
PRINCIPLES OF 
DATA SCIENCE
JOHN P DICKERSON

Lecture #3 – 9/12/2018

CMSC641
Wednesdays 
7pm – 9:30pm



ANNOUNCEMENTS
The website is up!  Hopefully …

• http://www.cs.umd.edu/class/fall2018/cmsc641/

Office Hours: 6pm-7pm on Wednesdays, and also by 
appointment, or via email/text, or …

Reminder: Weekly quizzes, due on Mondays at noon

Project 1 will be released this week

2



THE DATA LIFECYCLE

3

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision



THE DATA LIFECYCLE

4

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision



DATA MANIPULATION AND 
COMPUTATION
Data Science == manipulating and computing on data

Large to very large, but somewhat “structured” data
We will see several tools for doing that this semester

Thousands more out there that we won’t cover

Need to learn to shift thinking from:
Imperative code to manipulate data structures

to: 
Sequences/pipelines of operations on data

Should still know how to implement the operations themselves, 
especially for debugging performance (covered in classes like 642?, 
643?), but we won’t cover that much

5



DATA MANIPULATION AND 
COMPUTATION
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more datasets 
as input and produce one or more datasets as output

6

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every 
element
’reduce/aggregate’ à combine 
values to get a single scalar (e.g., 
sum, median)

Given two vectors: Dot and cross 
products

0.1 2 3.2 6.5 3.4 4.1

“data” ”representation” ”i.e.”

One-dimensional Arrays, Vectors



DATA MANIPULATION AND 
COMPUTATION
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more datasets 
as input and produce one or more datasets as output

7

Indexing
Slicing/subsetting
Filter
‘map’ à apply a function to every 
element
’reduce/aggregate’ à combine 
values across a row or a column (e.g., 
sum, average, median etc..)

n-dimensional arrays



DATA MANIPULATION AND 
COMPUTATION
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more datasets 
as input and produce one or more datasets as output

8

n-dimensional array operations 
+
Linear Algebra

Matrix/tensor multiplication 
Transpose
Matrix-vector multiplication
Matrix factorization

Matrices, Tensors



DATA MANIPULATION AND 
COMPUTATION
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more datasets 
as input and produce one or more datasets as output

9

Filter
Map
Union

Reduce/Aggregate

Given two sets, Combine/Join using 
“keys”

Group and then aggregate

Sets: of Objects

Sets: of (Key, Value Pairs)

(amol@cs.umd.edu,(email1, email2,…))

(john@cs.umd.edu,(email3, email4,…))

mailto:amol@cs.umd.edu


DATA MANIPULATION AND 
COMPUTATION
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more datasets 
as input and produce one or more datasets as output

10

Filter rows or columns

”Join” two or more relations

”Group” and “aggregate” them

Relational Algebra formalizes some 
of them

Structured Query Language (SQL)
Many other languages and 
constructs, that look very similar 

Tables/Relations == Sets of Tuples



DATA MANIPULATION AND 
COMPUTATION
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more datasets 
as input and produce one or more datasets as output

11

Hierarchies/Trees/Graphs ”Path” queries

Graph Algorithms and 
Transformations

Network Science

Somewhat more ad hoc and special-
purpose

Changing in recent years



DATA MANIPULATION AND 
COMPUTATION
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more datasets 
as input and produce 

• Why?
• Allows one to think at a higher level of abstraction, leading to 

simpler and easier-to-understand scripts
• Provides ”independence” between the abstract operations and 

concrete implementation
• Can switch from one implementation to another easily

• For performance debugging, useful to know how they are 
implemented and rough characteristics

12



NEXT COUPLE OF CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including 
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations

13



NEXT COUPLE OF CLASSES
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including 
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations

14



NUMERIC & SCIENTIFIC 
APPLICATIONS
Number of third-party packages available for numerical and 
scientific computing
These include: 
• NumPy/SciPy – numerical and scientific function libraries. 

• numba – Python compiler that support JIT compilation.

• ALGLIB – numerical analysis library.

• pandas – high-performance data structures and data analysis 
tools. 

• pyGSL – Python interface for GNU Scientific Library. 

• ScientificPython – collection of scientific computing modules.

15

Many, many thanks to: FSU CIS4930



NUMPY AND FRIENDS
By far, the most commonly used packages are those in the 
NumPy stack.  These packages include: 
• NumPy: similar functionality as Matlab

• SciPy: integrates many other packages like NumPy

• Matplotlib & Seaborn – plotting libraries

• iPython via Jupyter – interactive computing
• Pandas – data analysis library

• SymPy – symbolic computation library

16

[FSU]



THE NUMPY STACK

17

Today/next class
Image from Continuum Analytics

Later 

CMSC643



NUMPY
Among other things, NumPy contains: 
• A powerful n-dimensional array object.

• Sophisticated (broadcasting/universal) functions.

• Tools for integrating C/C++ and Fortran code.

• Useful linear algebra, Fourier transform, and random number 
capabilities, etc.

Besides its obvious scientific uses, NumPy can also be used 
as an efficient multi-dimensional container of generic data. 

18

[FSU]



NUMPY
ndarray object: an n-dimensional array of homogeneous 
data types, with many operations being performed in 
compiled code for performance 
Several important differences between NumPy arrays and the 
standard Python sequences:
• NumPy arrays have a fixed size. Modifying the size means 

creating a new array. 

• NumPy arrays must be of the same data type, but this can 
include Python objects – may not get performance benefits

• More efficient mathematical operations than built-in sequence 
types. 

19

[FSU]



NUMPY DATATYPES
Wider variety of data types than are built-in to the Python 
language by default. 
Defined by the numpy.dtype class and include:
• intc (same as a C integer) and intp (used for indexing) 
• int8, int16, int32, int64 
• uint8, uint16, uint32, uint64
• float16, float32, float64
• complex64, complex128
• bool_, int_, float_, complex_ are shorthand for defaults. 
These can be used as functions to cast literals or sequence 
types, as well as arguments to NumPy functions that accept the 
dtype keyword argument. 

