
PRINCIPLES OF 
DATA SCIENCE
JOHN P DICKERSON

Lecture #4 – 9/19/2018

CMSC641
Wednesdays 
7pm – 9:30pm



ANNOUNCEMENTS
Project 1 is out!
• Announced on ELMS and Piazza
• https://github.com/JohnDickerson/cmsc641-fall2018/tree/master/project1

• Due date is October 3rd

Reminder: Weekly quizzes, due
on Wednesdays at noon

2

https://github.com/JohnDickerson/cmsc641-fall2018/tree/master/project1


“HOW DOES IMPORT WORK”
Python code is stored in module – simply put, a file full of 
Python code
A package is a directory (tree) full of modules that also 
contains a file called __init.py__

• Packages let you structure Python’s module namespace
• E.g., X.Y is a submodule Y in a package named X

For one module to gain access to code in another module, it 
must import it

3



EXAMPLE

4

# Load (sub)module sound.effects.echo
import sound.effects.echo
# Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html



EXAMPLE

5

# Load (sub)module sound.effects.echo
import sound.effects.echo
# Must use full name to reference echo functions
sound.effects.echo.echofilter(input, output, delay=0.7)

https://docs.python.org/2/tutorial/modules.html

# Load (sub)module sound.effects.echo
from sound.effects import echo
# No longer need the package prefix for functions in echo
echo.echofilter(input, output, delay=0.7)

# Load a specific function directly
from sound.effects.echo import echofilter
# Can now use that function with no prefix
echofilter(input, output, delay=0.7)



THE DATA LIFECYCLE

6

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision



THE DATA LIFECYCLE

7

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL

8



RECAP: TABLES 

9

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Observations,
Rows, or 

Tuples

Variables
(also called Attributes, or 

Columns, or Labels)

Special Column, called “Index”, or 
“ID”, or “Key”

Usually, no duplicates Allowed



1. SELECT/SLICING
Select only some of the rows, or some of the columns, or a 
combination

10

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
2 11.0 40.8 143.8
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age
1 12.2
2 11.0
3 15.6
4 35.1

Only columns
ID and Age

Only rows 
with wgt > 41

Both

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age

1 12.2

3 15.6

4 35.1



2. AGGREGATE/REDUCE
Combine values across a column into a 
single value

11

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

SUM

SUM(wgt_kg^2 - hgt_cm)

73.9 232.6 640.0

MAX 35.1 84.2 185.8

14167.66What about ID/Index column?
Usually not meaningful to aggregate across it
May need to explicitly add an ID column



3. MAP
Apply a function to every row, possibly 
creating more or fewer columns

12

ID Address
1 College Park, MD, 20742
2 Washington, DC, 20001
3 Silver Spring, MD 20901

Variations that allow one row to generate multiple 
rows in the output (sometimes called “flatmap”)

ID City State Zipcode
1 College 

Park
MD 20742

2 Washington DC 20001
3 Silver 

Spring
MD 20901



4. GROUP BY
Group tuples together by 
column/dimension

13

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

ID B C
1 3 6.6
3 4 3.1
4 3 8.0
7 4 2.3
8 3 8.0

ID B C
2 2 4.7
5 1 1.2
6 2 2.5

A = foo

A = bar
By ‘A’



4. GROUP BY
Group tuples together by 
column/dimension

14

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘B’

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4



4. GROUP BY
Group tuples together by 
column/dimension

15

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘A’, ‘B’

ID C
5 1.2

A = bar, B = 1

ID C
2 4.7
6 2.5

ID C
3 3.1
7 2.3

ID C
1 6.6
4 8.0
8 8.0

A = foo, B = 3

A = bar, B = 2

A = foo, B = 4



5. GROUP BY 
AGGREGATE
Compute one aggregate
Per group

16

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C

16

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4



5. GROUP BY 
AGGREGATE
Final result usually seen
As a table

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C

17

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4

B SUM(C )
1 1.2
2 7.2
3 22.6
4 5.4



6. UNION/INTERSECTION/DIFFERENCE
Set operations – only if the two tables 
have identical attributes/columns

18

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0

18

ID A B C
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

U

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0Similarly Intersection and Set Difference 

manipulate tables as Sets

IDs may be treated in different ways, resulting in 
somewhat different behaviors



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the 
same key

19

ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

19

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3

⨝

What about IDs not present in both tables?
Often need to keep them around
Can “pad” with NaN



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the same key
Outer joins can be used to ”pad” IDs that don’t appear in both tables

Three variants: LEFT, RIGHT, FULL
SQL Terminology -- Pandas has these operations as well

20

ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

20

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3
4 foo 3 NaN
5 NaN NaN 8.0

⟗



SUMMARY
§ Tables: A simple, common abstraction

§ Subsumes a set of “strings” – a common input

§ Operations
§ Select, Map, Aggregate, Reduce, Join/Merge, 

Union/Concat, Group By

§ In a given system/language, the operations may be named 
differently
§ E.g., SQL uses “join”, whereas Pandas uses “merge”

§ Subtle variations in the definitions, especially for more 
complex operations

21



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases

22



PANDAS: HISTORY
§ Written by: Wes McKinney

§ Started in 2008 to get a high-performance, flexible tool to 

perform quantitative analysis on financial data

§ Highly optimized for performance, with critical code paths 
written in Cython or C

§ Key constructs: 
§ Series (like a NumPy Array)

§ DataFrame (like a Table or Relation, or R data.frame)

§ Foundation for Data Wrangling and Analysis in Python

23



PANDAS: SERIES

§ Subclass of numpy.ndarray

§ Data: any type

§ Index labels need not be ordered

§ Duplicates possible but result in 

reduced functionality

24

Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates are possible (but 
result in reduced functionality)

5

6

12

-5

6.7

A

B

C

D

E

valuesindex



PANDAS: DATAFRAME
§ Each column can have a different 

type
§ Row and Column index
§ Mutable size: insert and delete 

columns

§ Note the use of word “index” for 
what we called “key”
§ Relational databases use “index” 

to mean something else

§ Non-unique index values allowed
§ May raise an exception for some 

operations

25

DataFrame

• NumPy array-like

• Each column can have a 
different type

• Row and column index

• Size mutable: insert and delete 
columns 

0

4

8

-12

16

A

B

C

D

E

index

x

y

z

w

a

2.7

6

10

NA

18

True

True

False

False

False

foo bar baz quxcolumns



HIERARCHICAL INDEXES
Sometimes more intuitive organization of the data
Makes it easier to understand and analyze higher-
dimensional data

e.g., instead of 3-D array, may only need a 2-D array 

26

DataFrame

• Axis indexing enable rich data alignment, 
joins / merges, reshaping, selection, etc.

