

factor for wasting time with other algorithms
■ Could potentially use different algorithms to reach different

parts of the program

 18

SMT solver performance
• SAT solvers are at core of SMT solvers

■ In theory, could reduce all SMT queries to SAT queries
■ In practice, SMT and higher-level optimizations are critical

• Some examples
■ Simple identities (x + 0 = x, x * 0 = 0)
■ Theory of arrays (read(42, write(42, x, A)) = x)

- 42 = array index, A = array, x = element

■ Caching (memoize solver queries)
■ Remove useless variables

- E.g., if trying to show path feasible, only the part of the path condition
related to variables in guard are important

 19

Libraries and native code
• At some point, symbolic execution will reach the

“edges” of the application
■ Library, system, or assembly code calls

• In some cases, could pull in that code also
■ E.g., pull in libc and symbolically execute it
■ But glibc is insanely complicated

- Symbolic execution can easily get stuck in it

■ ⇒ pull in a simpler version of libc, e.g., newlib

- libc versions for embedded systems tend to be simpler

• In other cases, need to make models of code
■ E.g., implement ramdisk to model kernel fs code
■ This is a lot of work!

 20

Concolic execution

• Also called dynamic symbolic execution

• Instrument the program to do symbolic
execution as the program runs
■ I.e., shadow concrete program state with symbolic

variables

• Explore one path, from start to completion, at a
time
■ Thus, always have a concrete underlying value to rely

on

 21

Concretization

• Concolic execution makes it really easy to
concretize
■ Replace symbolic variables with concrete values that

satisfy the path condition

- Always have these around in concolic execution

• So, could actually do system calls
■ But we lose symbolic-ness at such calls

• And can handle cases when conditions too
complex for SMT solver
■ But can do the same in pure symbolic system

 22

Resurgence of symbolic execution

• Two key systems that triggered revival of this topic:
■ DART — Godefroid and Sen, PLDI 2005

- Godefroid = model checking, formal systems background

■ EXE — Cadar, Ganesh, Pawlowski, Dill, and Engler, CCS
2006

- Ganesh and Dill = SMT solver called “STP” (used in
implementation)

- Theory of arrays

- Cadar and Engler = systems

 23

Subsequent successes

• SAGE (Godefroid, 2008)
■ Microsoft internal tool

■ Symbolic execution to find bugs in file parsers

- E.g., JPEG, DOCX, PPT, etc

■ Cluster of n machines continually running SAGE

• KLEE (Cadar, 2008)
■ Open source symbolic executor

■ Runs on top of LLVM

■ Has found lots of problems in open-source software

 24

More recent work

• Dowser (Haller, 2013)
■ Combine static analysis with concolic execution (S2E)

■ Try to “steer” to interesting code

• angr (https://angr.io/, Shoshitaishvili)
■ Python framework for binary analysis using VEX

■ Used in DARPA’s Cyber Grand Challenge

• Driller (Stephens, 2016)
■ Combine angr with “fuzzing”

• Qsym (Yun, 2018)
■ High-performance using PIN instrumentation

 25

https://angr.io/

Research tools at UMD

• Otter — symbolic executor for C
■ Better library model than KLEE, support for

multiprocess symbolic execution

• RubyX — symbolic executor for Ruby

• SymDroid — symbolic executor for Dalvik
bytecode

• SCV — symbolic contract verification for Racket

 26

Other symbolic executors

• Cloud9 — parallel symbolic execution, also
supports threads

• Pex — symbolic execution for .NET

• jCUTE — symbolic execution for Java

• Java PathFinder — a model checker that also
supports symbolic execution

• And many more...

 27