20

[FSU]



>>> import numpy as np 
>>> x = np.float32(1.0)
>>> x 
1.0 
>>> y = np.int_([1,2,4])
>>> y 
array([1, 2, 4]) 
>>> z = np.arange(3, dtype=np.uint8)
>>> z 
array([0, 1, 2], dtype=uint8) 
>>> z.dtype
dtype('uint8') 

NUMPY DATATYPES

21

[FSU]



NUMPY ARRAYS
There are a couple of mechanisms for creating arrays in 
NumPy:
• Conversion from other Python structures (e.g., lists, tuples)

• Any sequence-like data can be mapped to a ndarray
• Built-in NumPy array creation (e.g., arange, ones, zeros, 

etc.)

• Create arrays with all zeros, all ones, increasing numbers 
from 0 to 1 etc.

• Reading arrays from disk, either from standard or custom 
formats (e.g., reading in from a CSV file)

22

[FSU]



NUMPY ARRAYS
In general, any numerical data that is stored in an array-like 
container can be converted to an ndarray through use of the 
array() function. The most obvious examples are 
sequence types like lists and tuples. 

23

[FSU]

>>> x = np.array([2,3,1,0])

>>> x = np.array([2, 3, 1, 0])

>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)])

>>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j],
[ 1.+1.j, 3.+0.j]])



NUMPY ARRAYS
Creating arrays from scratch in NumPy:
• zeros(shape)– creates an array filled with 0 values with the 

specified shape. The default dtype is float64.

• ones(shape) – creates an array filled with 1 values. 

• arange() – like Python’s built-in range

24

>>> np.zeros((2, 3))
array([[ 0., 0., 0.], [ 0., 0., 0.]]) 

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 
>>> np.arange(2, 10, dtype=np.float)
array([ 2., 3., 4., 5., 6., 7., 8., 9.]) 
>>> np.arange(2, 3, 0.2)
array([ 2. , 2.2, 2.4, 2.6, 2.8]) 

[FSU]



NUMPY ARRAYS
linspace()– creates arrays with a specified number of 
elements, and spaced equally between the specified 
beginning and end values.

random.random(shape) – creates arrays with random 
floats over the interval [0,1).

25

>>> np.random.random((2,3))
array([[ 0.75688597, 0.41759916, 0.35007419], 

[ 0.77164187, 0.05869089, 0.98792864]]) 

>>> np.linspace(1., 4., 6)
array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) 

[FSU]



NUMPY
ARRAYS
Printing an array can 
be done with the print
• statement (Python 2)

• function (Python 3)

26

>>> import numpy as np 
>>> a = np.arange(3)
>>> print(a) 
[0 1 2] 
>>> a 
array([0, 1, 2]) 
>>> b = np.arange(9).reshape(3,3)
>>> print(b) 
[[0 1 2] 
[3 4 5] 
[6 7 8]] 
>>> c =
np.arange(8).reshape(2,2,2)
>>> print(c)
[[[0 1] 
[2 3]] 

[[4 5] 
[6 7]]] 

[FSU]



INDEXING
Single-dimension indexing is accomplished as usual.

Multi-dimensional arrays support multi-dimensional indexing.  

27

>>> x = np.arange(10)
>>> x[2]
2 
>>> x[-2]
8 

>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8 
>>> x[1,-1]
9 



INDEXING
Using fewer dimensions to index will result in a subarray:

This means that x[i, j] == x[i][j] but the second method is 
less efficient.

28

>>> x = np.arange(10)
>>> x.shape = (2,5)
>>> x[0]
array([0, 1, 2, 3, 4]) 



INDEXING
Slicing is possible just as it is for typical Python sequences: 

29

>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4]) 
>>> x[:-7]
array([0, 1, 2]) 
>>> x[1:7:2]
array([1, 3, 5]) 
>>> y = np.arange(35).reshape(5,7)
>>> y[1:5:2,::3]
array([[ 7, 10, 13], [21, 24, 27]]) 



ARRAY OPERATIONS
Basic operations apply element-wise. The result is a new 
array with the resultant elements. 

30

>>> a = np.arange(5)
>>> b = np.arange(5)
>>> a+b
array([0, 2, 4, 6, 8]) 
>>> a-b 
array([0, 0, 0, 0, 0]) 
>>> a**2
array([ 0, 1, 4, 9, 16]) 
>>> a>3
array([False, False, False, False, True], dtype=bool)
>>> 10*np.sin(a)
array([ 0., 8.41470985, 9.09297427, 1.41120008, -
7.56802495]) 
>>> a*b 
array([ 0, 1, 4, 9, 16]) 



ARRAY OPERATIONS
Since multiplication is 
done element-wise, 
you need to 
specifically perform a 
dot product to perform 
matrix multiplication. 

31

>>> a = np.zeros(4).reshape(2,2)
>>> a 
array([[ 0., 0.],

[ 0., 0.]]) 
>>> a[0,0] = 1
>>> a[1,1] = 1
>>> b = np.arange(4).reshape(2,2)
>>> b 
array([[0, 1], 

[2, 3]]) 
>>> a*b 
array([[ 0., 0.], 

[ 0., 3.]]) 
>>> np.dot(a,b)
array([[ 0., 1.], 

[ 2., 3.]]) 



ARRAY OPERATIONS
There are also some 
built-in methods of 
ndarray objects.

Universal functions 
which may also be 
applied include exp, 
sqrt, add, sin, 
cos, etc.

32

>>> a = np.random.random((2,3))
>>> a 
array([[ 0.68166391, 0.98943098, 
0.69361582], 

[ 0.78888081, 0.62197125, 
0.40517936]]) 
>>> a.sum()
4.1807421388722164 
>>> a.min()
0.4051793610379143 
>>> a.max(axis=0)
array([ 0.78888081, 0.98943098, 
0.69361582]) 
>>> a.min(axis=1)
array([ 0.68166391, 0.40517936]) 



ARRAY 
OPERATIONS
An array shape 
can be 
manipulated by a 
number of 
methods.

resize(size)
will modify an 
array in place.

reshape(size)
will return a copy 
of the array with a 
new shape.  

