
PRINCIPLES OF
DATA SCIENCE
JOHN P DICKERSON

Lecture #9 – 10/24/2018

CMSC641
Wednesdays
7:00pm – 9:30pm

ANNOUNCEMENTS

2

Mini-Project #2 was due today!
Mini-Project #3 is not out yet! But will be soon …
• It is linked to from ELMS; will be available at:

https://github.com/umddb/cmsc641-fall2018/tree/master/project3

• Deliverable is a .ipynb file submitted to ELMS

• Due Wednesday, November 14th

After this: final tutorials!

THE MINI-TUTORIAL
In lieu of a final exam, you’ll create a mini-tutorial that:
• Identifies a raw data source

• Processes and stores that data

• Performs exploratory data analysis & visualization

• Derives insight(s) using statistics and ML
• Communicates those insights as actionable text

Individual or group project

Will be hosted publicly online (GitHub Pages) and will
strengthen your portfolio.

3

READY-MADE DATASET
REPOSITORIES
https://www.data.gov/
• US-centric agriculture, climate, education, energy, finance, health,

manufacturing data, …
https://cloud.google.com/bigquery/public-data/
• BigQuery (Google Cloud) public datasets (bikeshare, GitHub,

Hacker News, Form 990 non-profits, NOAA, …)
https://www.kaggle.com/datasets
• Microsoft-owned, various (Billboard Top 100 lyrics, credit card

fraud, crime in Chicago, global terrorism, world happiness, …)
https://aws.amazon.com/public-datasets/
• AWS-hosted, various (NASA, a bunch of genome stuff, Google

Books n-grams, Multimedia Commons, …)

4

https://www.data.gov/
https://cloud.google.com/bigquery/public-data/
https://www.kaggle.com/datasets
https://aws.amazon.com/public-datasets/

NEW DATASET IDEAS
Fraternal Order of Police vs Black Lives Matter
Linking finance data to ${anything_else}
Something having to do with Pokémon statistics?
Look through http://www.alexa.com/topsites and scrape
something interesting!
University of Maryland-related, or College Park-related, stuff
• Check out http://umd.io/ – open source project; maybe your

data collection and cleaning scripts can be added to this!

Honestly, pretty much anything! Just document everything.

5

Reproducibility!

http://www.alexa.com/topsites
http://umd.io/

FINAL TUTORIAL
Deliverable: URL of your own GitHub Pages site hosting an
.ipynb/.html export of your final tutorial
• https://pages.github.com/ – make a GitHub account, too!

• https://github.com/blog/1995-github-jupyter-notebooks-3

The project itself:
• ~1500+ words of Markdown prose
• ~150+ lines of Python

• Should be viewable as a static webpage – that is, if I (or
anyone else) opens the link up, everything should render and I
shouldn’t have to run any cells to generate output

6

https://pages.github.com/
https://github.com/blog/1995-github-jupyter-notebooks-3

FINAL TUTORIAL RUBRIC
I will grade on a scale of 1-10:
Motivation: Does the tutorial make the reader believe the topic is
important (a) in general and (b) with respect to data science?
Understanding: After reading the tutorial, does the reader
understand the topic?
Further resources: Does the tutorial “call out” to other resources
that would help the reader understand basic concepts, deep dive,
related work, etc?
Prose: Does the prose in the Markdown portion of the .ipynb add to
the reader’s understanding of the tutorial?
Code: Does the code help solidify understanding, is it well
documented, and does it include helpful examples?
Subjective Evaluation: If somebody linked to this tutorial from
Hacker News, would people actually read the whole thing?

7

WRAP-UP FROM LAST
LECTURE …

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

8

CONTINUING FROM
LAST CLASS …
Words words words!

• Free text and natural language processing in data science

• Bag of words and TF-IDF

• N-Grams and language models

• Information extraction & sentiment mining
Thanks to: Zico Kolter (CMU), Dan Jurafsky (Stanford), &
Marine Carpuat’s 723 (UMD)

9

TEXT CLASSIFICATION
Input:
• A document w

• A set of classes Y = {y1, y2, …, yJ}

• A training set of m hand-labeled documents
{(w1, y1), (w2, y2), …, (wm, ym)}

Output:
• A learned classifier wà y

This is an example of supervised learning

10

REPRESENTING A
DOCUMENT “IN MATH”
Simplest method: bag of words

Represent each document as a vector of word frequencies
• Order of words does not matter, just #occurrences

11

BAG OF WORDS EXAMPLE
the quick brown fox jumps over the lazy dog
I am he as you are he as you are me
he said the CMSC641 is 510 more CMSCs than the CMSC131

12

th
e

C
M

SC
64

1

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

2 0 0 0 0 1 1 0 0

…

0
0 0 2 2 1 0 0 1 0 0
2 1 0 1 0 0 0 0 1 1

Document 1
Document 2
Document 3

TERM FREQUENCY
Term frequency: the number of times a term appears in a
specific document
• tfij: frequency of word j in document i

This can be the raw count (like in the BOW in the last slide):
• tfij ∈ {0,1} if word j appears or doesn’t appear in doc i

• log(1 + tfij) – reduce the effect of outliers

• tfij / maxj tfij – normalize by document i’s most frequent word

What can we do with this?
• Use as features to learn a classifier w à y …!

