
PRINCIPLES OF
DATA SCIENCE
JOHN P DICKERSON

Lecture #2 – 9/5/2018

CMSC641
Wednesdays
7pm – 9:30pm

ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2018/cmsc641
• I am a hypocrite! Somehow wasn’t getting notifications – I will

be much more responsive from here on out.

Office Hours: 6pm-7pm on Wednesdays, and also by
appointment, or via email/text, or …

Reminder: Weekly quizzes, due on Mondays at noon (except
first one that was due today)

Project 1 will be released soon (early next week)

2

THE DATA LIFECYCLE

3

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

TODAY’S LECTURE

4

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

BUT FIRST, SNAKES!
Python is an interpreted, dynamically-typed, high-level,
garbage-collected, object-oriented-functional-imperative, and
widely used scripting language.
• Interpreted: instructions executed without being compiled into

(virtual) machine instructions*

• Dynamically-typed: verifies type safety at runtime

• High-level: abstracted away from the raw metal and kernel

• Garbage-collected: memory management is automated
• OOFI: you can do bits of OO, F, and I programming

Not the point of this class!
• Python is fast (developer time), intuitive, and used in industry!

5

*you can compile Python source, but it’s not required

THE ZEN OF PYTHON
• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Flat is better than nested.
• Sparse is better than dense.
• Readability counts.
• Special cases aren't special enough to break the rules …
• … although practicality beats purity.
• Errors should never pass silently …
• … unless explicitly silenced.

6

Thanks: SDSMT ACM/LUG

LITERATE
PROGRAMMING
Literate code contains in one document:
• the source code;

• text explanation of the code; and

• the end result of running the code.

Basic idea: present code in the order that logic and flow of
human thoughts demand, not the machine-needed ordering
• Necessary for data science!

• Many choices made need textual explanation, ditto results.

Stuff you’ll be using in Project 1 (and beyond)!

7

JUPYTER PROJECT
Started as iPython Notebooks, a web-based frontend to the
iPython Shell

• Notebook functionality separated out a few years ago
• Now supports over 40 languages/kernels
• Notebooks can be shared easily
• Can leverage big data tools like Spark

Apache Zeppelin:
• https://www.linkedin.com/pulse/comprehensive-comparison-

jupyter-vs-zeppelin-hoc-q-phan-mba-

Several others including RStudio (specific to R)

8

https://www.linkedin.com/pulse/comprehensive-comparison-jupyter-vs-zeppelin-hoc-q-phan-mba-

10-MINUTE PYTHON
PRIMER
Define a function:

Python is whitespace-delimited
Define a function that returns a tuple:

9

def my_func(x, y):
if x > y:

return x
else:

return y

def my_func(x, y):
return (x-1, y+2)

(a, b) = my_func(1, 2)

a = 0; b = 4

USEFUL BUILT-IN FUNCTIONS:
COUNTING AND ITERATING
len: returns the number of items of an enumerable object

range: returns an iterable object

enumerate: returns iterable tuple (index, element) of a list

https://docs.python.org/3/library/functions.html

len([‘c’, ‘m’, ‘s’, ‘c’, 3, 2, 0])

7

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

enumerate([“311”, “320”, “330”])

[(0, “311”), (1, “320”), (2, “330”)]

10

USEFUL BUILT-IN FUNCTIONS:
MAP AND FILTER
map: apply a function to a sequence or iterable

filter: returns a list of elements for which a predicate is true

We’ll go over in much greater depth with pandas/numpy.

11

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]

arr = [1, 2, 3, 4, 5, 6, 7]
filter(lambda x: x % 2 == 0, arr)

[2, 4, 6]

PYTHONIC
PROGRAMMING
Basic iteration over an array in Java:

Direct translation into Python:

A more “Pythonic” way of iterating:

idx = 0
while idx < len(arr):

print(arr[idx]); idx += 1

int[] arr = new int[10];
for(int idx=0; idx<arr.length; ++idx) {

System.out.println(arr[idx]);
}

for element in arr:
print(element)

12

LIST COMPREHENSIONS
Construct sets like a mathematician!

• P = { 1, 2, 4, 8, 16, …, 216 }

• E = { x | x in ℕ and x is odd and x < 1000 }

Construct lists like a mathematician who codes!

Very similar to map, but:

• You’ll see these way more than map in the wild

• Many people consider map/filter not “pythonic”

• They can perform differently (map is “lazier”)

1
3

P = [2**x for x in range(17)]

E = [x for x in range(1000) if x % 2 != 0]

EXCEPTIONS
Syntactically correct statement throws an exception:
• tweepy (Python Twitter API) returns “Rate limit exceeded”

• sqlite (a file-based database) returns IntegrityError

14

print('Python', python_version())

try:
cause_a_NameError

except NameError as err:
print(err, '-> some extra text')

PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible
• (But not that incompatible)
Biggest changes that matter for us:
• print “statement” à print(“function”)
• 1/2 = 0 à 1/2 = 0.5 and 1//2 = 0
• ASCII str default à default Unicode
Namespace ambiguity fixed:

i = 1
[i for i in range(5)]
print(i) # ????????

15

TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_
module:
• Python 3 introduces features that will throw runtime errors in

Python 2 (e.g., with statements)

• _future_ module incrementally brings 3 functionality into 2

• https://docs.python.org/2/library/__future__.html

from _future_ import division
from _future_ import print_function
from _future_ import please_just_use_python_3

16

PYTHON VS R (FOR
DATA SCIENTISTS)
There is no right answer here!
• Python is a “full”

programming language –
easier to integrate with
systems in the field

• R has a more mature set of
pure stats libraries …

• … but Python is catching up
quickly …

• … and is already ahead
specifically for ML.

You will see Python more in the
tech industry.