33

>>> a =
np.floor(10*np.random.random((3,4)))
>>> print(a) 
[[ 9. 8. 7. 9.] 
[ 7. 5. 9. 7.] 
[ 8. 2. 7. 5.]] 
>>> a.shape
(3, 4) 
>>> a.ravel()
array([ 9., 8., 7., 9., 7., 5., 9., 
7., 8., 2., 7., 5.]) 
>>> a.shape = (6,2)
>>> print(a) 
[[ 9. 8.] 
[ 7. 9.] 
[ 7. 5.] 
[ 9. 7.] 
[ 8. 2.] 
[ 7. 5.]] 
>>> a.transpose()
array([[ 9., 7., 7., 9., 8., 7.], 

[ 8., 9., 5., 7., 2., 5.]]) 



LINEAR ALGEBRA
One of the most common 
reasons for using the 
NumPy package is its 
linear algebra module. 

It’s like Matlab, but free!

34

>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0],

[3.0, 4.0]])
>>> print(a) 
[[ 1. 2.] 
[ 3. 4.]] 
>>> a.transpose()
array([[ 1., 3.], 

[ 2., 4.]]) 
>>> inv(a) # inverse
array([[-2. , 1. ], 

[ 1.5, -0.5]]) 



LINEAR ALGEBRA

35

(We’ll talk about this stuff as needed in 
the March/April machine learning and 
statistics lectures.)

>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u 
array([[ 1., 0.], 

[ 0., 1.]]) 
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot(j, j) # matrix product
array([[-1., 0.], 

[ 0., -1.]]) 
>>> trace(u) # trace (sum of elements on diagonal)
2.0
>>> y = array([[5.], [7.]])
>>> solve(a, y) # solve linear matrix equation
array([[-3.], 

[ 4.]]) 
>>> eig(j) # get eigenvalues/eigenvectors of matrix
(array([ 0.+1.j, 0.-1.j]), 
array([[ 0.70710678+0.j, 0.70710678+0.j], 

[ 0.00000000-0.70710678j, 
0.00000000+0.70710678j]])) 



SCIPY?
In its own words: 

Basically, SciPy contains various tools and functions for 
solving common problems in scientific computing. 

36

SciPy is a collection of mathematical algorithms and 
convenience functions built on the NumPy extension of Python. 
It adds significant power to the interactive Python session by 
providing the user with high-level commands and classes for 
manipulating and visualizing data.



SCIPY
SciPy gives you access to a ton of specialized mathematical functionality.
• Just know it exists. We won’t use it much in this class.
Some functionality:
• Special mathematical functions (scipy.special) -- elliptic, bessel, etc.
• Integration (scipy.integrate)
• Optimization (scipy.optimize)
• Interpolation (scipy.interpolate)
• Fourier Transforms (scipy.fftpack)
• Signal Processing (scipy.signal)
• Linear Algebra (scipy.linalg)
• Compressed Sparse Graph Routines (scipy.sparse.csgraph)
• Spatial data structures and algorithms (scipy.spatial)
• Statistics (scipy.stats)
• Multidimensional image processing (scipy.ndimage)
• Data IO (scipy.io) – overlaps with pandas, covers some other formats

37



ONE SCIPY EXAMPLE
We can’t possibly tour all of the SciPy library and, even if we 
did, it might be a little boring.
• Often, you’ll be able to find higher-level modules that will work 

around your need to directly call low-level SciPy functions

Say you want to compute an integral:

!
"

#
sin ' ('

38



SCIPY.INTEGRATE
We have a function object – np.sin defines the sin function 
for us.
We can compute the definite integral from ! = 0 to ! = $
using the quad function. 

39

>>> res = scipy.integrate.quad(np.sin, 0, np.pi)
>>> print(res) 
(2.0, 2.220446049250313e-14) # 2 with a very small error 
margin!
>>> res = scipy.integrate.quad(np.sin, -np.inf, +np.inf)
>>> print(res) 
(0.0, 0.0) # Integral does not converge



SCIPY.INTEGRATE
Let’s say that we don’t have a function object, we only have 
some (x,y) samples that “define” our function.
We can estimate the integral using the trapezoidal rule.  

40

>>> sample_x = np.linspace(0, np.pi, 1000)
>>> sample_y = np.sin(sample_x) # Creating 1,000 samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result)
1.99999835177 

>>> sample_x = np.linspace(0, np.pi, 1000000)
>>> sample_y = np.sin(sample_x) # Creating 1,000,000 
samples
>>> result = scipy.integrate.trapz(sample_y, sample_x)
>>> print(result) 
2.0



WRAP UP
Shift thinking from imperative coding to operations on 
datasets

Numpy: A low-level abstraction that gives us really fast multi-
dimensional arrays

In a bit: 
Pandas: Higher-level tabular abstraction and operations to 
manipulate and combine tables

Reading Homework focuses on Pandas and SQL: Aim to 
release by tonight, probably by tomorrow

41



REST OF TODAY’S 
LECTURE
By popular request …
• Version control primer!
• Specifically, git via GitHub and GitLab
• Thanks: Mark Groves (Microsoft), Ilan Biala & Aaron 

Perley (CMU), Sharif U., & the HJCB Senior Design Team!
And then a bit on keeping your data … tidy data.

42



WHAT IS VERSION 
CONTROL?

43



DEVELOPMENT TOOL
When working with a team, the need for a central repository 
is essential
• Need a system to allow versioning, and a way to acquire the 

latest edition of the code

• A system to track and manage bugs was also needed

44



atlassian.com/git/tutorials/what-is-version-control

GOALS OF VERSION 
CONTROL
Be able to search through revision history and retrieve 
previous versions of any file in a project
Be able to share changes with collaborators on a project
Be able to confidently make large changes to existing files

45



NAMED FOLDERS 
APPROACH
Can be hard to track
Memory-intensive
Can be slow
Hard to share
No record of authorship

46



LOCAL DATABASE OF 
VERSIONS APPROACH

Provides an abstraction over finding the right versions of 
files and replacing them in the project
Records who changes what, but hard to parse that
Can’t share with collaborators

47



CENTRALIZED VERSION 
CONTROL SYSTEMS
A central, trusted repository 
determines the order of commits 
(“versions” of the project)

Collaborators “push” changes 
(commits) to this repository.

