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Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Count-based n-gram models vs. feedforward
neural networks

* Pros of feedforward neural LM
* Word embeddings capture generalizations across word typesq

e Cons of feedforward neural LM

* Closed vocabulary
* Training/testing is more computationally expensive

* Weaknesses of both types of model

* Only work well for word prediction if the test corpus looks like the training
corpus

* Only capture short distance context



Language Modeling
with Recurrent Neural Networks

Figure by Philipp Koehn



Recurrent Neural Networks (RNN)

The hidden layer includes a recurrent Unrolling the RNN over the time
connection as part of its input sequence as a feed-forward network
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earlier context

Figures from Jurafsky & Martin



Unrolled RNN illustrated
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Prediction/Inference with RNNs

function FORWARDRNN((x, network) returns output sequence y

ho<+0

for i< 1 to LENGTH(x) do
hi<g(U hi—1 + W x;)
yi<—f(V h)

return y

For language modeling, f = softmax function

to provide normalized probability distribution
over possible output classes




Training RNNs with backpropagation

* Training goal: estimate
parameter values for U, V, W

e Use same loss as for feedforward
language models

e Given unrolled network, run
forward and backpropagation
algorithms as usual




Training RNNs with backpropagation
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Practical Training Issues: minibatch
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* Compute parameter updates based
on a “minibatch” of examples

* instead of using one example at a
time

 More efficient

* matrix-matrix operations as opposed
to multiple matrix-vector operations)

e Can lead to better model
parameters

* middle ground between online and
batch training

Figure by Graham Neubig



Practical Training Issues:
vanishing/exploding gradients
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Figure 16: An example of the vanishing gradient problem.

Figure by Graham Neubig

ﬁ/lultiple ways to work\

around this problem:
- ReLU activations help

- Dedicated RNN
architecture (Long
Short Term Memory
Networks)
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Aside: Long Short Term Memory Networks
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What do Recurrent Language Models Learn?

Cell sensitive to position in line:
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Cell that turns on inside quotes:

Figure from Karpathy 2015



What do Recurrent Language Models Learn?

Cell that turns on inside comments and quotes:

Cell that robustly activates inside if statements:
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What do Recurrent Language Models Learn?

* Parameters are hard to interpret, so we can gain insights by analyzing
their output behavior instead

* Can capture (some) long-distance dependencies

After much economic progress over the years, the country has..

The country, which has made much economic progress over the years, still has..



Recurrent neural network language models

* Have all the strengths of feedforward language model
* And do a better job at modeling long distance context

* However
* Training is trickier due to vanishing/exploding gradients
* Performance on test sets is still sensitive to distance from training data