17

EXTRA RESOURCES
Plenty of tutorials on the web:
• https://www.learnpython.org/

Come hang out at office hours (or chat with me privately)
• Office hours are on the website/Piazza very soon.
• Also, email me – I realize your schedules are not like

undergrads’ schedules J.

18

19

TODAY’S LECTURE

20

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

with

GOTTA CATCH ‘EM ALL
Five ways to get data:
• Direct download and load from local storage
• Generate locally via downloaded code (e.g., simulation)
• Query data from a database (covered in a few lectures)
• Query an API from the intra/internet
• Scrape data from a webpage

21

Covered today.

WHEREFORE ART
THOU, API?
A web-based Application Programming Interface (API) like
we’ll be using in this class is a contract between a server and
a user stating:

“If you send me a specific request, I will return some
information in a structured and documented format.”

(More generally, APIs can also perform actions, may not be
web-based, be a set of protocols for communicating between
processes, between an application and an OS, etc.)

22

“SEND ME A SPECIFIC
REQUEST”
Most web API queries we’ll be doing will use HTTP requests:
• conda install –c anaconda requests=2.12.4

23

http://docs.python-requests.org/en/master/

r = requests.get('https://api.github.com/user',
auth=('user', 'pass'))

200

r.status_code

r.headers[‘content-type’]

‘application/json; charset=utf8’

r.json()

{u'private_gists': 419, u'total_private_repos': 77, ...}

HTTP REQUESTS
https://www.google.com/?q=cmsc641&tbs=qdr:m

HTTP GET Request:

GET /?q=cmsc641&tbs=qdr:m HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.1) Gecko/20100101 Firefox/10.0.1

2
4

??????????

params = { “q”: “cmsc641”, “tbs”: “qdr:m” }
r = requests.get(“https://www.google.com”,

params = params)

*be careful with https:// calls; requests will not verify SSL by default

RESTFUL APIS
This class will just query web APIs, but full web APIs typically
allow more.

Representational State Transfer (RESTful) APIs:

• GET: perform query, return data

• POST: create a new entry or object

• PUT: update an existing entry or object
• DELETE: delete an existing entry or object

Can be more intricate, but verbs (“put”) align with actions

25

QUERYING A RESTFUL API
Stateless: with every request, you send along a
token/authentication of who you are

GitHub is more than a GETHub:
• PUT/POST/DELETE can edit your repositories, etc.

• Try it out: https://github.com/settings/tokens/new

26

token = ”super_secret_token”
r = requests.get(“https://github.com/user”,

params={”access_token”: token})
print(r.content)

{"login":”JohnDickerson","id":472985,"avatar_url":"ht…

AUTHENTICATION
AND OAUTH
Old and busted:

New hotness:
• What if I wanted to grant an app access to, e.g., my Facebook

account without giving that app my password?

• OAuth: grants access tokens that give (possibly incomplete)
access to a user or app without exposing a password

27

r = requests.get(“https://api.github.com/user”,
auth=(“JohnDickerson”, “ILoveKittens”))

“… I WILL RETURN INFORMATION
IN A STRUCTURED FORMAT.”
So we’ve queried a server using a well-formed GET request
via the requests Python module. What comes back?

General structured data:
• Comma-Separated Value (CSV) files & strings

• Javascript Object Notation (JSON) files & strings

• HTML, XHTML, XML files & strings

Domain-specific structured data:
• Shapefiles: geospatial vector data (OpenStreetMap)

• RVT files: architectural planning (Autodesk Revit)

• You can make up your own! Always document it.

28

GRAPHQL?
An alternative to REST and ad-hoc webservice architectures

• Developed internally by Facebook and released publicly
Unlike REST, the requester specifies the format of the
response

29https://dev-blog.apollodata.com/graphql-vs-rest-5d425123e34b

APIS AND MICROSERVICES
Use of APIs growing rapidly, especially because of increasing
trend towards “microservices”
OpenAPI (Swagger) Specification emerging as a standard for
exposing APIs

30

http://swagger.io/specification

CSV FILES IN PYTHON
Any CSV reader worth anything can parse files with any
delimiter, not just a comma (e.g., “TSV” for tab-separated)
1,26-Jan,Introduction,—,"pdf, pptx",Dickerson,
2,31-Jan,Scraping Data with Python,Anaconda's Test Drive.,,Dickerson,
3,2-Feb,"Vectors, Matrices, and Dataframes",Introduction to pandas.,,Dickerson,
4,7-Feb,Jupyter notebook lab,,,"Denis, Anant, & Neil",
5,9-Feb,Best Practices for Data Science Projects,,,Dickerson,

Don’t write your own CSV or JSON parser

(We’ll use pandas to do this much more easily and efficiently)

31

import csv
with open(“schedule.csv”, ”rb”) as f:

reader = csv.reader(f, delimiter=“,”, quotechar=’”’)
for row in reader:

print(row)

JSON FILES & STRINGS
JSON is a method for serializing objects:
• Convert object into a string (Java: “implements Serializable”)

• Deserialization converts a string back to an object

Easy for humans to read (and sanity check, edit)
Defined by three universal data structures

32

Images from: http://www.json.org/

Python dictionary, Java
Map, hash table, etc …

Python list, Java array,
vector, etc …

Python string, float, int,
boolean, JSON object,
JSON array, …

JSON IN PYTHON
Some built-in types: “Strings”, 1.0, True, False, None
Lists: [“Goodbye”, “Cruel”, “World”]
Dictionaries: {“hello”: “bonjour”, “goodbye”, “au
revoir”}

Dictionaries within lists within dictionaries within lists:
[1, 2, {“Help”:[

“I’m”, {“trapped”: “in”},
“CMSC641”
]}]

33

JSON FROM TWITTER

34

GET https://api.twitter.com/1.1/friends/list.json?cursor=-
1&screen_name=twitterapi&skip_status=true&include_user_entitie
s=false

{
"previous_cursor": 0,
"previous_cursor_str": "0",
"next_cursor": 1333504313713126852,
"users": [{

