

The BroadcastReceiver Class
Registering for events
Broadcasting events
Processing events

Base class for components that receive and react
to events

BroadcastReceivers register to receive events in
which they are interested

When Events occur at runtime they are
represented as Intents
Those Intents are then broadcast to the system

Android routes the Intents to BroadcastReceivers
that have registered to receive them
BroadcastReceivers receive the Intent via a call to
onReceive()

Register BroadcastReceivers to receive specific
events
When event occurs, broadcast an Intent
Android delivers Intent to registered recipients by
calling their onReceive() method
Event handled in onReceive()

BroadcastReceivers can register in two ways
Statically, in AndroidManifest.XML

Dynamically, by calling a registerReceiver() method

Put <receiver> and <intent-filter> tags in
AndroidManifest.xml

<receiver

android:enabled=["true" | "false"]

android:exported=["true" | "false"]

android:icon="drawable resource"

android:label="string resource"

android:name="string"

android:permission="string"

android:process="string" >

. . .

</receiver>

Specify <intent-filter> tag within a <receiver>
See lecture on Intent class

Receivers can be registered in
AndroidManifest.xml
Will be woken to receive broadcasts, if needed
In API 26 or higher, statically registered receivers
cannot receive most implicit intents
See: https://developer.android.com/guide/

components/broadcast-exceptions.html

BcastRec
SinBcast
StatReg

<receiver
android:name=".Receiver"
android:exported="false"
android:permission="android.permission.VIBRATE">
<intent-filter>

<action android:name="course.examples.broadcastreceiver.
singlebroadcaststaticregistration.SHOW_TOAST" />

</intent-filter>
</receiver>

public class SimpleBroadcastActivity extends Activity {
private static final String CUSTOM_INTENT =

"course.examples.broadcastreceiver.
singlebroadcaststaticregistration.SHOW_TOAST";

…
public void onClick(@SuppressWarnings("unused") View v) {

Log.i(TAG, "Broadcast sent");
Intent intent = new Intent(CUSTOM_INTENT);
intent.setPackage("course.examples.broadcastreceiver.

singlebroadcaststaticregistration");
sendBroadcast(intent, Manifest.permission.VIBRATE);

}
}

public class Receiver extends BroadcastReceiver {
@SuppressWarnings("FieldCanBeLocal")
private final String TAG = "Receiver";

public void onReceive(Context context, Intent intent) {
Log.i(TAG, "Broadcast Received");
Vibrator v = (Vibrator) context

.getSystemService(Context.VIBRATOR_SERVICE);
v.vibrate(500);
Toast.makeText(context, "Broadcast Received by Receiver",

Toast.LENGTH_LONG).show();
}

}

Create an IntentFilter

Create a BroadcastReceiver
Register BroadcastReceiver using registerReceiver()

LocalBroadcastManager

Context

Call unRegisterReceiver() to unregister
BroadcastReceiver

BcastRec
SinBcast
DynReg

public class SingleBroadcastActivity extends Activity {

private static final String CUSTOM_INTENT = …;
private final IntentFilter intentFilter = new IntentFilter(CUSTOM_INTENT);
private final Receiver receiver = new Receiver();
private LocalBroadcastManager mBroadcastMgr;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

mBroadcastMgr = LocalBroadcastManager
.getInstance(getApplicationContext());

setContentView(R.layout.main);
}

// Called when Button is clicked
public void onClick(@SuppressWarnings("unused") View v) {

mBroadcastMgr.sendBroadcast(new Intent(CUSTOM_INTENT));
}

protected void onStart() {
super.onStart();
mBroadcastMgr.registerReceiver(receiver, intentFilter);

}

protected void onStop() {
mBroadcastMgr.unregisterReceiver(receiver);
super.onStop();

}

BcastRec
CompBcast

private static final String CUSTOM_INTENT = …
private final Receiver1 mReceiver1 = new Receiver1();
private final IntentFilter mIntentFilter = new IntentFilter(CUSTOM_INTENT);
…
public void onClick(View v) {

Intent intent = new Intent(CUSTOM_INTENT)
.setPackage("course.examples.broadcastreceiver.compoundbroadcast);

sendBroadcast(intent, Manifest.permission.VIBRATE);
}
protected void onStart() {

super.onStart();
registerReceiver(mReceiver1, mIntentFilter);

}
protected void onStop() {

unregisterReceiver(mReceiver1);
super.onStop();

}
}

…
<receiver

android:name=".Receiver3"
android:exported="false">
<intent-filter>
<action android:name=”….SHOW_TOAST" />

</intent-filter>
</receiver>
<receiver

android:name=".Receiver2"
android:exported="false">
<intent-filter>
<action android:name=”….SHOW_TOAST" />