13

DEFINING FEATURES FROM
TERM FREQUENCY
Suppose we are classifying if a document was written by The
Beatles or not (i.e., binary classification):

• Two classes y ∈ Y = { 0, 1 } = { not_beatles, beatles }
Let’s use tfij ∈ {0,1}, which gives:

Then represent documents with a feature function:
f(x, y = not_beatles = 0) = [xT, 0T, 1]T
f(x, y = beatles = 1) = [0T, xT, 1]T 14

th
e

C
M

SC
64

1

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

1 0 0 0 0 1 1 0 0

…

0
0 0 1 1 1 0 0 1 0 0
1 1 0 1 0 0 0 0 1 1

x1T =
x2T =
x3T =

y1 = 0
y2 = 1
y3 = 0

LINEAR CLASSIFICATION
We can then define weights θ for each feature

θ = { <CMSC641, not_beatles> = +1,
<CMSC641, beatles> = -1,
<walrus, not_beatles> = -0.3,
<walrus, beatles> = +1,
<the, not_beatles> = 0,
<the, beatles>, 0, … }

Write weights as vector that aligns with feature mapping
Score ! of an instance x and class y is the sum of the
weights for the features in that class:

!xy = Σ θn fn(x, y)

= θT f(x, y)

15

LINEAR CLASSIFICATION
We have a feature function f(x, y) and a score !xy = θT f(x, y)

16

ŷ = argmax
y

✓|f(x, y)

For each class y ∈ { not_beatles, beatles }

Compute the score of the document
for that class

And return the class with
highest score!

Where did these weights
come from? We’ll talk about
this in the ML lectures …(… and also this whole

“linear classifier” thing.)

EXPLICIT EXAMPLE
We are interested in classifying documents into one of two
classes y ∈ Y = { 0, 1 } = { hates_cats, likes_cats}
Document 1: I like cats
Document 2: I hate cats

Now, represent documents with a feature function:
f(x, y = hates_cats = 0) = [xT, 0T, 1]T
f(x, y = likes_cats = 1) = [0T, xT, 1]T

17

I lik
e

ha
te

ca
ts

1 1 0 1
1 0 1 1

x1T =
x2T =

y1 = ?
y2 = ?

EXPLICIT EXAMPLE

18

I lik
e

ha
te

ca
ts

I lik
e

ha
te

ca
ts

--

1 1 0 1 0 0 0 0 1
0 0 0 0 1 1 0 1 1
1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 1

I lik
e

ha
te

ca
ts

1 1 0 1
1 0 1 1

x1T =
x2T =

y1 = ?
y2 = ?

f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

f(x, y = 0) = [xT, 0T, 1]T
f(x, y = 1) = [0T, xT, 1]T

y=0: hates_cats y=1: likes_cats (1)

EXPLICIT EXAMPLE
Now, assume we have weights θ for each feature

θ = { <I, hates_cats> = 0, <I, likes_cats> = 0,

<like, hates_cats> = -1, <like, likes_cats> = +1,

<hate, hates_cats> = +1, <hate, likes_cats> = -1,

<cats, hates_cats> = -0.1, <cats, likes_cats = +0.5> }

Write weights as vector that aligns with feature mapping:

19

I lik
e

ha
te

ca
ts

I lik
e

ha
te

ca
ts

--

1 1 0 1 0 0 0 0 1
0 0 0 0 1 1 0 1 1
1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 1

f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

0 -1 1 -0.1 0 1 -1 0.5 1Parameter vector θ T =
y=0: hates_cats y=1: likes_cats (1)

EXPLICIT EXAMPLE
Score ! of an instance x and class y is the sum of the
weights for the features in that class:

!xy = Σ θn fn(x, y)

= θT f(x, y)
Let’s compute !x1,y=hates_cats …

• !x1,y=hates_cats = θT f(x1, y = hates_cats = 0)

• = 0*1 + -1*1 + 1*0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1

• = -1 - 0.1 + 1 = -0.1

20

0 -1 1 -0.1 0 1 -1 0.5 1θ T =

hates_cats
likes_cats

(1)

1 I
1 like
0 hate
1 cats
0 I
0 like
0 hate
0 cats
1 –
f(x1, y = 0)

EXPLICIT EXAMPLE
Saving the boring stuff:
• !x1,y=hates_cats = -0.1; !x1,y=likes_cats = +2.5
• !x2,y=hates_cats = +1.9; !x2,y=likes_cats = +0.5

We want to predict the class of each document:

Document 1: argmax{ !x1,y=hates_cats, !x1,y=likes_cats } ????????
Document 2: argmax{ !x2,y=hates_cats, !x2,y=likes_cats } ????????