"profile_sidebar_fill_color": "252429",
"profile_sidebar_border_color": "181A1E",
"profile_background_tile": false,
"name": "Sylvain Carle",
"profile_image_url":

"http://a0.twimg.com/profile_images/2838630046/4b82e286a659fae310012520f4f7
56bb_normal.png",

"created_at": "Thu Jan 18 00:10:45 +0000 2007", …

PARSING JSON IN
PYTHON
Repeat: don’t write your own CSV or JSON parser
• https://news.ycombinator.com/item?id=7796268

• rsdy.github.io/posts/dont_write_your_json_parser_plz.html

Python comes with a fine JSON parser

35

import json

r = requests.get(
“https://api.twitter.com/1.1/statuses/user_timeline.jso
n?screen_name=JohnPDickerson&count=100”, auth=auth)

data = json.loads(r.content)

json.load(some_file) # loads JSON from a file
json.dump(json_obj, some_file) # writes JSON to file
json.dumps(json_obj) # returns JSON string

XML, XHTML, HTML
FILES AND STRINGS
Still hugely popular online, but JSON has essentially
replaced XML for:
• Asynchronous browser ßà server calls
• Many (most?) newer web APIs
XML is a hierarchical markup language:
<tag attribute=“value1”>

<subtag>
Some cool words or values go here!

</subtag>
<openclosetag attribute=“value2” />

</tag>

You probably won’t see much XML, but you will see plenty of
HTML, its substantially less well-behaved cousin …

36

DOCUMENT OBJECT
MODEL (DOM)

37

SCRAPING HTML IN
PYTHON
HTML – the specification – is fairly pure
HTML – what you find on the web – is horrifying
We’ll use BeautifulSoup:
• conda install -c asmeurer beautiful-soup=4.3.2

38

import requests
from bs4 import BeautifulSoup

r = requests.get(
“https://cs.umd.edu/class/fall2018/cmsc641/”)

root = BeautifulSoup(r.content)
root.find(“div”, id=“schedule”)\

.find(“table”)\ # find all schedule

.find(“tbody”).findAll(“a”) # links for CMSC641

BUILDING A WEB
SCRAPER IN PYTHON
Totally not hypothetical situation:
• You really want to learn about data science, so you choose to

download all of this year’s CMSC641 lecture slides to
wallpaper your room …

• … but you now have carpal tunnel syndrome from clicking
refresh on Piazza last night, and can no longer click on the
PDF and PPTX links.

Hopeless? No! Earlier, you built a scraper to do this!

Sort of. You only want PDF and PPTX files, not links to other
websites or files.

39

lnks = root.find(“div”, id=“schedule”)\
.find(“table”)\ # find all schedule
.find(“tbody”).findAll(“a”) # links for CMSC641

REGULAR
EXPRESSIONS
Given a list of URLs (strings), how do I find only those strings
that end in *.pdf or *.pptx?

• Regular expressions!
• (Actually Python strings come with a built-in endswith

function.)

What about .pDf or .pPTx, still legal extensions for PDF/PPTX?

• Regular expressions!
• (Or cheat the system again: built-in string lower function.)

40

“this_is_a_filename.pdf”.endswith((“.pdf”, “.pptx”))

“tHiS_IS_a_FileNAme.pDF”.lower().endswith(
(“.pdf”, “.pptx”))

41

REGULAR EXPRESSIONS
Used to search for specific elements, or groups of elements,
that match a pattern

42

import re

Find the index of the 1st occurrence of “cmsc641”
match = re.search(r”cmsc641”, text)
print(match.start())

Does start of text match “cmsc641”?
match = re.match(r”cmsc641”, text)

Iterate over all matches for “cmsc641” in text
for match in re.finditer(r”cmsc641”, text):

print(match.start())

Return all matches of “cmsc641” in the text
match = re.findall(r”cmsc641”, text)

MATCHING MULTIPLE
CHARACTERS
Can match sets of characters, or multiple and more elaborate
sets and sequences of characters:
• Match the character ‘a’: a

• Match the character ‘a’, ‘b’, or ‘c’: [abc]

• Match any character except ‘a’, ‘b’, or ‘c’: [^abc]

• Match any digit: \d (= [0123456789] or [0-9])
• Match any alphanumeric: \w (= [a-zA-Z0-9_])

• Match any whitespace: \s (= [\t\n\r\f\v])

• Match any character: .

Special characters must be escaped: .^$*+?{}\[]|()

43

MATCHING SEQUENCES AND
REPEATED CHARACTERS
A few common modifiers (available in Python and most other
high-level languages; +, {n}, {n,} may not):
• Match character ‘a’ exactly once: a
• Match character ‘a’ zero or once: a?
• Match character ‘a’ zero or more times: a*

• Match character ‘a’ one or more times: a+
• Match character ‘a’ exactly n times: a{n}
• Match character ‘a’ at least n times: a{n,}

Example: match all instances of “University of <somewhere>” where
<somewhere> is an alphanumeric string with at least 3 characters:
• \s*University\sof\s\w{3,}

44

COMPILED REGEXES
If you’re going to reuse the same regex many times, or if you
aren’t but things are going slowly for some reason, try
compiling the regular expression.
• https://blog.codinghorror.com/to-compile-or-not-to-compile/

Interested? CMSC6*, CMSC7*, CMSC8*, talk to me.

45

Compile the regular expression “cmsc320”
regex = re.compile(r”cmsc320”)

Use it repeatedly to search for matches in text
regex.match(text) # does start of text match?
regex.search(text) # find the first match or None
regex.findall(text) # find all matches

GROUPS
What if we want to know more than just “did we find a match”
or “where is the first match” …?

