




A multi-layered software stack for building and 
running mobile applications



Your workbench for writing Android applications

See:
https://developer.android.com/studio/intro/



Downloading Android SDK

Using the Android Studio IDE

Using the Android emulator 

Debugging Android applications

Other tools



Supported Operating Systems:
Microsoft Windows 7/8/10 (32- or 64-bit)

Mac OS X 10.10 (Yosemite) up to 10.12 (Sierra)

GNOME or KDE desktop (tested on Ubuntu 14.04 LTS, 
Trusty Tahr)



3 GB RAM min, 4 GB RAM rec

1 GB+ for Android SDK, emulator system images, 
and caches

1280 x 800 min screen resolution



Download & install Android Studio

See: https://developer.android.com/studio/
index.html#downloads



Android platform

Android Studio IDE

Key development tools

System image for emulator



HelloWorld



package course.examples.helloworld;

…

public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
}



Runs virtual devices







Pros
Doesn’t require an actual phone

Hardware is reconfigurable

Changes are non-destructive



Cons
Slower than an actual device

Some features unavailable
e.g., no support for Bluetooth, USB connections, NFC, etc.

Performance / user experience can be misleading



Can emulate many different device/user 
characteristics, such as:

Network speed/latencies 

Battery power

Location coordinates



Change network speeds





Emulate incoming phone calls & SMS messages







Can interconnect multiple emulators







Many more options

See:

https://developer.android.com/studio/run/emulator.html



Tool for examining the internal state of a running 
application



TheAnswer



public class TheAnswer extends Activity {

private static final int[] answers = { 42, -10, 0, 100, 1000 };
private static final int answer = 42;

@Override
protected void onCreate(Bundle savedInstanceState) {

// Required call through to Activity.onCreate()
super.onCreate(savedInstanceState);

// Set up the application's user interface (content view)
setContentView(R.layout.answer_layout);

// Get a reference to a TextView in the content view
TextView answerView = findViewById(R.id.answer_view);



…
int val = findAnswer();
String output = (val == answer) ? "42" : "We may never know";

// Set desired text in answerView TextView
answerView.setText(String.format("The answer to life, 

the universe and everything is:\n\n%s", output));
}

private int findAnswer() {
for (int val : answers) {

if (val != answer)
return val;

}
return -1;

}
}





Android Studio provides numerous tools for 
monitoring application behaviors



Device File Explorer

Logcat

CPU Profiler

Layout Inspector



View, copy, and delete files on your device

Often used to examine and verify file creation and 
transfer

Added in Android Studio 3.0







Write and review log messages

Apps use Log class to write messages to log

Developer can search and filter log messages







Logs execution sequences and timing taken from 
a running application

Graphically displays method traces and metrics









Shows the runtime organization of the user 
interface







Application Fundamentals



HelloWorld

TheAnswer