Any new commits must be 
compatible with the most recent 
commit. If it isn’t, somebody must 
“merge” it in.

Examples: SVN, CVS, Perforce

48



Central 
Repositor

y

Developer 
A’s local 

files

Developer 
D’s local 

files

Developer 
C’s local 

files

Developer 
B’s local 

files

Commi
t

Checkou
t

Checkou
t

Commi
t

Commi
t

Commi
t

Checkou
t

Checkou
t

Dev 
A’s 
Repo

Dev 
B’s 
Repo

Dev 
C’s 
Repo

Dev 
D’s 
Repo

Commit Commit

Commit

Commit

Push/Fetc
h

Push/Fetch

Push/Fetc
h

Push/Fetch
Push/Fetc

h Push/Fetc
h

Centralized 
Version Control 

System

Distributed 
Version Control 

System

DISTRIBUTED VERSION 
CONTROL SYSTEMS (DVCS)
• No central repository
• Every repository has every commit
• Examples: Git, Mercurial

49



WHAT IS GIT
Git is a version control system
Developed as a repository system for both local and remote 
changes
Allows teammates to work simultaneously on a project
Tracks each commit, allowing for a detailed documentation of 
the project along every step
Allows for advanced merging and branching operations

50



A SHORT HISTORY OF 
GIT
Linux kernel development
1991-2002
• Changes passed around as archived file

2002-2005
• Using a DVCS called BitKeeper
2005
• Relationship broke down between two 

communities (BitKeeper licensing issues)

51



A SHORT HISTORY OF 
GIT
Goals:
• Speed

• Simple design

• Strong support for non-linear development (thousands of 
parallel branches)

• Fully distributed – not a requirement, can be centralized
• Able to handle large projects like the Linux kernel efficiently 

(speed and data size)

52



A SHORT HISTORY OF 
GIT
Popularity:
• Git is now the most widely used source code management tool

• 33.3% of professional software developers use Git (often 
through GitHub) as their primary source control system

53

[citation needed]



GIT IN INDUSTRY
Companies and projects currently using Git
• Google
• Android
• Facebook
• Microsoft
• Netflix
• Linux
• Ruby on Rails
• Gnome
• KDE
• Eclipse
• X.org

54



GIT BASICS
Snapshots, not changes
• A picture of what all your files look like at that moment

• If a file has not changed, store a reference

Nearly every operation is local
• Browsing the history of project
• See changes between two versions

55



WHY GIT IS BETTER
Git tracks the content rather than the files
Branches are lightweight, and merging is a simple process
Allows for a more streamlined offline development process
Repositories are smaller in size and are stored in a single .git
directory
Allows for advanced staging operations, and the use of 
stashing when working through troublesome sections

56



GIT VS {CVS, SVN, …}
Why you should care:
• Many places use legacy systems that will cause problems in 

the future – be the change you believe in!

Git is much faster than SVN:
• Coded in C, which allows for a great amount of optimization

• Accomplishes much of the logic client side, thereby reducing 
time needed for communication

• Developed to work on the Linux kernel, so that large project 
manipulation is at the forefront of the benchmarks

57



GIT VS {CVS, SVN, …}
Speed benchmarks:

Benchmarks performed by http://git-scm.com/about/small-and-fast

58

http://git-scm.com/about/small-and-fast


GIT VS {CVS, SVN, …}
Git is significantly smaller than SVN
• All files are contained in a small decentralized .git file

• In the case of Mozilla’s projects, a Git repository was 30 times 
smaller than an identical SVN repository

• Entire Linux kernel with 5 years of versioning contained in a 
single 1 GB .git file

• SVN carries two complete copies of each file, while Git 
maintains a simple and separate 100 bytes of data per file, 
noting changes and supporting operations

Nice because you can (and do!) store the whole thing locally

59



GIT VS {CVS, SVN, …}
Git is more secure than SVN
• All commits are uniquely hashed for both security and indexing 

purposes

• Commits can be authenticated through numerous means

• In the case of SSH commits, a key may be provided by both 
the client and server to guarantee authenticity and prevent 
against unauthorized access

60



GIT VS {CVS, SVN, …}
Git is decentralized:
• Each user contains an individual repository and can check 

commits against itself, allowing for detailed local revisioning

• Being decentralized allows for easy replication and deployment

• In this case, SVN relies on a single centralized repository and 
is unusable without

61



GIT VS {CVS, SVN, …}
Git is flexible:
• Due to it’s decentralized nature, git commits can be stored 

locally, or committed through HTTP, SSH, FTP, or even by Email

• No need for a centralized repository

• Developed as a command line utility, which allows a large 
amount of features to be built and customized on top of it

62



GIT VS {CVS, SVN, …}
Data assurance: a checksum is performed on both upload 
and download to ensure sure that the file hasn’t been 
corrupted.
Commit IDs are generated upon each commit:
• Linked list style of commits

• Each commit is linked to the next, so that if something in the 
history was changed, each following commit will be rebranded to 
indicate the modification

63



GIT VS {CVS, SVN, …}
Branching:
• Git allows the usage of advanced branching mechanisms and 

procedures

• Individual divisions of the code can be separated and 
developed separately within separate branches of the code

• Branches can allow for the separation of work between 
developers, or even for disposable experimentation

• Branching is a precursor and a component of the merging 
process

Will give an example shortly.

64



GIT VS {CVS, SVN, …}
Merging
• The process of merging is directly related to the process of 

branching

• Individual branches may be merged together, solving code 
conflicts, back into the default or master branch of the project

• Merges are usually done automatically, unless a conflict is 
presented, in which case the user is presented with several 
options with which to handle the conflict

Will give an example shortly.

65



GIT VS {CVS, SVN, …}
Merging: content of the files is tracked rather than the file 
itself:
• This allows for a greater element of tracking and a smarter and 
more automated process of merging

• SVN is unable to accomplish this, and will throw a conflict if, 
e.g., a file name is changed and differs from the name in the 
central repository

• Git is able to solve this problem with its use of managing a 
local repository and tracking individual changes to the code

66



INITIALIZATION OF A 
GIT REPOSITORY

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in 
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first 
commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt



GIT BASICS I
The three (or four) states of a file:
• Modified:

• File has changed but not committed
• Staged:

• Marked to go to next commit snapshot
• Committed:

• Safely stored in local database
• Untracked!