21

Document 1: I like cats

Document 2: I hate cats

ŷ = argmax
y

✓|f(x, y)

INVERSE DOCUMENT
FREQUENCY
Recall:
• tfij: frequency of word j in document i

Any issues with this ??????????
• Term frequency gets overloaded by common words

Inverse Document Frequency (IDF): weight individual words
negatively by how frequently they appear in the corpus:

IDF is just defined for a word j, not word/document pair j, i

22

idfj = log

✓
#documents

#documents with word j

◆

INVERSE DOCUMENT
FREQUENCY

23

th
e

C
M
SC
64
1

yo
u

he I qu
ic
k

do
g

m
e

C
M
SC
s

… th
an

2 0 0 0 0 1 1 0 0

…

0
0 0 2 2 1 0 0 1 0 0
2 1 0 1 0 0 0 0 1 1

Document 1
Document 2
Document 3

idfthe = log

✓
3

2

◆
= 0.405

idfCMSC320 = log

✓
3

1

◆
= 1.098

idfyou = log

✓
3

1

◆
= 1.098

idfhe = log

✓
3

2

◆
= 0.405

TF-IDF
How do we use the IDF weights?
Term frequency inverse document frequency (TF-IDF):
• TF-IDF score: tfij x idfj

This ends up working better than raw scores for classification
and for computing similarity between documents.

24

th
e

C
M

SC
64

1

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

0.8 0 0 0 0 1.1 1.1 0 0

…

0
0 0 2.2 0.8 1.1 0 0 1.1 0 0
0.8 1.1 0 0.4 0 0 0 0 1.1 1.1

Document 1
Document 2
Document 3

TOKENIZATION
First step towards text processing
For English, just split on non-alphanumerical characters

• Need to deal with cases like: I’m, or France’s, or Hewlett-
Packard

• Should “San Francisco” be one token or two?
Other languages introduce additional issues

• L'ensemble ® one token or two?
• German noun compounds are not segmented

• Lebensversicherungsgesellschaftsangestellter
• Chinese/Japanese more complicated because of white

spaces

25

OTHER BASIC TERMS
Lemmatization

• Reduce inflections or variant forms to base form
• am, are, is ® be
• car, cars, car's, cars' ® car

• the boy's cars are different colors ® the boy car be different
color

Morphology/Morphemes
• The small meaningful units that make up words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to stems

• Often with grammatical functions

26

STEMMING
Reduce terms to their stems in information retrieval
Stemming is crude chopping of affixes

• language dependent
• e.g., automate(s), automatic, automation all reduced to

automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

27

NLP IN PYTHON
Two majors libraries for performing basic NLP in Python:
• Natural Language Toolkit (NLTK): started as research code,

now widely used in industry and research

• Spacy: much newer implementation, more streamlined

Pros and cons to both:
• NLTK has more “stuff” implemented, is more customizable

• This is a blessing and a curse
• Spacy is younger and feature

sparse, but can be much faster

• Both are Anaconda packages

28

NLTK EXAMPLES

29

import nltk

Tokenize, aka find the terms in, a sentence
sentence = ”A wizard is never late, nor is he early.
He arrives precisely when he means to.”
tokens = nltk.word_tokenize(sentence)

LookupError:
**

Resource 'tokenizers/punkt/PY3/english.pickle' not found.
Please use the NLTK Downloader to obtain the resource: >>>
nltk.download()
Searched in:

- '/Users/spook/nltk_data'
- '/usr/share/nltk_data'
- '/usr/local/share/nltk_data'
- '/usr/lib/nltk_data'
- '/usr/local/lib/nltk_data'
- ''

**

Fool of a Took!

NLTK EXAMPLES
Corpora are, by definition, large bodies of text
• NLTK relies on a large corpus set to perform various

functionalities; you can pick and choose:

30

Launch a GUI browser of available corpora
nltk.download()

Or download
everything at once!
nltk.download(“all”)

NLTK EXAMPLES

(This will also tokenize words like “o’clock” into one term,
and “didn’t” into two term, “did” and “n’t”.)

31

import nltk

Tokenize, aka find the terms in, a sentence
sentence = ”A wizard is never late, nor is he early.
He arrives precisely when he means to.”
tokens = nltk.word_tokenize(sentence)

['A', 'wizard', 'is', 'never', 'late', ',', 'nor',
'is', 'he', 'early', '.', 'He', 'arrives',
'precisely', 'when', 'he', 'means', 'to', '.']

