




Lifecycle-Aware Components
ViewModel
Live Data



Multiple entry points launched individually
Components started in many different orders
Android kills components on reconfiguration / low 
memory



Don’t store app data or state in your app 
components
Don’t design your app components so they 
depend on each other



Links app components to their lifecycle events
LifeCycle – Represents Android lifecycle
LifecycleOwner – A component with an Android 
lifecycle
LifecycleObserver – Callbacks for listening to 
lifecycle changes



Holds information about the lifecycle state of an 
Android component
State – Enum representing lifecyle states
Events – Enum representing lifecycle events 
(transitions between states)



INITIALIZED - Initialized state for LifecycleOwner
CREATED - Created state for LifecycleOwner
DESTROYED - Destroyed state for LifecycleOwner
RESUMED - Resumed state for LifecycleOwner

STARTED - Started state for LifecycleOwner



ON_ANY - Constant matching all events
ON_CREATE - onCreate event of the LifecycleOwner
ON_DESTROY - onDestroy event of the LifecycleOwner
ON_PAUSE - onPause event of the LifecycleOwner
ON_RESUME - onResume event of the LifecycleOwner
ON_START - onStart event of the LifecycleOwner
ON_STOP - onStop event of the LifecycleOwner





void addObserver(LifecycleObserver observer)
Adds a LifecycleObserver that will be notified when the 
LifecycleOwner changes state

void removeObserver(LifecycleObserver observer)
Removes the given observer from the observers list

Lifecycle.State getCurrentState()
Returns the current state of the Lifecycle



Represents a component with an Android lifecycle
An interface that returns a Lifecycle object from 
the getLifecycle() method



Callbacks for listening to lifecycle changes to a 
LifecycleOwner
Our examples will use Java 8 

Observe events with DefaultLifecycleObserver
Add "android.arch.lifecycle:common-java8:<version>" to 
module’s build.gradle file



void onCreate(LifecycleOwner owner) 
Notifies that ON_CREATE event occurred.

void onStart(LifecycleOwner owner) 
Notifies that ON_START event occurred.

void onResume(LifecycleOwner owner) 
Notifies that ON_RESUME event occurred.



void onDestroy(LifecycleOwner owner) 
Notifies that ON_DESTROY event occurred

void onPause(LifecycleOwner owner) 
Notifies that ON_PAUSE event occurred

void onStop(LifecycleOwner owner)
Notifies that ON_STOP event occurred



ON_CREATE, ON_START, ON_RESUME events are 
dispatched after the LifecycleOwner's related 
method returns
ON_PAUSE, ON_STOP, ON_DESTROY events are 
dispatched before the LifecycleOwner's related 
method is called



Lifecycle-Aware Components
ViewModel
Live Data



Responsible for managing data for an Activity or 
a Fragment (owner)
Handles communication between the Activity or 
Fragment and the rest of the application



Associated with a scope (e.g., a Fragment or an 
Activity) 
Retained as long as the scope is alive

Will not be destroyed if its owner is destroyed for a 
configuration change

The new instance of the owner will be reconnected to 
the existing ViewModel



Should never access the View hierarchy or hold a 
reference to the Activity or the Fragment



void onCleared()
This method will be called when this ViewModel is no 
longer used and will be destroyed



static ViewModelProvider
of (FragmentActivity activity)

Creates a ViewModelProvider, which retains 
ViewModels while a scope of given Activity is alive



Lifecycle-Aware Components
ViewModel
Live Data



Data holder observable within a given lifecycle
Observer paired with a LifecycleOwner
Observer notified when data changes, only if the 
LifecycleOwner is in active state

LifecycleOwner is considered active, if its state is STARTED or 
RESUMED

Designed to hold individual data fields of ViewModel
Can also be used to share data between components



LifecycleAware
Ticker



public class TickerDisplayActivity extends AppCompatActivity {
private TextView mCounterView;
private TickerViewModel mTickerViewModel;

protected void onCreate(Bundle savedInstanceState) {
…

mCounterView = findViewById(R.id.counter);
// Get reference to TickerViewModel
mTickerViewModel = ViewModelProviders.of(this).get(TickerViewModel.class);
// Display initial Ticker value
mCounterView.setText(String.valueOf(mTickerViewModel.getCounter().getValue()));
// Observe changes to Ticker
beginObservingTicker();
// Tie TickerViewModel to Activity lifecycle
mTickerViewModel.bindToActivityLifecycle(this);

}



private void beginObservingTicker() {

// Create Observer
final Observer<Integer> tickerObserver = new Observer<Integer>() {

@Override
public void onChanged(final Integer integer) {

mCounterView.setText(String.valueOf(integer));
}

};

// Register observer
mTickerViewModel.getCounter().observe(this, tickerObserver);

}
}



public class TickerViewModel extends ViewModel implements DefaultLifecycleObserver {
…
private final MutableLiveData<Integer> mCounter = new MutableLiveData<>();

public TickerViewModel() {
// Set initial value
mCounter.setValue(0);

}

LiveData<Integer> getCounter() {
return mCounter;

}

void bindToActivityLifecycle(TickerDisplayActivity tickerDisplayActivity) {
tickerDisplayActivity.getLifecycle().addObserver(this);

}
…



…
public void onResume(@NonNull LifecycleOwner owner) {

mTimer = new Timer();
// Update the elapsed time every second.
mTimer.scheduleAtFixedRate(new TimerTask() {
public void run() {

// setValue() cannot be called from a background thread so post to main thread.
//noinspection ConstantConditions
mCounter.postValue(mCounter.getValue() + 1);

}
}, ONE_SECOND, ONE_SECOND);

}

public void onPause(@NonNull LifecycleOwner owner) {
mTimer.cancel();

}
…

}



Keep your UI controllers (activities and fragments) as lean as possible. They 
should not try to acquire their own data; instead, use a ViewModel to do that, 
and observe the LiveData to reflect the changes back to the views
Try to write data-driven UIs where your UI controller’s responsibility is to 
update the views as data changes, or notify user actions back to 
theViewModel
Put your data logic in your ViewModel class. ViewModel should serve as the 
connector between your UI controller and the rest of your application
Never reference a View or Activity context in your ViewModel. If the 
ViewModel outlives the activity (in case of configuration changes), your 
activity will be leaked and not properly garbage-collected



Graphics and Animation



LifecycleAwareTicker