Grouping asks the regex matcher to keep track of certain
portions – surrounded by (parentheses) – of the match

\s*([Uu]niversity)\s([Oo]f)\s(\w{3,})

46

regex = r”\s*([Uu]niversity)\s([Oo]f)\s(\w{3,})”
m = re.search(regex, “university Of Maryland”)
print(m.groups())

('university', 'Of', 'Maryland')

SIMPLE EXAMPLE: PARSE AN
EMAIL ADDRESS
(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0 31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+ (?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z |(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n) ?[
\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\ r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*
)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+ |\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?: \r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(? :(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(? :(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)? [
\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<> @,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(? :[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000- \031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,; :\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\" .\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\ [\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0 00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@, ;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])* (?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(? :\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?: [^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n) ?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n) ?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)? (?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?: \r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t]) *))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\ .(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*))*)?;\s*)

47

Mail::RFC822::Address Perl module for RFC 822

NAMED GROUPS
Raw grouping is useful for one-off exploratory analysis, but
may get confusing with longer regexes
• Much scarier regexes than that email one exist in the wild …

Named groups let you attach position-independent identifiers
to groups in a regex

(?P<some_name> …)

48

regex = "\s*[Uu]niversity\s[Oo]f\s(?P<school>(\w{3,}))"
m = re.search(regex, “University of Maryland”)
print(m.group(‘school’))

'Maryland'

SUBSTITUTIONS
The Python string module contains basic functionality for
find-and-replace within strings:

For more complicated stuff, use regexes:

Can incorporate groups into the matching

49

”abcabcabc”.replace(“a”, ”X”)

‘XbcXbcXbc`

Thanks to: Zico Kolter

text = “I love Principles of Data Science”
re.sub(r”Data Science”, r”Schmada Schmience”, text)

‘I love Principles of Schmada Schmience`

re.sub(r”(\w+)\s([Ss])cience”, r”\1 \2hmience”, text)

re.sub(r”([a-zA-Z0123456789_]+)\s([Ss])cience”, r”\1
\2hmience”, text)

DOWNLOADING A
BUNCH OF FILES

50

import re
import requests
from bs4 import BeautifulSoup
try:

from urllib.parse import urlparse
except ImportError:

from urlparse import urlparse

Import the modules

HTTP GET request sent to the URL url
r = requests.get(url)

Use BeautifulSoup to parse the GET response
root = BeautifulSoup(r.content)
lnks = root.find("div", id="schedule")\

.find("table")\

.find("tbody").findAll("a")

Get some HTML via HTTP

DOWNLOADING A
BUNCH OF FILES

51

Cycle through the href for each anchor, checking
to see if it's a PDF/PPTX link or not
for lnk in lnks:

href = lnk['href']

If it's a PDF/PPTX link, queue a download
if href.lower().endswith(('.pdf', '.pptx')):

Parse exactly what you want

urld = urlparse.urljoin(url, href)
rd = requests.get(urld, stream=True)

Write the downloaded PDF to a file
outfile = path.join(outbase, href)
with open(outfile, 'wb') as f:

f.write(rd.content)

Get some more data?!

AFTER THE BREAK, AND SOME OF NEXT CLASS:
NUMPY, SCIPY, AND DATAFRAMES

52

THE DATA LIFECYCLE

53

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

DATA MANIPULATION AND
COMPUTATION
Data Science == manipulating and computing on data

Large to very large, but somewhat “structured” data
We will see several tools for doing that this semester

Thousands more out there that we won’t cover

Need to learn to shift thinking from:
Imperative code to manipulate data structures

to:
Sequences/pipelines of operations on data

Should still know how to implement the operations themselves,
especially for debugging performance (covered in classes like 642?,
643?), but we won’t cover that much

54

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

55

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every
element
’reduce/aggregate’ à combine
values to get a single scalar (e.g.,
sum, median)

Given two vectors: Dot and cross
products

0.1 2 3.2 6.5 3.4 4.1

“data” ”representation” ”i.e.”

One-dimensional Arrays, Vectors

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

56

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every
element
’reduce/aggregate’ à combine
values across a row or a column (e.g.,
sum, average, median etc..)

n-dimensional arrays

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

57

n-dimensional array operations
+
Linear Algebra

Matrix/tensor multiplication
Transpose
Matrix-vector multiplication
Matrix factorization

Matrices, Tensors

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

58

Filter
Map
Union

Reduce/Aggregate

Given two sets, Combine/Join using
“keys”

Group and then aggregate

Sets: of Objects

Sets: of (Key, Value Pairs)

(amol@cs.umd.edu,(email1, email2,…))

(john@cs.umd.edu,(email3, email4,…))

mailto:amol@cs.umd.edu

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

59

Filter rows or columns

”Join” two or more relations

”Group” and “aggregate” them

Relational Algebra formalizes some
of them

Structured Query Language (SQL)
Many other languages and
constructs, that look very similar

Tables/Relations == Sets of Tuples

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce one or more datasets as output

60

Hierarchies/Trees/Graphs ”Path” queries

Graph Algorithms and
Transformations

Network Science

Somewhat more ad hoc and special-
purpose

Changing in recent years

DATA MANIPULATION AND
COMPUTATION
1. Data Representation, i.e., what is the natural way to think

about given data

2. Data Processing Operations, which take one or more datasets
as input and produce

• Why?
• Allows one to think at a higher level of abstraction, leading to

simpler and easier-to-understand scripts
• Provides ”independence” between the abstract operations and

concrete implementation
• Can switch from one implementation to another easily

• For performance debugging, useful to know how they are
implemented and rough characteristics

61

NEXT COUPLE OF CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark
Sets of objects or key-value pairs
MapReduce and SQL-like operations

62

NEXT COUPLE OF CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark
Sets of objects or key-value pairs
MapReduce and SQL-like operations

63

NUMERIC & SCIENTIFIC
APPLICATIONS
Number of third-party packages available for numerical and
scientific computing
These include:
• NumPy/SciPy – numerical and scientific function libraries.