• Newly added or removed files



GIT BASICS II
Three main areas of a git project:
• Working directory

• Single checkout of one version of the project.
• Staging area

• Simple file storing information about what will go into your 
next commit

• Git directory
• What is copied when cloning a repository



GIT BASICS III
Three main areas of a git project:



BRANCHES 
ILLUSTRATED

master
A

> git commit –m ‘my first commit’

(Default branch is called “master”; your 
first commit will be on this branch.)



BRANCHES 
ILLUSTRATED

master

> git commit (x2)

A B C



BRANCHES 
ILLUSTRATED

bug123

master

> git checkout –b bug123

A B C



BRANCHES 
ILLUSTRATED

master

> git commit (x2)

A B C

D E

bug123



BRANCHES 
ILLUSTRATED

master

> git checkout master

A B C

D E

bug123



BRANCHES 
ILLUSTRATED

bug123

master

> git merge bug123

A B C D E



BRANCHES 
ILLUSTRATED

master

> git branch -d bug123

A B C D E



BRANCHES 
ILLUSTRATED

master
A B C D E

F G

bug456



BRANCHES 
ILLUSTRATED

master
A B C D E

F G

bug456

> git checkout master



BRANCHES 
ILLUSTRATED

master
A B C D E

F G

> git merge bug456

H

bug456



BRANCHES 
ILLUSTRATED

master
A B C D E

F G

> git branch -d bug456

H



BRANCHES 
ILLUSTRATED

master
A B C D E

F G

bug456



BRANCHES 
ILLUSTRATED

master
A B C D E

> git rebase master

F’ G’

bug456



BRANCHES 
ILLUSTRATED

master
A B C D E

> git checkout master
> git merge bug456                     

F’ G’

bug456



WHEN TO BRANCH?
General rule of thumb:
• Anything in the master branch is always deployable.
Local branching is very lightweight!
• New feature? Branch!

• Experiment that you won’t ever deploy? Branch!
Good habits:
• Name your branch something descriptive (add-like-

button, refactor-jobs, create-ai-singularity) 

• Make your commit messages descriptive, too!

85



SO YOU WANT SOMEBODY ELSE 
TO HOST THIS FOR YOU …
Git: general distributed version control system
GitHub / BitBucket / GitLab / …: hosting services for git
repositories
In general, GitHub is the most popular:
• Lots of big projects (e.g., Python, Bootstrap, Angular, 

D3, node, Django, Visual Studio)

• Lots of ridiculously awesome projects (e.g., 
https://github.com/maxbbraun/trump2cash)

There are reasons to use the competitors (e.g., private 
repositories, access control)

86

https://github.com/maxbbraun/trump2cash)


“SOCIAL CODING”

87



REVIEW: HOW TO USE
Git commands for everyday usage are relatively simple
• git pull

• Get the latest changes to the code
• git add .

• Add any newly created files to the repository for tracking
• git add –u

• Remove any deleted files from tracking and the repository
• git commit –m ‘Changes’

• Make a version of changes you have made
• git push

• Deploy the latest changes to the central repository
Make a repo on GitHub and clone it to your machine:
• https://guides.github.com/activities/hello-world/

88

https://guides.github.com/activities/hello-world/


STUFF TO CLICK ON
Git
• http://git-scm.com/
GitHub
• https://github.com/
• https://guides.github.com/activities/hello-world/
• ^-- Just do this one.  You’ll need it for your tutorial J.
GitLab
• http://gitlab.org/
Git and SVN Comparison
• https://git.wiki.kernel.org/index.php/GitSvnComparison

89

http://git-scm.com/
https://github.com/
https://guides.github.com/activities/hello-world/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/GitSvnComparison


90



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL

91



TABLES 

92

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Observations,
Rows, or 

Tuples

Variables
(also called Attributes, or 

Columns, or Labels)

Special Column, called “Index”, or 
“ID”, or “Key”

Usually, no duplicates Allowed



TABLES 

93

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

ID Address
1 College Park, MD, 20742

2 Washington, DC, 20001

3 Silver Spring, MD 20901

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 
6245

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ 
HTTP/1.0" 200 3985

199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-
73/mission-sts-73.html HTTP/1.0" 200 4085



1. SELECT/SLICING
Select only some of the rows, or some of the columns, or a 
combination

94

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
2 11.0 40.8 143.8
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age
1 12.2
2 11.0
3 15.6
4 35.1

Only columns
ID and Age

Only rows 
with wgt > 41

Both

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age

1 12.2

3 15.6

4 35.1



2. AGGREGATE/REDUCE
Combine values across a column into a 
single value

95

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

SUM

SUM(wgt_kg^2 - hgt_cm)

73.9 232.6 640.0

MAX 35.1 84.2 185.8

14167.66What about ID/Index column?
Usually not meaningful to aggregate across it
May need to explicitly add an ID column



3. MAP
Apply a function to every row, possibly 
creating more or fewer columns

96

ID Address
1 College Park, MD, 20742
2 Washington, DC, 20001
3 Silver Spring, MD 20901

Variations that allow one row to generate multiple 
rows in the output (sometimes called “flatmap”)

ID City State Zipcode
1 College 

Park
MD 20742

2 Washington DC 20001
3 Silver 

Spring
MD 20901



4. GROUP BY
Group tuples together by 
column/dimension

97

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

ID B C
1 3 6.6
3 4 3.1
4 3 8.0
7 4 2.3
8 3 8.0

ID B C
2 2 4.7
5 1 1.2
6 2 2.5

A = foo

A = bar
By ‘A’



4. GROUP BY
Group tuples together by 
column/dimension

98

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘B’

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4



4. GROUP BY
Group tuples together by 
column/dimension

99

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘A’, ‘B’