day            Fri    Sat    Sun    Thur 
sex    smoker                            
Female No      3.125  2.725  3.329  2.460
       Yes     2.683  2.869  3.500  2.990
Male   No      2.500  3.257  3.115  2.942
       Yes     2.741  2.879  3.521  3.058



ESSENTIAL FUNCTIONALITY
Reindexing to change the index associated with a DataFrame

• Common usage to interpolate, fill in missing values

27

b    7.2
c    3.6
d    4.5
e    NaN

In [83]: obj.reindex(['a', 'b', 'c', 'd', 'e'], fill_value=0)
Out[83]: 
a   -5.3
b    7.2
c    3.6
d    4.5
e    0.0

For ordered data like time series, it may be desirable to do some interpolation or filling
of values when reindexing. The method option allows us to do this, using a method such
as ffill which forward fills the values:

In [84]: obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])

In [85]: obj3.reindex(range(6), method='ffill')
Out[85]: 
0      blue
1      blue
2    purple
3    purple
4    yellow
5    yellow

Table 5-4 lists available method options. At this time, interpolation more sophisticated
than forward- and backfilling would need to be applied after the fact.

Table 5-4. reindex method (interpolation) options

Argument Description

ffill or pad Fill (or carry) values forward

bfill or backfill Fill (or carry) values backward

With DataFrame, reindex can alter either the (row) index, columns, or both. When
passed just a sequence, the rows are reindexed in the result:

In [86]: frame = DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'],
   ....:                   columns=['Ohio', 'Texas', 'California'])

In [87]: frame
Out[87]: 
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

In [88]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])

In [89]: frame2
Out[89]: 

Essential Functionality | 123

From: Python for Data Analysis; Wes McKinney



ESSENTIAL FUNCTIONALITY
“drop” to delete entire rows or columns
Indexing, Selection, Filtering: very similar to NumPy
Arithmetic Operations

• Result index union of the two input indexes
• Options to do “fill” while doing these operations

28

          one  two  three
Colorado    0    5      6
Utah        8    9     10
New York   12   13     14

So there are many ways to select and rearrange the data contained in a pandas object.
For DataFrame, there is a short summary of many of them in Table 5-6. You have a
number of additional options when working with hierarchical indexes as you’ll later
see.

When designing pandas, I felt that having to type frame[:, col] to select
a column was too verbose (and error-prone), since column selection is
one of the most common operations. Thus I made the design trade-off
to push all of the rich label-indexing into ix.

Table 5-6. Indexing options with DataFrame

Type Notes

obj[val] Select single column or sequence of columns from the DataFrame. Special case con-
veniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set
values based on some criterion).

obj.ix[val] Selects single row of subset of rows from the DataFrame.

obj.ix[:, val] Selects single column of subset of columns.

obj.ix[val1, val2] Select both rows and columns.

reindex method Conform one or more axes to new indexes.

xs method Select single row or column as a Series by label.

icol, irow methods Select single column or row, respectively, as a Series by integer location.

get_value, set_value methods Select single value by row and column label.

Arithmetic and data alignment
One of the most important pandas features is the behavior of arithmetic between ob-
jects with different indexes. When adding together objects, if any index pairs are not
the same, the respective index in the result will be the union of the index pairs. Let’s
look at a simple example:

In [126]: s1 = Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])

In [127]: s2 = Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])

In [128]: s1        In [129]: s2
Out[128]:           Out[129]:   
a    7.3            a   -2.1    
c   -2.5            c    3.6    
d    3.4            e   -1.5    

128 | Chapter 5:ಗGetting Started with pandas

e    1.5            f    4.0    
                    g    3.1

Adding these together yields:

In [130]: s1 + s2
Out[130]: 
a    5.2
c    1.1
d    NaN
e    0.0
f    NaN
g    NaN

The internal data alignment introduces NA values in the indices that don’t overlap.
Missing values propagate in arithmetic computations.

In the case of DataFrame, alignment is performed on both the rows and the columns:

In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
   .....:                 index=['Ohio', 'Texas', 'Colorado'])

In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
   .....:                 index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [133]: df1            In [134]: df2    
Out[133]:                Out[134]:        
          b  c  d                b   d   e
Ohio      0  1  2        Utah    0   1   2
Texas     3  4  5        Ohio    3   4   5
Colorado  6  7  8        Texas   6   7   8
                         Oregon  9  10  11

Adding these together returns a DataFrame whose index and columns are the unions
of the ones in each DataFrame:

In [135]: df1 + df2
Out[135]: 
           b   c   d   e
Colorado NaN NaN NaN NaN
Ohio       3 NaN   6 NaN
Oregon   NaN NaN NaN NaN
Texas      9 NaN  12 NaN
Utah     NaN NaN NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently-indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other:

In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))

In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))

In [138]: df1          In [139]: df2        
Out[138]:              Out[139]:            
   a  b   c   d            a   b   c   d   e

Essential Functionality | 129

e    1.5            f    4.0    
                    g    3.1

Adding these together yields:

In [130]: s1 + s2
Out[130]: 
a    5.2
c    1.1
d    NaN
e    0.0
f    NaN
g    NaN

The internal data alignment introduces NA values in the indices that don’t overlap.
Missing values propagate in arithmetic computations.

In the case of DataFrame, alignment is performed on both the rows and the columns:

In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
   .....:                 index=['Ohio', 'Texas', 'Colorado'])

In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
   .....:                 index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [133]: df1            In [134]: df2    
Out[133]:                Out[134]:        
          b  c  d                b   d   e
Ohio      0  1  2        Utah    0   1   2
Texas     3  4  5        Ohio    3   4   5
Colorado  6  7  8        Texas   6   7   8
                         Oregon  9  10  11

Adding these together returns a DataFrame whose index and columns are the unions
of the ones in each DataFrame:

In [135]: df1 + df2
Out[135]: 
           b   c   d   e
Colorado NaN NaN NaN NaN
Ohio       3 NaN   6 NaN
Oregon   NaN NaN NaN NaN
Texas      9 NaN  12 NaN
Utah     NaN NaN NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently-indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other:

In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))

In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))

In [138]: df1          In [139]: df2        
Out[138]:              Out[139]:            
   a  b   c   d            a   b   c   d   e