• numba – Python compiler that support JIT compilation.

• ALGLIB – numerical analysis library.

• pandas – high-performance data structures and data analysis
tools.

• pyGSL – Python interface for GNU Scientific Library.

• ScientificPython – collection of scientific computing modules.

64

Many, many thanks to: FSU CIS4930

NUMPY AND FRIENDS
By far, the most commonly used packages are those in the
NumPy stack. These packages include:
• NumPy: similar functionality as Matlab

• SciPy: integrates many other packages like NumPy

• Matplotlib & Seaborn – plotting libraries

• iPython via Jupyter – interactive computing
• Pandas – data analysis library

• SymPy – symbolic computation library

65

[FSU]

THE NUMPY STACK

66

Today/next class
Image from Continuum Analytics

Later

CMSC643

NUMPY
Among other things, NumPy contains:
• A powerful n-dimensional array object.

• Sophisticated (broadcasting/universal) functions.

• Tools for integrating C/C++ and Fortran code.

• Useful linear algebra, Fourier transform, and random number
capabilities, etc.

Besides its obvious scientific uses, NumPy can also be used
as an efficient multi-dimensional container of generic data.

67

[FSU]

NUMPY
ndarray object: an n-dimensional array of homogeneous
data types, with many operations being performed in
compiled code for performance
Several important differences between NumPy arrays and the
standard Python sequences:
• NumPy arrays have a fixed size. Modifying the size means

creating a new array.

• NumPy arrays must be of the same data type, but this can
include Python objects – may not get performance benefits

• More efficient mathematical operations than built-in sequence
types.

68

[FSU]

NUMPY DATATYPES
Wider variety of data types than are built-in to the Python
language by default.
Defined by the numpy.dtype class and include:
• intc (same as a C integer) and intp (used for indexing)
• int8, int16, int32, int64
• uint8, uint16, uint32, uint64
• float16, float32, float64
• complex64, complex128
• bool_, int_, float_, complex_ are shorthand for defaults.
These can be used as functions to cast literals or sequence
types, as well as arguments to NumPy functions that accept the
dtype keyword argument.

69

[FSU]

>>> import numpy as np
>>> x = np.float32(1.0)
>>> x
1.0
>>> y = np.int_([1,2,4])
>>> y
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
>>> z
array([0, 1, 2], dtype=uint8)
>>> z.dtype
dtype('uint8')

NUMPY DATATYPES

70

[FSU]

NUMPY ARRAYS
There are a couple of mechanisms for creating arrays in
NumPy:
• Conversion from other Python structures (e.g., lists, tuples)

• Any sequence-like data can be mapped to a ndarray
• Built-in NumPy array creation (e.g., arange, ones, zeros,

etc.)

• Create arrays with all zeros, all ones, increasing numbers
from 0 to 1 etc.

• Reading arrays from disk, either from standard or custom
formats (e.g., reading in from a CSV file)

71

[FSU]

NUMPY ARRAYS
In general, any numerical data that is stored in an array-like
container can be converted to an ndarray through use of the
array() function. The most obvious examples are
sequence types like lists and tuples.

72

[FSU]

>>> x = np.array([2,3,1,0])

>>> x = np.array([2, 3, 1, 0])

>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)])

>>> x = np.array([[1.+0.j, 2.+0.j], [0.+0.j, 0.+0.j],
[1.+1.j, 3.+0.j]])

NUMPY ARRAYS
Creating arrays from scratch in NumPy:
• zeros(shape)– creates an array filled with 0 values with the

specified shape. The default dtype is float64.

• ones(shape) – creates an array filled with 1 values.

• arange() – like Python’s built-in range

73

>>> np.zeros((2, 3))
array([[0., 0., 0.], [0., 0., 0.]])

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.2)
array([2. , 2.2, 2.4, 2.6, 2.8])

[FSU]

NUMPY ARRAYS
linspace()– creates arrays with a specified number of
elements, and spaced equally between the specified
beginning and end values.

random.random(shape) – creates arrays with random
floats over the interval [0,1).

74

>>> np.random.random((2,3))
array([[0.75688597, 0.41759916, 0.35007419],

[0.77164187, 0.05869089, 0.98792864]])

>>> np.linspace(1., 4., 6)
array([1. , 1.6, 2.2, 2.8, 3.4, 4.])

[FSU]

NUMPY
ARRAYS
Printing an array can
be done with the print
• statement (Python 2)

• function (Python 3)

75

>>> import numpy as np
>>> a = np.arange(3)
>>> print(a)
[0 1 2]
>>> a
array([0, 1, 2])
>>> b = np.arange(9).reshape(3,3)
>>> print(b)
[[0 1 2]
[3 4 5]
[6 7 8]]
>>> c =
np.arange(8).reshape(2,2,2)
>>> print(c)
[[[0 1]
[2 3]]

[[4 5]
[6 7]]]

[FSU]

INDEXING
Single-dimension indexing is accomplished as usual.

Multi-dimensional arrays support multi-dimensional indexing.

76

>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8

>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8
>>> x[1,-1]
9

INDEXING
Using fewer dimensions to index will result in a subarray:

This means that x[i, j] == x[i][j] but the second method is
less efficient.

77

>>> x = np.arange(10)
>>> x.shape = (2,5)
>>> x[0]
array([0, 1, 2, 3, 4])

INDEXING
Slicing is possible just as it is for typical Python sequences:

78

>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4])
>>> x[:-7]
array([0, 1, 2])
>>> x[1:7:2]
array([1, 3, 5])
>>> y = np.arange(35).reshape(5,7)
>>> y[1:5:2,::3]
array([[7, 10, 13], [21, 24, 27]])

ARRAY OPERATIONS
Basic operations apply element-wise. The result is a new
array with the resultant elements.