ID C
5 1.2

A = bar, B = 1

ID C
2 4.7
6 2.5

ID C
3 3.1
7 2.3

ID C
1 6.6
4 8.0
8 8.0

A = foo, B = 3

A = bar, B = 2

A = foo, B = 4



5. GROUP BY 
AGGREGATE
Compute one aggregate
Per group

10
0

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C

10
0

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4



5. GROUP BY 
AGGREGATE
Final result usually seen
As a table

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C

10
1

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4

B SUM(C )
1 1.2
2 7.2
3 22.6
4 5.4



6. UNION/INTERSECTION/DIFFERENCE
Set operations – only if the two tables 
have identical attributes/columns

10
2

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0

10
2

ID A B C
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

U

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0Similarly Intersection and Set Difference 

manipulate tables as Sets

IDs may be treated in different ways, resulting in 
somewhat different behaviors



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the 
same key

10
3

ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

10
3

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3

⨝

What about IDs not present in both tables?
Often need to keep them around
Can “pad” with NaN



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the same key
Outer joins can be used to ”pad” IDs that don’t appear in both tables

Three variants: LEFT, RIGHT, FULL
SQL Terminology -- Pandas has these operations as well

10
4

ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

10
4

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3
4 foo 3 NaN
5 NaN NaN 8.0

⟗



SUMMARY
§ Tables: A simple, common abstraction

§ Subsumes a set of “strings” – a common input

§ Operations
§ Select, Map, Aggregate, Reduce, Join/Merge, 

Union/Concat, Group By

§ In a given system/language, the operations may be named 
differently
§ E.g., SQL uses “join”, whereas Pandas uses “merge”

§ Subtle variations in the definitions, especially for more 
complex operations

10
5



HOW MANY 
TUPLES IN THE 
ANSWER?
A. 1
B. 3
C. 5
D. 8

ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’



HOW MANY 
GROUPS IN THE 
ANSWER?
A. 1
B. 3
C. 4
D. 6

ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’, 
‘B’



HOW MANY 
TUPLES IN THE 
ANSWER?
A. 1
B. 2
C. 4
D. 6

ID A B
1 foo 3
2 bar 2
4 foo 4
5 foo 3

ID C
2 1.2
4 2.5
6 2.3
7 8.0

⨝



HOW MANY 
TUPLES IN THE 
ANSWER?
A. 1
B. 4
C. 6
D. 8

ID A B
1 foo 3
2 bar 2
4 foo 4
5 foo 3

ID C
2 1.2
4 2.5
6 2.3
7 8.0

⟗

FULL OUTER JOIN

All IDs will be present in the answer
With NaNs



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases

11
0



PANDAS: HISTORY
§ Written by: Wes McKinney

§ Started in 2008 to get a high-performance, flexible tool to 

perform quantitative analysis on financial data

§ Highly optimized for performance, with critical code paths 
written in Cython or C

§ Key constructs: 
§ Series (like a NumPy Array)

§ DataFrame (like a Table or Relation, or R data.frame)

§ Foundation for Data Wrangling and Analysis in Python

11
1



PANDAS: SERIES

§ Subclass of numpy.ndarray

§ Data: any type

§ Index labels need not be ordered

§ Duplicates possible but result in 

reduced functionality

11
2

Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates are possible (but 
result in reduced functionality)

5

6

12

-5

6.7

A

B

C

D

E

valuesindex



PANDAS: DATAFRAME
§ Each column can have a different 

type
§ Row and Column index
§ Mutable size: insert and delete 

columns

§ Note the use of word “index” for 
what we called “key”
§ Relational databases use “index” 

to mean something else

§ Non-unique index values allowed
§ May raise an exception for some 

operations

11
3

DataFrame

• NumPy array-like

• Each column can have a 
different type

• Row and column index

• Size mutable: insert and delete 
columns 

0

4

8

-12

16

A

B

C

D

E

index

x

y

z

w

a

2.7

6

10

NA

18

True

True

False

False

False

foo bar baz quxcolumns



HIERARCHICAL INDEXES
Sometimes more intuitive organization of the data
Makes it easier to understand and analyze higher-
dimensional data

e.g., instead of 3-D array, may only need a 2-D array 

11
4

DataFrame

• Axis indexing enable rich data alignment, 
joins / merges, reshaping, selection, etc.

day            Fri    Sat    Sun    Thur 
sex    smoker                            
Female No      3.125  2.725  3.329  2.460
       Yes     2.683  2.869  3.500  2.990
Male   No      2.500  3.257  3.115  2.942
       Yes     2.741  2.879  3.521  3.058



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases

11
5



TIDY DATA

But also:
• Names of files/DataFrames = description of one dataset
• Enforce one data type per dataset (ish)

11
6

age wgt_kg hgt_cm

12.2 42.3 145.1

11.0 40.8 143.8

15.6 65.3 165.3

35.1 84.2 185.8

Labels

Observations

Variables



EXAMPLE
Variable: measure or attribute:
• age, weight, height, sex

Value: measurement of attribute:
• 12.2, 42.3kg, 145.1cm, M/F

Observation: all measurements for an object
• A specific person is [12.2, 42.3, 145.1, F]

11
7



TIDYING DATA I

11
8

Name Treatment A Treatment B
John Smith - 2
Jane Doe 16 11
Mary Johnson 3 1

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

?????????????

Name Treatment A Treatment B Treatment C Treatment D
John Smith - 2 - -
Jane Doe 16 11 4 1
Mary Johnson 3 1 - 2

?????????????



TIDYING DATA II

11
9

Name Treatment Result
John Smith A -
John Smith B 2
John Smith C -
John Smith D -
Jane Doe A 16
Jane Doe B 11
Jane Doe C 4
Jane Doe D 1
Mary Johnson A 3
Mary Johnson B 1
Mary Johnson C -
Mary Johnson D 2

2/21



MELTING DATA I

12
0

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137

Atheist 12 27 37 52 35 70

Buddhist 27 21 30 34 33 58

Catholic 418 617 732 670 638 1116

Dont 
know/refused 15 14 15 11 10 35

Evangelical Prot 575 869 1064 982 881 1486

Hindu 1 9 7 9 11 34

Historically 
Black Prot 228 244 236 238 197 223

Jehovahs 
Witness 20 27 24 24 21 30

Jewish 19 19 25 25 30 95

?????????????