Essential Functionality | 129



FUNCTION APPLICATION AND 
MAPPING

29

Out[155]:            Out[156]:        
        b   d   e    Utah       1     
Utah    0   1   2    Ohio       4     
Ohio    3   4   5    Texas      7     
Texas   6   7   8    Oregon    10     
Oregon  9  10  11    Name: d          
                                      
In [157]: frame.sub(series3, axis=0)
Out[157]: 
        b  d  e
Utah   -1  0  1
Ohio   -1  0  1
Texas  -1  0  1
Oregon -1  0  1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [159]: frame                           In [160]: np.abs(frame)             
Out[159]:                                 Out[160]:                           
               b         d         e                     b         d         e
Utah   -0.204708  0.478943 -0.519439      Utah    0.204708  0.478943  0.519439
Ohio   -0.555730  1.965781  1.393406      Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023      Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221      Oregon  1.246435  1.007189  1.296221

Another frequent operation is applying a function on 1D arrays to each column or row.
DataFrame’s apply method does exactly this:

In [161]: f = lambda x: x.max() - x.min()

In [162]: frame.apply(f)        In [163]: frame.apply(f, axis=1)
Out[162]:                       Out[163]:                       
b    1.802165                   Utah      0.998382              
d    1.684034                   Ohio      2.521511              
e    2.689627                   Texas     0.676115              
                                Oregon    2.542656

Many of the most common array statistics (like sum and mean) are DataFrame methods,
so using apply is not necessary.

The function passed to apply need not return a scalar value, it can also return a Series
with multiple values:

In [164]: def f(x):
   .....:     return Series([x.min(), x.max()], index=['min', 'max'])

In [165]: frame.apply(f)

132 | Chapter 5:ಗGetting Started with pandas

Out[155]:            Out[156]:        
        b   d   e    Utah       1     
Utah    0   1   2    Ohio       4     
Ohio    3   4   5    Texas      7     
Texas   6   7   8    Oregon    10     
Oregon  9  10  11    Name: d          
                                      
In [157]: frame.sub(series3, axis=0)
Out[157]: 
        b  d  e
Utah   -1  0  1
Ohio   -1  0  1
Texas  -1  0  1
Oregon -1  0  1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [159]: frame                           In [160]: np.abs(frame)             
Out[159]:                                 Out[160]:                           
               b         d         e                     b         d         e
Utah   -0.204708  0.478943 -0.519439      Utah    0.204708  0.478943  0.519439
Ohio   -0.555730  1.965781  1.393406      Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023      Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221      Oregon  1.246435  1.007189  1.296221

Another frequent operation is applying a function on 1D arrays to each column or row.
DataFrame’s apply method does exactly this:

In [161]: f = lambda x: x.max() - x.min()

In [162]: frame.apply(f)        In [163]: frame.apply(f, axis=1)
Out[162]:                       Out[163]:                       
b    1.802165                   Utah      0.998382              
d    1.684034                   Ohio      2.521511              
e    2.689627                   Texas     0.676115              
                                Oregon    2.542656

Many of the most common array statistics (like sum and mean) are DataFrame methods,
so using apply is not necessary.

The function passed to apply need not return a scalar value, it can also return a Series
with multiple values:

In [164]: def f(x):
   .....:     return Series([x.min(), x.max()], index=['min', 'max'])

In [165]: frame.apply(f)

132 | Chapter 5:ಗGetting Started with pandas

From: Python for Data Analysis; Wes McKinney



SORTING AND RANKING

30From: Python for Data Analysis; Wes McKinney

Out[165]: 
            b         d         e
min -0.555730  0.281746 -1.296221
max  1.246435  1.965781  1.393406

Element-wise Python functions can be used, too. Suppose you wanted to compute a
formatted string from each floating point value in frame. You can do this with applymap:

In [166]: format = lambda x: '%.2f' % x

In [167]: frame.applymap(format)
Out[167]: 
            b     d      e
Utah    -0.20  0.48  -0.52
Ohio    -0.56  1.97   1.39
Texas    0.09  0.28   0.77
Oregon   1.25  1.01  -1.30

The reason for the name applymap is that Series has a map method for applying an ele-
ment-wise function:

In [168]: frame['e'].map(format)
Out[168]: 
Utah      -0.52
Ohio       1.39
Texas      0.77
Oregon    -1.30
Name: e

Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [169]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [170]: obj.sort_index()
Out[170]: 
a    1
b    2
c    3
d    0

With a DataFrame, you can sort by index on either axis:

In [171]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
   .....:                   columns=['d', 'a', 'b', 'c'])

In [172]: frame.sort_index()        In [173]: frame.sort_index(axis=1)
Out[172]:                           Out[173]:                         
       d  a  b  c                          a  b  c  d                 
one    4  5  6  7                   three  1  2  3  0                 
three  0  1  2  3                   one    5  6  7  4

Essential Functionality | 133

Ranking is closely related to sorting, assigning ranks from one through the number of
valid data points in an array. It is similar to the indirect sort indices produced by 
numpy.argsort, except that ties are broken according to a rule. The rank methods for
Series and DataFrame are the place to look; by default rank breaks ties by assigning
each group the mean rank:

In [183]: obj = Series([7, -5, 7, 4, 2, 0, 4])

In [184]: obj.rank()
Out[184]: 
0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5

Ranks can also be assigned according to the order they’re observed in the data:

In [185]: obj.rank(method='first')
Out[185]: 
0    6
1    1
2    7
3    4
4    3
5    2
6    5

Naturally, you can rank in descending order, too:

In [186]: obj.rank(ascending=False, method='max')
Out[186]: 
0    2
1    7
2    2
3    4
4    5
5    6
6    4

See Table 5-8 for a list of tie-breaking methods available. DataFrame can compute ranks
over the rows or the columns:

In [187]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
   .....:                    'c': [-2, 5, 8, -2.5]})

In [188]: frame        In [189]: frame.rank(axis=1)
Out[188]:              Out[189]:                   
   a    b    c            a  b  c                  
0  0  4.3 -2.0         0  2  3  1                  
1  1  7.0  5.0         1  1  3  2                  
2  0 -3.0  8.0         2  2  1  3                  
3  1  2.0 -2.5         3  2  3  1