79

>>> a = np.arange(5)
>>> b = np.arange(5)
>>> a+b
array([0, 2, 4, 6, 8])
>>> a-b
array([0, 0, 0, 0, 0])
>>> a**2
array([0, 1, 4, 9, 16])
>>> a>3
array([False, False, False, False, True], dtype=bool)
>>> 10*np.sin(a)
array([0., 8.41470985, 9.09297427, 1.41120008, -
7.56802495])
>>> a*b
array([0, 1, 4, 9, 16])

ARRAY OPERATIONS
Since multiplication is
done element-wise,
you need to
specifically perform a
dot product to perform
matrix multiplication.

80

>>> a = np.zeros(4).reshape(2,2)
>>> a
array([[0., 0.],

[0., 0.]])
>>> a[0,0] = 1
>>> a[1,1] = 1
>>> b = np.arange(4).reshape(2,2)
>>> b
array([[0, 1],

[2, 3]])
>>> a*b
array([[0., 0.],

[0., 3.]])
>>> np.dot(a,b)
array([[0., 1.],

[2., 3.]])

ARRAY OPERATIONS
There are also some
built-in methods of
ndarray objects.

Universal functions
which may also be
applied include exp,
sqrt, add, sin,
cos, etc.

81

>>> a = np.random.random((2,3))
>>> a
array([[0.68166391, 0.98943098,
0.69361582],

[0.78888081, 0.62197125,
0.40517936]])
>>> a.sum()
4.1807421388722164
>>> a.min()
0.4051793610379143
>>> a.max(axis=0)
array([0.78888081, 0.98943098,
0.69361582])
>>> a.min(axis=1)
array([0.68166391, 0.40517936])

ARRAY
OPERATIONS
An array shape
can be
manipulated by a
number of
methods.

resize(size)
will modify an
array in place.

reshape(size)
will return a copy
of the array with a
new shape.

82

>>> a =
np.floor(10*np.random.random((3,4)))
>>> print(a)
[[9. 8. 7. 9.]
[7. 5. 9. 7.]
[8. 2. 7. 5.]]
>>> a.shape
(3, 4)
>>> a.ravel()
array([9., 8., 7., 9., 7., 5., 9.,
7., 8., 2., 7., 5.])
>>> a.shape = (6,2)
>>> print(a)
[[9. 8.]
[7. 9.]
[7. 5.]
[9. 7.]
[8. 2.]
[7. 5.]]
>>> a.transpose()
array([[9., 7., 7., 9., 8., 7.],

[8., 9., 5., 7., 2., 5.]])

LINEAR ALGEBRA
One of the most common
reasons for using the
NumPy package is its
linear algebra module.

It’s like Matlab, but free!

83

>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0],

[3.0, 4.0]])
>>> print(a)
[[1. 2.]
[3. 4.]]
>>> a.transpose()
array([[1., 3.],

[2., 4.]])
>>> inv(a) # inverse
array([[-2. , 1.],

[1.5, -0.5]])

LINEAR ALGEBRA

84

(We’ll talk about this stuff as needed in
the March/April machine learning and
statistics lectures.)

>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[1., 0.],

[0., 1.]])
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot(j, j) # matrix product
array([[-1., 0.],

[0., -1.]])
>>> trace(u) # trace (sum of elements on diagonal)
2.0
>>> y = array([[5.], [7.]])
>>> solve(a, y) # solve linear matrix equation
array([[-3.],

[4.]])
>>> eig(j) # get eigenvalues/eigenvectors of matrix
(array([0.+1.j, 0.-1.j]),
array([[0.70710678+0.j, 0.70710678+0.j],

[0.00000000-0.70710678j,
0.00000000+0.70710678j]]))

SCIPY?
In its own words:

Basically, SciPy contains various tools and functions for
solving common problems in scientific computing.

85

SciPy is a collection of mathematical algorithms and
convenience functions built on the NumPy extension of Python.
It adds significant power to the interactive Python session by
providing the user with high-level commands and classes for
manipulating and visualizing data.

SCIPY
SciPy gives you access to a ton of specialized mathematical functionality.
• Just know it exists. We won’t use it much in this class.
Some functionality:
• Special mathematical functions (scipy.special) -- elliptic, bessel, etc.
• Integration (scipy.integrate)
• Optimization (scipy.optimize)
• Interpolation (scipy.interpolate)
• Fourier Transforms (scipy.fftpack)
• Signal Processing (scipy.signal)
• Linear Algebra (scipy.linalg)
• Compressed Sparse Graph Routines (scipy.sparse.csgraph)
• Spatial data structures and algorithms (scipy.spatial)
• Statistics (scipy.stats)
• Multidimensional image processing (scipy.ndimage)
• Data IO (scipy.io) – overlaps with pandas, covers some other formats

86

ONE SCIPY EXAMPLE
We can’t possibly tour all of the SciPy library and, even if we
did, it might be a little boring.
• Often, you’ll be able to find higher-level modules that will work

around your need to directly call low-level SciPy functions

Say you want to compute an integral:

!
"

#
sin ' ('

87

SCIPY.INTEGRATE
We have a function object – np.sin defines the sin function
for us.
We can compute the definite integral from ! = 0 to ! = $
using the quad function.

88

>>> res = scipy.integrate.quad(np.sin, 0, np.pi)
>>> print(res)
(2.0, 2.220446049250313e-14) # 2 with a very small error
margin!
>>> res = scipy.integrate.quad(np.sin, -np.inf, +np.inf)
>>> print(res)
(0.0, 0.0) # Integral does not converge

SCIPY.INTEGRATE
Let’s say that we don’t have a function object, we only have
some (x,y) samples that “define” our function.
We can estimate the integral using the trapezoidal rule.