MELTING DATA II

12
1

f_df = pd.melt(df,
["religion"],
var_name="income",
value_name="freq")

f_df = f_df.sort_values(by=["religion"])
f_df.head(10)

religion income freq
Agnostic <$10k 27

Agnostic $30-40k 81

Agnostic $40-50k 76

Agnostic $50-75k 137

Agnostic $10-20k 34

Agnostic $20-30k 60

Atheist $40-50k 35

Atheist $20-30k 37

Atheist $10-20k 27

Atheist $30-40k 52



MORE COMPLICATED EXAMPLE
Billboard Top 100 data for songs, covering their position on 
the Top 100 for 75 weeks, with two “messy” bits:
• Column headers for each of the 75 weeks

• If a song didn’t last 75 weeks, those columns have are null

12
2

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

year artist.in
verted track time genre date.ente

red
date.pea
ked

x1st.wee
k

x2nd.we
ek ...

2000 Destiny's 
Child

Independent 
Women Part I 3:38 Rock 2000-09-

23
2000-11-
18 78 63.0 ...

2000 Santana Maria, Maria 4:18 Rock 2000-02-
12

2000-04-
08 15 8.0 ...

2000 Savage 
Garden

I Knew I Loved 
You 4:07 Rock 1999-10-

23
2000-01-
29 71 48.0 ...

2000 Madonn
a Music 3:45 Rock 2000-08-

12
2000-09-
16 41 23.0 ...

2000 Aguilera, 
Christina

Come On Over 
Baby 3:38 Rock 2000-08-

05
2000-10-
14 57 47.0 ...

2000 Janet Doesn't Really 
Matter 4:17 Rock 2000-06-

17
2000-08-
26 59 52.0 ...

Messy columns!



MORE COMPLICATED EXAMPLE

Creates one row per week, per record, with its rank

12
3

# Keep identifier variables
id_vars = ["year",

"artist.inverted",
"track",
"time",
"genre",
"date.entered",
"date.peaked"]

# Melt the rest into week and rank columns
df = pd.melt(frame=df,

id_vars=id_vars,
var_name="week",
value_name="rank")



12
4

MORE COMPLICATED EXAMPLE
# Formatting
df["week"] = df['week'].str.extract('(\d+)’,

expand=False).astype(int)
df["rank"] = df["rank"].astype(int)

# Cleaning out unnecessary rows
df = df.dropna()

# Create "date" columns
df['date'] = pd.to_datetime(

df['date.entered']) +
pd.to_timedelta(df['week'], unit='w') –
pd.DateOffset(weeks=1) 

[…, “x2nd.week”, 63.0] à […, 2, 63]



MORE COMPLICATED EXAMPLE

12
5

# Ignore now-redundant, messy columns
df = df[["year",

"artist.inverted",
"track",
"time",
"genre",
"week",
"rank",
"date"]]

df = df.sort_values(ascending=True,
by=["year","artist.inverted","track","week","rank"])

# Keep tidy dataset for future usage
billboard = df

df.head(10)



MORE COMPLICATED EXAMPLE

12
6

year artist.in
verted track time genre week rank date

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 1 87 2000-02-26

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 2 82 2000-03-04

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 3 72 2000-03-11

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 4 77 2000-03-18

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 5 87 2000-03-25

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 6 94 2000-04-01

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 7 99 2000-04-08

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 1 91 2000-09-02

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 2 87 2000-09-09

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 3 92 2000-09-16

?????????????



MORE TO DO?
Column headers are values, not variable names?
• Good to go!

Multiple variables are stored in one column?
• Maybe (depends on if genre text in raw data was multiple)

Variables are stored in both rows and columns?
• Good to go!

Multiple types of observational units in the same table?
• Good to go!  One row per song’s week on the Top 100.

A single observational unit is stored in multiple tables?
• Don’t do this!

Repetition of data?
• Lots!  Artist and song title’s text names.  Which leads us to …

12
7



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases 

12
8



TODAY’S LECTURE
Relational data:
• What is a relation, and how do they interact?

Querying databases:
• SQL

• SQLite
• How does this relate to pandas?

Joins

12
9

Thanks to Zico Kolter for some structure for this lecture!



RELATION
Simplest relation: a table aka tabular data full of unique tuples

13
0

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Labels

Observations
(called tuples)

Variables
(called attributes)



PRIMARY KEYS

The primary key is a unique identifier for every tuple in a relation

• Each tuple has exactly one primary key

13
1

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



FOREIGN KEYS

Foreign keys are attributes (columns) that point to a different 
table’s primary key
• A table can have multiple foreign keys

13
2

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



SEARCHING FOR 
ELEMENTS
Find all people with nationality Canada (nat_id = 2):

??????????????? 

13
3

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

O(n)



INDEXES
Like a hidden sorted map of references to a specific attribute 
(column) in a table; allows O(log n) lookup instead of O(n)

13
4

loc ID age wgt_kg hgt_cm nat_id

0 1 12.2 42.3 145.1 1

128 2 11.0 40.8 143.8 2

256 3 15.6 65.3 165.3 2

384 4 35.1 84.2 185.8 1

512 5 18.1 62.2 176.2 3

640 6 19.6 82.1 180.1 1

nat_id locs
1 0, 384,

640
2 128, 256
3 512



INDEXES
Actually implemented with data structures like B-trees
• (Take courses like CMSC424 or CMSC420)

But: indexes are not free
• Takes memory to store

• Takes time to build
• Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free
• Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!

13
5



RELATIONSHIPS
Primary keys and foreign keys define interactions between 
different tables aka entities.  Four types:
• One-to-one

• One-to-one-or-none

• One-to-many and many-to-one 

• Many-to-many

Connects (one, many) of the rows in one table to (one, many) 
of the rows in another table

13
6



ONE-TO-MANY & 
MANY-TO-ONE
One person can have one nationality in this example, but one 
nationality can include many people.