Essential Functionality | 135



DESCRIPTIVE AND SUMMARY 
STATISTICS

31From: Python for Data Analysis; Wes McKinney

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

skew Sample skewness (3rd moment) of values

kurt Sample kurtosis (4th moment) of values

cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values

diff Compute 1st arithmetic difference (useful for time series)

pct_change Compute percent changes

Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs of
arguments. Let’s consider some DataFrames of stock prices and volumes obtained from
Yahoo! Finance:

import pandas.io.data as web

all_data = {}
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
    all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2000', '1/1/2010')

price = DataFrame({tic: data['Adj Close']
                   for tic, data in all_data.iteritems()})
volume = DataFrame({tic: data['Volume']
                    for tic, data in all_data.iteritems()})

I now compute percent changes of the prices:

In [209]: returns = price.pct_change()

In [210]: returns.tail()

Summarizing and Computing Descriptive Statistics | 139



CREATING DATAFRAMES
Directly from Dict or Series

From a Comma-Separated File – CSV file

• pandas.read_csv()
• Can infer headers/column names if present, otherwise may 

want to reindex
From an Excel File

• pandas.read_excel()
From a Database using SQL (see the reading for an example)

From Clipboard, URL, Google Analytics, …

…

32

From: Python for Data Analysis; Wes McKinney



MORE…
Unique values, Value counts
Correlation and Covariance
Functions for handling missing data – in a few classes

• dropna(), fillna()
Broadcasting
Pivoting

We will see some of these as we discuss data wrangling, 
cleaning, etc.

33



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases

34



TIDY DATA

But also:
• Names of files/DataFrames = description of one dataset
• Enforce one data type per dataset (ish)

35

age wgt_kg hgt_cm

12.2 42.3 145.1

11.0 40.8 143.8

15.6 65.3 165.3

35.1 84.2 185.8

Labels

Observations

Variables



EXAMPLE
Variable: measure or attribute:
• age, weight, height, sex

Value: measurement of attribute:
• 12.2, 42.3kg, 145.1cm, M/F

Observation: all measurements for an object
• A specific person is [12.2, 42.3, 145.1, F]

36



TIDYING DATA I

37

Name Treatment A Treatment B
John Smith - 2
Jane Doe 16 11
Mary Johnson 3 1

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

?????????????

Name Treatment A Treatment B Treatment C Treatment D
John Smith - 2 - -
Jane Doe 16 11 4 1
Mary Johnson 3 1 - 2

?????????????



TIDYING DATA II

38

Name Treatment Result
John Smith A -
John Smith B 2
John Smith C -
John Smith D -
Jane Doe A 16
Jane Doe B 11
Jane Doe C 4
Jane Doe D 1
Mary Johnson A 3
Mary Johnson B 1
Mary Johnson C -
Mary Johnson D 2

Next class



MELTING DATA I

39

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137

Atheist 12 27 37 52 35 70

Buddhist 27 21 30 34 33 58

Catholic 418 617 732 670 638 1116

Dont 
know/refused 15 14 15 11 10 35

Evangelical Prot 575 869 1064 982 881 1486

Hindu 1 9 7 9 11 34

Historically 
Black Prot 228 244 236 238 197 223

Jehovahs 
Witness 20 27 24 24 21 30

Jewish 19 19 25 25 30 95

?????????????



MELTING DATA II

40

f_df = pd.melt(df,
["religion"],
var_name="income",
value_name="freq")

f_df = f_df.sort_values(by=["religion"])
f_df.head(10)

religion income freq
Agnostic <$10k 27

Agnostic $30-40k 81

Agnostic $40-50k 76

Agnostic $50-75k 137

Agnostic $10-20k 34

Agnostic $20-30k 60

Atheist $40-50k 35

Atheist $20-30k 37

Atheist $10-20k 27

Atheist $30-40k 52



MORE COMPLICATED EXAMPLE
Billboard Top 100 data for songs, covering their position on 
the Top 100 for 75 weeks, with two “messy” bits:
• Column headers for each of the 75 weeks

• If a song didn’t last 75 weeks, those columns have are null

41

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

year artist.in
verted track time genre date.ente

red
date.pea
ked

x1st.wee
k

x2nd.we
ek ...

2000 Destiny's 
Child

Independent 
Women Part I 3:38 Rock 2000-09-

23
2000-11-
18 78 63.0 ...

2000 Santana Maria, Maria 4:18 Rock 2000-02-
12

2000-04-
08 15 8.0 ...

2000 Savage 
Garden

I Knew I Loved 
You 4:07 Rock 1999-10-

23
2000-01-
29 71 48.0 ...

2000 Madonn
a Music 3:45 Rock 2000-08-

12
2000-09-
16 41 23.0 ...

2000 Aguilera, 
Christina

Come On Over 
Baby 3:38 Rock 2000-08-

05
2000-10-
14 57 47.0 ...

2000 Janet Doesn't Really 
Matter 4:17 Rock 2000-06-

17
2000-08-
26 59 52.0 ...

Messy columns!



MORE COMPLICATED EXAMPLE

Creates one row per week, per record, with its rank

42

# Keep identifier variables
id_vars = ["year",

"artist.inverted",
"track",
"time",
"genre",
"date.entered",
"date.peaked"]

# Melt the rest into week and rank columns
df = pd.melt(frame=df,

id_vars=id_vars,
var_name="week",
value_name="rank")



43

MORE COMPLICATED EXAMPLE
# Formatting
df["week"] = df['week'].str.extract('(\d+)’,

expand=False).astype(int)
df["rank"] = df["rank"].astype(int)

# Cleaning out unnecessary rows
df = df.dropna()

# Create "date" columns
df['date'] = pd.to_datetime(

df['date.entered']) +
pd.to_timedelta(df['week'], unit='w') –
pd.DateOffset(weeks=1) 

[…, “x2nd.week”, 63.0] à […, 2, 63]



MORE COMPLICATED EXAMPLE

44

# Ignore now-redundant, messy columns
df = df[["year",

"artist.inverted",
"track",
"time",
"genre",
"week",
"rank",
"date"]]

df = df.sort_values(ascending=True,
by=["year","artist.inverted","track","week","rank"])

# Keep tidy dataset for future usage
billboard = df

df.head(10)



MORE COMPLICATED EXAMPLE

45

year artist.in
verted track time genre week rank date

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 1 87 2000-02-26

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 2 82 2000-03-04

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 3 72 2000-03-11

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 4 77 2000-03-18

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 5 87 2000-03-25

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 6 94 2000-04-01

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 7 99 2000-04-08

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 1 91 2000-09-02

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 2 87 2000-09-09

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 3 92 2000-09-16

?????????????