89

>>> sample_x = np.linspace(0, np.pi, 1000)
>>> sample_y = np.sin(sample_x) # Creating 1,000 samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
1.99999835177

>>> sample_x = np.linspace(0, np.pi, 1000000)
>>> sample_y = np.sin(sample_x) # Creating 1,000,000
samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
2.0

WRAP UP
Shift thinking from imperative coding to operations on
datasets

Numpy: A low-level abstraction that gives us really fast multi-
dimensional arrays

Next class:
Pandas: Higher-level tabular abstraction and operations to
manipulate and combine tables

Reading Homework focuses on Pandas and SQL: Aim to
release by tonight, probably by tomorrow

90

REST OF TODAY’S
LECTURE
By popular request …
• Version control primer!
• Specifically, git via GitHub and GitLab
• Thanks: Mark Groves (Microsoft), Ilan Biala & Aaron

Perley (CMU), Sharif U., & the HJCB Senior Design Team!
And then a bit on keeping your data … tidy data.

91

WHAT IS VERSION
CONTROL?

92

DEVELOPMENT TOOL
When working with a team, the need for a central repository
is essential
• Need a system to allow versioning, and a way to acquire the

latest edition of the code

• A system to track and manage bugs was also needed

93

atlassian.com/git/tutorials/what-is-version-control

GOALS OF VERSION
CONTROL
Be able to search through revision history and retrieve
previous versions of any file in a project
Be able to share changes with collaborators on a project
Be able to confidently make large changes to existing files

94

NAMED FOLDERS
APPROACH
Can be hard to track
Memory-intensive
Can be slow
Hard to share
No record of authorship

95

LOCAL DATABASE OF
VERSIONS APPROACH

Provides an abstraction over finding the right versions of
files and replacing them in the project
Records who changes what, but hard to parse that
Can’t share with collaborators

96

CENTRALIZED VERSION
CONTROL SYSTEMS
A central, trusted repository
determines the order of commits
(“versions” of the project)

Collaborators “push” changes
(commits) to this repository.

Any new commits must be
compatible with the most recent
commit. If it isn’t, somebody must
“merge” it in.

Examples: SVN, CVS, Perforce

97

Central
Repositor

y

Developer
A’s local

files

Developer
D’s local

files

Developer
C’s local

files

Developer
B’s local

files

Commi
t

Checkou
t

Checkou
t

Commi
t

Commi
t

Commi
t

Checkou
t

Checkou
t

Dev
A’s
Repo

Dev
B’s
Repo

Dev
C’s
Repo

Dev
D’s
Repo

Commit Commit

Commit

Commit

Push/Fetc
h

Push/Fetch

Push/Fetc
h

Push/Fetch
Push/Fetc

h Push/Fetc
h

Centralized
Version Control

System

Distributed
Version Control

System

DISTRIBUTED VERSION
CONTROL SYSTEMS (DVCS)
• No central repository
• Every repository has every commit
• Examples: Git, Mercurial

98

WHAT IS GIT
Git is a version control system
Developed as a repository system for both local and remote
changes
Allows teammates to work simultaneously on a project
Tracks each commit, allowing for a detailed documentation of
the project along every step
Allows for advanced merging and branching operations

99

A SHORT HISTORY OF
GIT
Linux kernel development
1991-2002
• Changes passed around as archived file

2002-2005
• Using a DVCS called BitKeeper
2005
• Relationship broke down between two

communities (BitKeeper licensing issues)

10
0

A SHORT HISTORY OF
GIT
Goals:
• Speed

• Simple design

• Strong support for non-linear development (thousands of
parallel branches)

• Fully distributed – not a requirement, can be centralized
• Able to handle large projects like the Linux kernel efficiently

(speed and data size)

10
1

A SHORT HISTORY OF
GIT
Popularity:
• Git is now the most widely used source code management tool

• 33.3% of professional software developers use Git (often
through GitHub) as their primary source control system

10
2

[citation needed]

GIT IN INDUSTRY
Companies and projects currently using Git
• Google
• Android
• Facebook
• Microsoft
• Netflix
• Linux
• Ruby on Rails
• Gnome
• KDE
• Eclipse
• X.org

10
3

GIT BASICS
Snapshots, not changes
• A picture of what all your files look like at that moment

• If a file has not changed, store a reference

Nearly every operation is local
• Browsing the history of project
• See changes between two versions

10
4

WHY GIT IS BETTER
Git tracks the content rather than the files
Branches are lightweight, and merging is a simple process
Allows for a more streamlined offline development process
Repositories are smaller in size and are stored in a single .git
directory
Allows for advanced staging operations, and the use of
stashing when working through troublesome sections

10
5

WHAT ABOUT SVN?

Linus Torvalds

Subversion has been the most pointless project ever started …
Subversion used to say CVS done right: with that slogan there is
nowhere you can go. There is no way to do CVS right … If you like
using CVS, you should be in some kind of mental institution or
somewhere else.

10
6

GIT VS {CVS, SVN, …}
Why you should care:
• Many places use legacy systems that will cause problems in

the future – be the change you believe in!

Git is much faster than SVN:
• Coded in C, which allows for a great amount of optimization

• Accomplishes much of the logic client side, thereby reducing
time needed for communication

• Developed to work on the Linux kernel, so that large project
manipulation is at the forefront of the benchmarks

10
7

GIT VS {CVS, SVN, …}
Speed benchmarks:

Benchmarks performed by http://git-scm.com/about/small-and-fast

10
8

http://git-scm.com/about/small-and-fast

GIT VS {CVS, SVN, …}
Git is significantly smaller than SVN
• All files are contained in a small decentralized .git file

• In the case of Mozilla’s projects, a Git repository was 30 times
smaller than an identical SVN repository

• Entire Linux kernel with 5 years of versioning contained in a
single 1 GB .git file

• SVN carries two complete copies of each file, while Git
maintains a simple and separate 100 bytes of data per file,
noting changes and supporting operations