</intent-filter>
</receiver>

…

Multiple broadcast methods supported
Normal vs. Ordered

Normal: processing order undefined

Ordered: sequential processing in priority order

Log extra Intent resolution information
Intent.setFlag(FLAG_DEBUG_LOG_RESOLUTION)

List registered BroadcastReceivers
Dynamically registered

% adb shell dumpsys activity b

Statically registered
% adb shell dumpsys package

Intents are delivered to BroadcastReceiver by
calling onReceive(Context, Intent)

The Context in which the receiver is running

The Intent that was broadcast

Hosting process has high priority while
onReceive() is executing
onReceive() runs on the main Thread
So onReceive should be short-lived

Note: If event handling is lengthy, consider
starting a Service, rather than performing
complete operation in onReceive()
Will cover the Service class later in the course

BroadcastReceiver is not considered valid once
onReceive() returns
Normally, BroadcastReceivers can’t start
asynchronous operations

e.g., showing a Dialog, starting an Activity via
startActivityForResult()

// send Intent to BroadcastReceivers in priority order

void sendOrderedBroadcast (Intent intent, String receiverPermission)

// send Intent to BroadcastReceivers in priority order. Includes multiple
// parameters for greater control

void sendOrderedBroadcast (Intent intent,
String receiverPermission,
BroadcastReceiver resultReceiver,
Handler scheduler,
int initialCode,
String initialData,
Bundle initialExtras)

BcastRec
CompOrd
Bcast

<receiver
android:name=".Receiver2"
android:exported="false">
<intent-filter android:priority="1">
<action android:name=”...SHOW_TOAST" />

</intent-filter>
</receiver>
<receiver

android:name=".Receiver3"
android:exported="false">
<intent-filter android:priority="10">
<action android:name=”...SHOW_TOAST" />

</intent-filter>
</receiver>

public void onClick(View v) {
sendOrderedBroadcast(new Intent(CUSTOM_INTENT)

.setPackage("course.examples.broadcastreceiver.compoundorderedbroadcast"),
android.Manifest.permission.VIBRATE);

}

protected void onStart() {
super.onStart();
IntentFilter intentFilter = new IntentFilter(CUSTOM_INTENT);
intentFilter.setPriority(3);
registerReceiver(mReceiver, intentFilter);

}

protected void onStop() {
unregisterReceiver(mReceiver);
super.onStop();

}

public class Receiver1 extends BroadcastReceiver {
private final String TAG = "Receiver1";
public void onReceive(Context context, Intent intent) {

Log.i(TAG, "INTENT RECEIVED");
if (isOrderedBroadcast()) {

Log.i(TAG, "Calling abortBroadcast()");
abortBroadcast();

}
…

}
}

BcastRecCompOrd
BcastWithResRec

public void onClick(View v) {
sendOrderedBroadcast(new Intent(CUSTOM_INTENT)

.setPackage("course.examples.broadcastreceiver.resultreceiver"),
null,
new BroadcastReceiver() {

public void onReceive(Context context, Intent intent) {
Toast.makeText(context,"Final Result is " + getResultData(),

Toast.LENGTH_LONG).show();
}

}, null, 0, null, null);
}

public class Receiver3 extends BroadcastReceiver {
…
public void onReceive(Context context, Intent intent) {

Log.i(TAG, "INTENT RECEIVED by Receiver3");

String tmp = getResultData() == null ? "" : getResultData();
setResultData(tmp + ":Receiver 3");

}
}

After onReceive() exits, system can kill
BroadcastReceiver
Don’t’ start long-running Threads from onReceive()
Options

Call goAsync()

Schedule a JobService with JobScheduler. (Will discuss
Services later in course)

BroadcastReceiver is generally valid only until
onReceive() exits
Use goAsync() to allow asynchronous processing
from onReceive()

Method returns an object of PendingResult
Receiver considered alive until PendingResult.finish()

BcastRecGoAsync

public class Receiver extends BroadcastReceiver {
public void onReceive(final Context context, final Intent intent) {

…
final PendingResult pendingResult = goAsync();
new Thread(new Runnable() {

public void run() {
try { /* long-running operation */}
…

}
// Must call finish() so the BroadcastReceiver can be recycled.
pendingResult.finish();

}

}).start();
…

BroadcastReceiver’s original design has changed
to improve security, performance and UX

Prefer LocalBroadcastManager to Context

Prefer Context registration over Manifest registration
Don’t put sensitive info in implicit Intents you broadcast

Don’t start Activities from onReceive()

User Notifications

BcastRecSinBcastStatReg
BcastRecSinBcastDynReg
BcastRecCompBcast
BcastRecCompOrdBcast
BcastRecCompOrdBcastWithResRec
BcastRecGoAsync