MORE TO DO?
Column headers are values, not variable names?
• Good to go!

Multiple variables are stored in one column?
• Maybe (depends on if genre text in raw data was multiple)

Variables are stored in both rows and columns?
• Good to go!

Multiple types of observational units in the same table?
• Good to go!  One row per song’s week on the Top 100.

A single observational unit is stored in multiple tables?
• Don’t do this!

Repetition of data?
• Lots!  Artist and song title’s text names.  Which leads us to …

46



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases 

47



CONTINUING TODAY’S 
LECTURE
Relational data:
• What is a relation, and how do they interact?

Querying databases:
• SQL

• SQLite
• How does this relate to pandas?

Joins

48

Thanks to Zico Kolter for some structure for this lecture!



RELATION
Simplest relation: a table aka tabular data full of unique tuples

49

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Labels

Observations
(called tuples)

Variables
(called attributes)



PRIMARY KEYS

The primary key is a unique identifier for every tuple in a relation

• Each tuple has exactly one primary key

50

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



AREN’T THESE CALLED 
“INDEXES”?
Yes, in Pandas; but not in the database world

For most databases, an “index” is a data structure used to 
speed up retrieval of specific tuples

For example, to find all tuples with nat_id = 2:
• We can either scan the table – O(N)
• Or use an “index” (e.g., binary tree) – O(log N)

51



FOREIGN KEYS

Foreign keys are attributes (columns) that point to a different 
table’s primary key
• A table can have multiple foreign keys

52

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



RELATION SCHEMA

53

A list of all the attribute names, and their domains

create table instructor (
ID char(5),
name   varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department

)

create table department
(dept_name varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (dept_name)
);

SQL Statements 
To create Tables



SCHEMA DIAGRAMS

54



SEARCHING FOR 
ELEMENTS
Find all people with nationality Canada (nat_id = 2):

??????????????? 

55

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

O(n)



(DATABASE) INDEXES
Like a hidden sorted map of references to a specific attribute 
(column) in a table; allows O(log n) lookup instead of O(n)

56

loc ID age wgt_kg hgt_cm nat_id

0 1 12.2 42.3 145.1 1

128 2 11.0 40.8 143.8 2

256 3 15.6 65.3 165.3 2

384 4 35.1 84.2 185.8 1

512 5 18.1 62.2 176.2 3

640 6 19.6 82.1 180.1 1

nat_id locs
1 0, 384,

640
2 128, 256
3 512



(DATABASE) INDEXES
Actually implemented with data structures like B-trees
• (Take courses like CMSC642, or CMSC424)

But: indexes are not free
• Takes memory to store

• Takes time to build
• Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free
• Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!

57



RELATIONSHIPS
Primary keys and foreign keys define interactions between 
different tables aka entities.  Four types:
• One-to-one

• One-to-one-or-none

• One-to-many and many-to-one 

• Many-to-many

Connects (one, many) of the rows in one table to (one, many) 
of the rows in another table

58



ONE-TO-MANY & 
MANY-TO-ONE
One person can have one nationality in this example, but one 
nationality can include many people.

59

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Person Nationality



ONE-TO-ONE
Two tables have a one-to-one relationship if every tuple in the 
first tables corresponds to exactly one entry in the other

In general, you won’t be using these (why not just merge the 
rows into one table?) unless:
• Split a big row between SSD and HDD or distributed

• Restrict access to part of a row (some DBMSs allow column-level 
access control, but not all)

• Caching, partitioning, & serious stuff: take CMSC642, or 424

60

Person SSN



ONE-TO-ONE-OR-NONE
Say we want to keep track of people’s cats:

People with IDs 2 and 3 do not own cats*, and are not in the 
table.  Each person has at most one entry in the table.

Is this data tidy?

61

Person ID Cat1 Cat2
1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

Person Cat

*nor do they have hearts, apparently.



MANY-TO-MANY
Say we want to keep track of people’s cats’ colorings:

One column per color, too many columns, too many nulls
Each cat can have many colors, and each color many cats 

62

ID Name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

Cat Color



ASSOCIATIVE TABLES

Primary key  ???????????
• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s)   ???????????
• Cat ID and Color ID

63

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

ID Name

1 Megabyte

2 Meowly Cyrus

3 Fuzz Aldrin

4 Chairman Meow

5 Anderson Pooper

6 Gigabyte

ID Name

1 Black

2 Brown

3 White

4 Orange

5 Neon Green

6 Invisible

Cats Colors



ASIDE: PANDAS
So, this kinda feels like pandas …
• And pandas kinda feels like a relational data system …

Pandas is not strictly a relational data system:
• No notion of primary / foreign keys

It does have indexes (and multi-column indexes):
• pandas.Index: ordered, sliceable set storing axis labels

• pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB 
level, then fine-grained slicing and dicing and viz with pandas

64



SQLITE
On-disk relational database management system (RDMS)
• Applications connect directly to a file

Most RDMSs have applications connect to a server:
• Advantages include greater concurrency, less restrictive 

locking

• Disadvantages include, for this class, setup time J
Installation:
• conda install -c anaconda sqlite

• (Should come preinstalled, I think?)

All interactions use Structured Query Language (SQL)

65



HOW A RELATIONAL DB FITS 
INTO YOUR WORKFLOW

66

SQLite CLI & GUI 
Frontend

SQLite FilePython

Raw Input

Structured output 
(trained classifiers, 

JSON for D3, 
visualizations)

SQL

SQ
L

Persists!

Persists!



CRASH COURSE IN 
SQL (IN PYTHON)

Cursor: temporary work area in system memory for 
manipulating SQL statements and return values
If you do not close the connection (conn.close()), any 
outstanding transaction is rolled back
• (More on this in a bit.)

67

import sqlite3

# Create a database and connect to it
conn = sqlite3.connect(“cmsc641.db”)
cursor = conn.cursor()

# do cool stuff
conn.close()



CRASH COURSE IN 
SQL (IN PYTHON)

Capitalization doesn’t matter for SQL reserved words
• SELECT = select = SeLeCt
Rule of thumb: capitalize keywords for readability 68

# Make a table
cursor.execute(“””
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

)”””)

?????????

id name
cats



CRASH COURSE IN 
SQL (IN PYTHON)

69

# Insert into the table
cursor.execute(“INSERT INTO cats VALUE (1, ’Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUE (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUE (3, ‘Fuzz Aldrin’)”)
conn.commit()

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin

# Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2”);
conn.commit()

id name
1 Megabyte
3 Fuzz Aldrin



CRASH COURSE IN 
SQL (IN PYTHON)

index_col=“id”: treat column with label “id” as an index
index_col=1: treat column #1 (i.e., “name”) as an index
(Can also do multi-indexing.)