Nice because you can (and do!) store the whole thing locally

10
9

GIT VS {CVS, SVN, …}
Git is more secure than SVN
• All commits are uniquely hashed for both security and indexing

purposes

• Commits can be authenticated through numerous means

• In the case of SSH commits, a key may be provided by both
the client and server to guarantee authenticity and prevent
against unauthorized access

11
0

GIT VS {CVS, SVN, …}
Git is decentralized:
• Each user contains an individual repository and can check

commits against itself, allowing for detailed local revisioning

• Being decentralized allows for easy replication and deployment

• In this case, SVN relies on a single centralized repository and
is unusable without

11
1

GIT VS {CVS, SVN, …}
Git is flexible:
• Due to it’s decentralized nature, git commits can be stored

locally, or committed through HTTP, SSH, FTP, or even by Email

• No need for a centralized repository

• Developed as a command line utility, which allows a large
amount of features to be built and customized on top of it

11
2

GIT VS {CVS, SVN, …}
Data assurance: a checksum is performed on both upload
and download to ensure sure that the file hasn’t been
corrupted.
Commit IDs are generated upon each commit:
• Linked list style of commits

• Each commit is linked to the next, so that if something in the
history was changed, each following commit will be rebranded to
indicate the modification

11
3

GIT VS {CVS, SVN, …}
Branching:
• Git allows the usage of advanced branching mechanisms and

procedures

• Individual divisions of the code can be separated and
developed separately within separate branches of the code

• Branches can allow for the separation of work between
developers, or even for disposable experimentation

• Branching is a precursor and a component of the merging
process

Will give an example shortly.

11
4

GIT VS {CVS, SVN, …}
Merging
• The process of merging is directly related to the process of

branching

• Individual branches may be merged together, solving code
conflicts, back into the default or master branch of the project

• Merges are usually done automatically, unless a conflict is
presented, in which case the user is presented with several
options with which to handle the conflict

Will give an example shortly.

11
5

GIT VS {CVS, SVN, …}
Merging: content of the files is tracked rather than the file
itself:
• This allows for a greater element of tracking and a smarter and
more automated process of merging

• SVN is unable to accomplish this, and will throw a conflict if,
e.g., a file name is changed and differs from the name in the
central repository

• Git is able to solve this problem with its use of managing a
local repository and tracking individual changes to the code

11
6

INITIALIZATION OF A
GIT REPOSITORY

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first
commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

GIT BASICS I
The three (or four) states of a file:
• Modified:

• File has changed but not committed
• Staged:

• Marked to go to next commit snapshot
• Committed:

• Safely stored in local database
• Untracked!

• Newly added or removed files

GIT BASICS II
Three main areas of a git project:
• Working directory

• Single checkout of one version of the project.
• Staging area

• Simple file storing information about what will go into your
next commit

• Git directory
• What is copied when cloning a repository

GIT BASICS III
Three main areas of a git project:

BRANCHES
ILLUSTRATED

master
A

> git commit –m ‘my first commit’

(Default branch is called “master”; your
first commit will be on this branch.)

BRANCHES
ILLUSTRATED

master

> git commit (x2)

A B C

BRANCHES
ILLUSTRATED

bug123

master

> git checkout –b bug123

A B C

BRANCHES
ILLUSTRATED

master

> git commit (x2)

A B C

D E

bug123

BRANCHES
ILLUSTRATED

master

> git checkout master

A B C

D E

bug123

BRANCHES
ILLUSTRATED

bug123

master

> git merge bug123

A B C D E

BRANCHES
ILLUSTRATED

master

> git branch -d bug123

A B C D E

BRANCHES
ILLUSTRATED

master
A B C D E

F G

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

F G

bug456

> git checkout master

BRANCHES
ILLUSTRATED

master
A B C D E

F G

> git merge bug456

H

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

F G

> git branch -d bug456

H

BRANCHES
ILLUSTRATED

master
A B C D E

F G

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

> git rebase master

F’ G’

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

> git checkout master
> git merge bug456

F’ G’

bug456

WHEN TO BRANCH?
General rule of thumb:
• Anything in the master branch is always deployable.
Local branching is very lightweight!
• New feature? Branch!

• Experiment that you won’t ever deploy? Branch!
Good habits:
• Name your branch something descriptive (add-like-

button, refactor-jobs, create-ai-singularity)

• Make your commit messages descriptive, too!

13
5

SO YOU WANT SOMEBODY ELSE
TO HOST THIS FOR YOU …
Git: general distributed version control system
GitHub / BitBucket / GitLab / …: hosting services for git
repositories
In general, GitHub is the most popular:
• Lots of big projects (e.g., Python, Bootstrap, Angular,

D3, node, Django, Visual Studio)

• Lots of ridiculously awesome projects (e.g.,
https://github.com/maxbbraun/trump2cash)

There are reasons to use the competitors (e.g., private
repositories, access control)

13
6

https://github.com/maxbbraun/trump2cash)

“SOCIAL CODING”

13
7

REVIEW: HOW TO USE
Git commands for everyday usage are relatively simple
• git pull

• Get the latest changes to the code
• git add .

• Add any newly created files to the repository for tracking
• git add –u

• Remove any deleted files from tracking and the repository
• git commit –m ‘Changes’

• Make a version of changes you have made
• git push

• Deploy the latest changes to the central repository
Make a repo on GitHub and clone it to your machine:
• https://guides.github.com/activities/hello-world/

13
8

https://guides.github.com/activities/hello-world/

STUFF TO CLICK ON
Git
• http://git-scm.com/
GitHub
• https://github.com/
• https://guides.github.com/activities/hello-world/
• ^-- Just do this one. You’ll need it for your tutorial J.
GitLab
• http://gitlab.org/
Git and SVN Comparison
• https://git.wiki.kernel.org/index.php/GitSvnComparison

13
9

http://git-scm.com/
https://github.com/
https://guides.github.com/activities/hello-world/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/GitSvnComparison