13
7

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Person Nationality



ONE-TO-ONE
Two tables have a one-to-one relationship if every tuple in the 
first tables corresponds to exactly one entry in the other

In general, you won’t be using these (why not just merge the 
rows into one table?) unless:
• Split a big row between SSD and HDD or distributed

• Restrict access to part of a row (some DBMSs allow column-level 
access control, but not all)

• Caching, partitioning, & serious stuff: take CMSC424

13
8

Person SSN



ONE-TO-ONE-OR-NONE
Say we want to keep track of people’s cats:

People with IDs 2 and 3 do not own cats*, and are not in the 
table.  Each person has at most one entry in the table.

Is this data tidy?

13
9

Person ID Cat1 Cat2
1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

Person Cat

*nor do they have hearts, apparently.



MANY-TO-MANY
Say we want to keep track of people’s cats’ colorings:

One column per color, too many columns, too many nulls
Each cat can have many colors, and each color many cats 

14
0

ID Name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

Cat Color



ASSOCIATIVE TABLES

Primary key  ???????????
• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s)   ???????????
• Cat ID and Color ID

14
1

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

ID Name

1 Megabyte

2 Meowly Cyrus

3 Fuzz Aldrin

4 Chairman Meow

5 Anderson Pooper

6 Gigabyte

ID Name

1 Black

2 Brown

3 White

4 Orange

5 Neon Green

6 Invisible

Cats Colors



ASIDE: PANDAS
So, this kinda feels like pandas …

• And pandas kinda feels like a relational data system …

Pandas is not strictly a relational data system:

• No notion of primary / foreign keys

It does have indexes (and multi-column indexes):

• pandas.Index: ordered, sliceable set storing axis labels

• pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB 
level, then fine-grained slicing and dicing and viz with pandas

14
2



SQLITE
On-disk relational database management system (RDMS)
• Applications connect directly to a file

Most RDMSs have applications connect to a server:
• Advantages include greater concurrency, less restrictive 

locking

• Disadvantages include, for this class, setup time J
Installation:
• conda install -c anaconda sqlite

• (Should come preinstalled, I think?)

All interactions use Structured Query Language (SQL)

14
3



HOW A RELATIONAL DB FITS 
INTO YOUR WORKFLOW

14
4

SQLite CLI & GUI 
Frontend

SQLite FilePython

Raw Input

Structured output 
(trained classifiers, 

JSON for D3, 
visualizations)

SQL

SQ
L

Persists!

Persists!



CRASH COURSE IN 
SQL (IN PYTHON)

Cursor: temporary work area in system memory for 
manipulating SQL statements and return values
If you do not close the connection (conn.close()), any 
outstanding transaction is rolled back
• (More on this in a bit.)

14
5

import sqlite3

# Create a database and connect to it
conn = sqlite3.connect(“cmsc320.db”)
cursor = conn.cursor()

# do cool stuff
conn.close()



CRASH COURSE IN 
SQL (IN PYTHON)

Capitalization doesn’t matter for SQL reserved words
• SELECT = select = SeLeCt
Rule of thumb: capitalize keywords for readability 14
6

# Make a table
cursor.execute(“””
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

)”””)

?????????

id name
cats



CRASH COURSE IN 
SQL (IN PYTHON)

14
7

# Insert into the table
cursor.execute(“INSERT INTO cats VALUE (1, ’Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUE (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUE (3, ‘Fuzz Aldrin’)”)
conn.commit()

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin

# Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2”);
conn.commit()

id name
1 Megabyte
3 Fuzz Aldrin



CRASH COURSE IN 
SQL (IN PYTHON)

index_col=“id”: treat column with label “id” as an index
index_col=1: treat column #1 (i.e., “name”) as an index
(Can also do multi-indexing.)

14
8

# Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):

print(row)

# Read all rows into pandas DataFrame
pd.read_sql_query(“SELECT * FROM cats”, conn, index_col=”id”)

id name
1 Megabyte
3 Fuzz Aldrin



JOINING DATA
A join operation merges two or more tables into a single 
relation.  Different ways of doing this:
• Inner
• Left
• Right
• Full Outer

Join operations are done on columns that explicitly link the 
tables together

14
9



INNER JOINS

Inner join returns merged rows that share the same value in 
the column they are being joined on (id and cat_id).

15
0

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017



INNER JOINS

15
1

# Inner join in pandas
df_cats = pd.read_sql_query(“SELECT * from cats”, conn)
df_visits = pd.read_sql_query(“SELECT * from visits”, conn)
df_cats.merge(df_visits, how = “inner”, 

left_on = “id”, right_on = ”cat_id”)

# Inner join in SQL / SQLite via Python
cursor.execute(“””

SELECT 
*

FROM 
cats, visits

WHERE
cats.id == visits.cat_id

”””)



LEFT JOINS
Inner joins are the most common type of joins (get results 
that appear in both tables)
Left joins: all the results from the left table, only some
matching results from the right table
Left join (cats, visits) on (id, cat_id)  ???????????

15
2

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL



RIGHT JOINS
Take a guess!
Right join

(cats, visits)
on

(id, cat_id)
???????????

15
3

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017
7 02-19-2017
12 02-21-2017

cats
visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017



LEFT/RIGHT JOINS

15
4

# Left join in pandas
df_cats.merge(df_visits, how = “left”, 

left_on = “id”, right_on = ”cat_id”)

# Right join in pandas
df_cats.merge(df_visits, how = “right”, 

left_on = “id”, right_on = ”cat_id”)

# Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON

cats.id == visits.cat_id”)

# Right join in SQL / SQLite via Python
L



FULL OUTER JOIN
Combines the left and the right join          ???????????

15
5

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL
7 NULL 02-19-2017
12 NULL 02-21-2017

# Outer join in pandas
df_cats.merge(df_visits, how = “outer”, 

left_on = “id”, right_on = ”cat_id”)



GOOGLE IMAGE SEARCH ONE 
SLIDE SQL JOIN VISUAL

15
6

Image credit: http://www.dofactory.com/sql/join



RAW SQL IN PANDAS
If you “think in SQL” already, you’ll be fine with pandas:
• conda install -c anaconda pandasql

• Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

15
7

# Write the query text
q = ”””

SELECT
*

FROM
cats

LIMIT 10;”””

# Store in a DataFrame
df = sqldf(q, locals())



NEXT CLASS:
EXPLORATORY ANALYSIS

15
8