70

# Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):

print(row)

# Read all rows into pandas DataFrame
pd.read_sql_query(“SELECT * FROM cats”, conn, index_col=”id”)

id name
1 Megabyte
3 Fuzz Aldrin



JOINING DATA
A join operation merges two or more tables into a single 
relation.  Different ways of doing this:
• Inner
• Left
• Right
• Full Outer

Join operations are done on columns that explicitly link the 
tables together

71



INNER JOINS

Inner join returns merged rows that share the same value in 
the column they are being joined on (id and cat_id).

72

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017



INNER JOINS

73

# Inner join in pandas
df_cats = pd.read_sql_query(“SELECT * from cats”, conn)
df_visits = pd.read_sql_query(“SELECT * from visits”, conn)
df_cats.merge(df_visits, how = “inner”, 

left_on = “id”, right_on = ”cat_id”)

# Inner join in SQL / SQLite via Python
cursor.execute(“””

SELECT 
*

FROM 
cats, visits

WHERE
cats.id == visits.cat_id

”””)



LEFT JOINS
Inner joins are the most common type of joins (get results 
that appear in both tables)
Left joins: all the results from the left table, only some
matching results from the right table
Left join (cats, visits) on (id, cat_id)  ???????????

74

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL



RIGHT JOINS
Take a guess!
Right join

(cats, visits)
on

(id, cat_id)
???????????

75

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017
7 02-19-2017
12 02-21-2017

cats
visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017



LEFT/RIGHT JOINS

76

# Left join in pandas
df_cats.merge(df_visits, how = “left”, 

left_on = “id”, right_on = ”cat_id”)

# Right join in pandas
df_cats.merge(df_visits, how = “right”, 

left_on = “id”, right_on = ”cat_id”)

# Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON

cats.id == visits.cat_id”)

# Right join in SQL / SQLite via Python
L



FULL OUTER JOIN
Combines the left and the right join          ???????????

77

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL
7 NULL 02-19-2017
12 NULL 02-21-2017

# Outer join in pandas
df_cats.merge(df_visits, how = “outer”, 

left_on = “id”, right_on = ”cat_id”)



GOOGLE IMAGE SEARCH ONE 
SLIDE SQL JOIN VISUAL

78

Image credit: http://www.dofactory.com/sql/join



GROUP BY AGGREGATES

79

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

SELECT nat_id, AVG(age) as average_age
FROM persons GROUP BY nat_id

nat_id average_
age

1 19.48

2 15.6

3 18.1



RAW SQL IN PANDAS
If you “think in SQL” already, you’ll be fine with pandas:
• conda install -c anaconda pandasql

• Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

80

# Write the query text
q = ”””

SELECT
*

FROM
cats

LIMIT 10;”””

# Store in a DataFrame
df = sqldf(q, locals())



NEXT CLASS:
EXPLORATORY ANALYSIS

81



TODAY’S LECTURE

82

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision

Just a taste!



TODAY’S LECTURE
Missing Data …
• What is it?

• Simple methods for imputation 

… with a tiny taste of Stats/ML lecturers to come.

83

Thanks to John Atwood and Wenjiang Fu



MISSING DATA
Missing data is information that we want to know, but don’t
It can come in many forms, e.g.:
• People not answering questions on surveys

• Inaccurate recordings of the height of plants that need to be 
discarded

• Canceled runs in a driving experiment due to rain
Could also consider missing columns (no collection at all) to 
be missing data …

[JA] 84



KEY QUESTION
Why is the data missing?
• What mechanism is it that contributes to, or is associated with, 

the probability of a data point being absent?

• Can it be explained by our observed data or not?

The answers drastically affect what we can ultimately do to 
compensate for the missing-ness

[JA] 85



COMPLETE CASE ANALYSIS
Delete all tuples with any missing values at all, so you are left 
only with observations with all variables observed

Default behavior for libraries for analysis (e.g., regression)
• We’ll talk about this much more during the Stats/ML lectures
This is the simplest way to handle missing data. In some cases, 
will work fine; in others, ?????????????:
• Loss of sample will lead to variance larger than reflected by the 

size of your data
• May bias your sample

# Clean out rows with nil values
df = df.dropna()

[JA] 86



EXAMPLE
Dataset: Body fat percentage in men, and the circumference 
of various body parts [Penrose et al., 1985]

Question: Does the circumference of certain body parts 
predict body fat percentage?

Given complete data, how would you answer this ?????????

One way to answer is regression analysis:

• One or more independent variables ("predictors”)
• One dependent variables (“outcome”)
What is the relationship between the predictors and the 
outcome?

What is the conditional expectation of the dependent variable 
given fixed values for the dependent variables?

87



Y Xi i i= + +b b e0 1

LINEAR REGRESSION
Assumption: relationship between variables is linear:
• (We’ll relax linearity, study in more depth later.)

Dependent 
Variable
(e.g., ????????)

Independent Variable(s) 
(e.g., ?????????)

Population 
Y-Intercept

Population 
Slope

Random 
Error

88[WF]



89

POPULATION & SAMPLE 
REGRESSION MODELS

Population

J J

J

J

J

[WF]



90

POPULATION & SAMPLE 
REGRESSION MODELS

Unknown 
Relationship

Population

Y Xi i i= + +b b e0 1

J

J

J

J
J

[WF]



91

POPULATION & SAMPLE 
REGRESSION MODELS

Unknown 
Relationship

Population Random Sample

Y Xi i i= + +b b e0 1

J J

J

J

J

J
J

[WF]



92

POPULATION & SAMPLE 
REGRESSION MODELS

Unknown 
Relationship

Population Random Sample

Y Xi i i= + +b b e0 1

Y Xi i i= + +! ! !b b e0 1

J J

J

J

J

J
J

[WF]



93

Y

X

Y Xi i i= + +b b e0 1

( ) iXYE 10 bb +=

Observed
value

Observed value

ei = Random error

LINEAR REGRESSION

[WF]



94

Y

X

Y Xi i i= + +! ! !b b e0 1

SAMPLE LINEAR 
REGRESSION MODEL

! ! !Y Xi i= +b b0 1

Unsampled 
observation

ei = Random 
error

Observed value

^

[WF]



ESTIMATING PARAMETERS:
LEAST SQUARES METHOD

?
95



SCATTER PLOT
Plot all (Xi, Yi) pairs, and plot your learned model
If you squint, suggests how well the model fits the data

96

0
20
40
60

0 20 40 60
X

Y

[WF]



QUESTION
How would you draw a line through the points?
How do you determine which line “fits the best” …?

?????????

97

0
20
40
60

0 20 40 60
X

Y

[WF]



QUESTION
How would you draw a line through the points?
How do you determine which line “fits the best” ?????????

98

0
20
40
60

0 20 40 60
X

Y

Slope changed

Intercept unchanged
[WF]



QUESTION
How would you draw a line through the points?
How do you determine which line “fits the best” ?????????

99

0
20
40
60

0 20 40 60
X

Y

Slope unchanged

Intercept changed
[WF]



QUESTION
How would you draw a line through the points?
How do you determine which line “fits the best” ?????????

10
0

0
20
40
60

0 20 40 60
X

Y

Slope changed

Intercept changed
[WF]



LEAST SQUARES
Best fit: difference between the true Y-values and the 
estimated Y-values is minimized:
• Positive errors offset negative errors …

• … square the error!

Least squares minimizes the sum of the squared errors
• Why squared?  We’ll cover this in more depth in March.

• Until then: http://www.benkuhn.net/squared

10
1

( ) åå
==

=-
n

i
i

n

i
ii YY

1

2

1

2
ˆˆ e

[WF]



10
2

LEAST SQUARES, 
GRAPHICALLY

e2

Y

X

e1 e3

e4

^^

^
^

Y X2 0 1 2 2= + +! ! !b b e

! ! !Y Xi i= +b b0 1

LS minimizes  ! ! ! ! !e e e e ei
i

n
2

1
1
2

2
2

3
2

4
2= + + +

=
å

[WF]



10
3

INTERPRETATION OF 
COEFFICIENTS
Slope (b1):

• Estimated Y changes by b1 for each unit increase in X

• If b1 = 2, then Y Is expected to increase by 2 for each 1 unit 
increase in X

Y-Intercept (b0)
• Average value of Y when X = 0

• If b0 = 4, then average Y is expected to be 4 when X Is 0

In-depth analysis 
of less naïve 

approaches to 
come!

^

^

^

^

[WF]



10
4

NOW, BACK TO MISSING DATA …



EXAMPLE
Question: Does the circumference of certain body parts 

predict BF%?

Assumption: BF% is a linear function of measurements of 

various body parts and other features …

Analysis: Results from a regression model with BF% …

1
0

5

Predictor Estimate S.E. p-value

Age 0.0626 0.0313 0.0463
Neck -0.4728 0.2294 0.0403
Forearm 0.45315 0.1979 0.0229
Wrist -1.6181 0.5323 0.0026

(Interpretation ???????????)

[JA]



WHAT IF DATA WERE MISSING?
In this case, the dataset is complete:
• But what if 5 percent of the participants had missing values? 

10 percent? 20 percent? 

What if we performed complete case analysis and removed 
those who had missing values?
First let’s examine the effect if we do this if when the data is 
missing completely at random (MCAR)
• Removed cases at random, reran analysis, stored the p-values
• p-value: probability of getting at least as extreme a result as 

what we observed given that there is no relationship

• Repeat 1000 times, plot p-values …

[JA] 10
6



~5% DELETED (N=13)

Age Neck Forearm Wrist

p-
va
lu
e

10
7

[JA]



~20% DELETED (N=50)

Age Neck
Forearm Wrist

10
8

p-
va
lu
e

[JA]



CONCLUSIONS SEEM 
TO CHANGE …

10
9

vs

Age (5%) Neck (5%) Age (20%) Neck (20%)

Age/Neck: fail to reject the null hypothesis usually?

Still reject Forearm/Wrist most of the time
This is assuming the missing subjects’ distribtion does not 
differ from the non-missing. This would cause bias …

[JA]



TYPES OF MISSING-NESS
Missing Completely at Random (MCAR)

Missing at Random (MAR)

Missing Not at Random (MNAR)

11
0

[JA]



WHAT DISTINGUISHES EACH 
TYPE OF MISSING-NESS?
Suppose you’re loitering outside of CSIC one day …

11
1

Students just received their mid-semester grades
You start asking passing undergrads their CMSC131 grades
• You don’t force them to tell you or anything
• You also write down their gender and hair color

[JA]



YOUR SAMPLE
Hair Color Gender Grade

Red M A
Brown F A
Black F B
Black M A
Brown M
Brown M
Brown F
Black M B
Black M B
Brown F A
Black F
Brown F C
Red M
Red F A

Brown M A
Black M A

Summary:
• 7 students received As
• 3 students received Bs
• 1 student received a C

Nobody is failing!
• But 5 students did not 

reveal their grade …

11
2

[JA]



WHAT INFLUENCES A DATA 
POINT’S PRESENCE?
Same dataset, but the values are 
replaced with a “0” if the data point is 
observed and “1” if it is not

Question: for any one of these data 
points, what is the probability that 
the point is equal to “1” …?

What type of missing-ness do the 
grades exhibit?

Hair Color Gender Grade

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0 11

3

[JA]



MCAR: MISSING COMPLETELY 
AT RANDOM
If this probability is not dependent on any of the data, 
observed or unobserved, then the data is Missing Completely 
at Random (MCAR)

Suppose that X is the observed data and Y is the unobserved 
data. Call our “missing matrix” R

Then, if the data are MCAR, P(R|X,Y) = ??????????

P(R|X,Y) = P(R)

Probability of those rows missing is independent of anything.

11
4

[JA]



TOTALLY REALISTIC 
MCAR EXAMPLE

You are running an 
experiment on plants grown 
in pots, when suddenly you 
have a nervous breakdown 
and smash some of the pots

You will probably not 
choose the plants to smash 
in a well-defined pattern, 
such as height age, etc.

Hence, the missing values 
generated from your act of 
madness will likely fall into 
the MCAR category

11
5

[JA]



APPLICABILITY OF MCAR
A completely random mechanism for generating missing-
ness in your data set just isn’t very realistic
Usually, missing data is missing for a reason:
• Maybe older people are less likely to answer web-

delivered questions on surveys
• In longitudinal studies people may die before they have 

completed the entire study
• Companies may be reluctant to reveal financial 

information

11
6



MAR: MISSING AT RANDOM
Missing at Random (MAR): probability of missing data is 
dependent on the observed data but not the unobserved data
Suppose that X is the observed data and Y is the unobserved 
data. Call our “missing matrix” R
Then, if the data are MCAR, P(R|X,Y) = ??????????

P(R|X,Y) = P(R|X)

Not exactly random (in the vernacular sense).
• There is a probabilistic mechanism that is associated with 

whether the data is missing
• Mechanism takes the observed data as input

11
7



EXAMPLES?

11
8?



MAR: KEY POINT
We can model that latent mechanism and compensate for it

Imputation: replacing missing data with substituted values

• Models today will assume MAR

Example: if age is known, you can model missing-ness as a 
function of age

Whether or not missing data is MAR or the next type, Missing 
Not at Random (MNAR), is not* testable.

• Requires you to “understand” your data

11
9

*unless you can get the missing data (e.g., post-study phone calls) 



MNAR: MISSING NOT AT 
RANDOM
MNAR: missing-ness has something to do with the missing 
data itself
Examples: ??????????
• Do you binge drink?  Do you have a trust fund?  Do you use 

illegal drugs?  What is your sexuality?  Are you depressed?

Said to be “non-ignorable”:
• Missing data mechanism must be considered as you deal with 

the missing data
• Must include model for why the data are missing, and best 

guesses as to what the data might be

12
0



BACK TO CSIC …
Is the the missing data:
• MCAR;
• MAR; or
• MNAR?
???????????

12
1

Hair Color Gender Grade

Red M A
Brown F A
Black F B
Black M A
Brown M
Brown M
Brown F
Black M B
Black M B
Brown F A
Black F
Brown F C
Red M
Red F A
Brown M A
Black M A



ADD A VARIABLE
Bring in the GPA:
Does this change anything?

Hair Color GPA Gender Grade

Red 3.4 M A
Brown 3.6 F A
Black 3.7 F B
Black 3.9 M A
Brown 2.5 M
Brown 3.2 M
Brown 3.0 F
Black 2.9 M B
Black 3.3 M B
Brown 4.0 F A
Black 3.65 F
Brown 3.4 F C
Red 2.2 M
Red 3.8 F A
Brown 3.8 M A
Black 3.67 M A 12

2



12
3

HANDLING MISSING DATA …



SINGLE IMPUTATION
Mean imputation: imputing the average from observed cases 
for all missing values of a variable
Hot-deck imputation: imputing a value from another subject, 
or “donor,” that is most like the subject in terms of observed 
variables
• Last observation carried forward (LOCF): order the dataset 

somehow and then fill in a missing value with its neighbor
Cold-deck imputation: bring in other datasets
Old and busted:
• All fundamentally impose too much precision.
• Have uncertainty over what unobserved values actually are
• Developed before cheap computation

12
4



MULTIPLE IMPUTATION
Developed to deal with noise during imputation
• Impute once à treats imputed value as observed

We have uncertainty over what the observed value would 
have been
Multiple imputation: generate several random values for each 
missing data point during imputation

12
5



IMPUTATION PROCESS

12
6

Incomplete data Pooled results

s1

s2

sN

a1

a2

aN

Impute N times Analysis performed 
on each imputed set



TINY EXAMPLE

X Y
32 2
43 ?
56 6
25 ?
84 5

12
7

Independent variable: X
Dependent variable: Y
We assume Y has a linear relationship with X



LET’S IMPUTE SOME 
DATA!
Use a predictive distribution of the missing values:
• Given the observed values, make random draws of the 

observed values and fill them in.

• Do this N times and make N imputed datasets

12
8

X Y
32 2

43 5.5

56 6

25 8

84 5

X Y
32 2

43 7.2

56 6

25 1.1

84 5

For very large values of N=2 …



INFERENCE WITH 
MULTIPLE IMPUTATION
Now that we have our imputed data sets, how do we make 
use of them?       ???????????
• Analyze each of the separately 

12
9

X Y
32 2
43 5.5
56 6
25 8
84 5

X Y
32 2
43 7.2
56 6
25 1.1
84 5

Slope 4.932
Standard error 4.287

Slope -0.8245
Standard error 6.1845

Y X
i i i
= + +b b e

0 1
Y X
i i i
= + +b b e

0 1



POOLING ANALYSES
Pooled slope estimate is the average of the N imputed 
estimates

Our example, β1p = !""#!"$$ = (4.932-.8245) x 0.5 = 2.0538

The pooled slope variance is given by 

% = ∑()
* + (1 + "

*) x "
*." ∗ ∑(011 − β1p )2

Where Zi is the standard error of the imputed slopes
Our example: (4.287 + 6.1845)/2 + (3/2)*(16.569) = 30.08925
Standard error: take the square root, and we get 5.485

13
0



PREDICTING THE MISSING DATA 
GIVEN THE OBSERVED DATA
Given events A, B; and P(A) > 0 …
Bayes’ Theorem:

! " # = !(#|") ∗ !(")
!(#)

In our case:

! ) * = !(*|)) ∗ !())
!(*)

13
1

Posterior probability of the 
hypothesis given the evidence

Prior probability 
of hypotheses

Prior over the 
evidence

Probability of seeing 
evidence given the 
hypothesis



BAYESIAN IMPUTATION
Establish a prior distribution:
• Some distribution of parameters of interest θ	before 

considering the data, P(θ)
• We want to estimate θ

Given θ, can establish a distribution P(Xobs|θ)

Use Bayes Theorem to establish P(θ|Xobs)	…
• Make random draws for θ
• Use these draws to make predictions of Ymiss

13
2



HOW BIG SHOULD N BE?
Number of imputations N depends on:
• Size of dataset
• Amount of missing data in the dataset
Some previous research indicated that a small N is sufficient 
for efficiency of the estimates, based on:

• (1 + !")-1

• N is the number of imputations and λ is the fraction of missing 
information for the term being estimated [Schaffer 1999]

More recent research claims that a good N is actually higher 
in order to achieve higher power [Graham et al. 2007]

13
3



MORE ADVANCED METHODS
Interested?  Further reading:
• Regression-based MI methods

• Multiple Imputation Chained Equations (MICE) or Fully 

Conditional Specification (FCS)

• Readable summary from JHU School of Public Health: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/

• Markov Chain Monte Carlo (MCMC)

• We’ll cover this a bit, but also check out CMSC422!

13
4



NEXT CLASS:
SUMMARY STATISTICS 

&VISUALIZATION

13
5