NLTK EXAMPLES

32

Determine parts of speech (POS) tags
tagged = nltk.pos_tag(tokens)
tagged[:10]

[('A', 'DT'), ('wizard', 'NN'), ('is', 'VBZ'),
('never', 'RB'), ('late', 'RB'), (',', ','), ('nor',
'CC'), ('is', 'VBZ'), ('he', 'PRP'), ('early', 'RB')]

Abbreviation POS
DT Determiner
NN Noun
VBZ Verb (3rd person singular present)
RB Adverb
CC Conjunction
PRP Personal Pronoun
Full list: https://cs.nyu.edu/grishman/jet/guide/PennPOS.html

NLTK EXAMPLES

33

Find named entities & visualize
entities = nltk.chunk.ne_chunk(nltk.pos_tag(
nltk.word_tokenize(“””

The Shire was divided into four quarters, the Farthings already referred
to. North, South, East, and West; and these again each into a number of
folklands, which still bore the names of some of the old leading families,
although by the time of this history these names were no longer found only in
their proper folklands. Nearly all Tooks still lived in the Tookland, but
that was not true of many other families, such as the Bagginses or the
Boffins. Outside the Farthings were the East and West Marches: the Buckland
(see beginning of Chapter V, Book I); and the Westmarch added to the Shire in
S.R. 1462.

“””)))
entities.draw()

BRIEF ASIDE: VECTOR
SEMANTICS OF DOCS/TERMS
“fast” is similar to “rapid”
“tall” is similar to “height”
Question answering:
Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 feet”

34Many thanks to Dan Jurafsky here!

[Kulkarni, Al-Rfou, Perozzi, Skiena 2015]

DISTRIBUTIONAL
MODELS OF MEANING
Distributional models of meaning

= vector-space models of meaning
= vector semantics

Intuitions: Zellig Harris (1954):
• “oculist and eye-doctor … occur in almost the same

environments”
• “If A and B have almost identical environments we say that

they are synonyms.”

Firth (1957):
• “You shall know a word by the company it keeps!”

35[DJ]

From context words humans can guess tesgüino means
• an alcoholic beverage like beer

Intuition for algorithm:
• Two words are similar if they have similar word contexts.

INTUITION OF DISTRIBUTIONAL
WORD SIMILARITY

A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.

[DJ] 36

FOUR KINDS OF
VECTOR MODELS
Sparse vector representations

• Mutual-information weighted word co-occurrence matrices
Dense vector representations:

• Singular value decomposition (and Latent Semantic Analysis)
• Neural-network-inspired models (skip-grams, CBOW)
• Brown clusters

• Won’t go into these much – basically, classify terms into “word
classes” using a particular clustering method

• Hard clustering due to Brown et al. 1992, embed words in
some space and cluster. Generally, better methods out there
now …

37[DJ]

SHARED INTUITION
Model the meaning of a word by embedding in a vector
space.
The meaning of a word is a vector of numbers

• Vector models are also called “embeddings”.
Contrast: word meaning is represented in many
computational linguistic applications by a vocabulary index
(“word number 545”)

38[DJ]

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

REMINDER: TERM-
DOCUMENT MATRIX
Each cell: count of term t in a document d: tft,d:

• Each document is a count vector in ℕv: a column below

39[DJ]

REMINDER: TERM-
DOCUMENT MATRIX
Two documents are similar if their vectors are similar

40

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

[DJ]

THE WORDS IN A TERM-
DOCUMENT MATRIX
Each word is a count vector in ℕD: a row below

41

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

[DJ]

THE WORDS IN A TERM-
DOCUMENT MATRIX
Two words are similar if their vectors are similar

42

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

[DJ]

TERM-CONTEXT MATRIX
FOR WORD SIMILARITY
Two words are similar in meaning if their context vectors are
similar

43

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

[DJ]

THE WORD-WORD OR
WORD-CONTEXT MATRIX
Instead of entire documents, use smaller contexts

• Paragraph
• Window of ± 4 words

A word is now defined by a vector over counts of context
words
• Instead of each vector being of length D
• Each vector is now of length |V|
The word-word matrix is |V|x|V|, not DxD

44[DJ]

WORD-WORD MATRIX
SAMPLE CONTEXTS ± 7 WORDS

45

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

19.1 • WORDS AND VECTORS 3

tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the

… …

[DJ]

WORD-WORD MATRIX
We showed only 4x6, but the real matrix is 50,000 x 50,000

• So it’s very sparse
• Most values are 0.

• That’s OK, since there are lots of efficient algorithms for
sparse matrices.

The size of windows depends on your goals
• The shorter the windows , the more syntactic the

representation
• ± 1-3 very syntacticy

• The longer the windows, the more semantic the
representation

• ± 4-10 more semanticy

46[DJ]

MEASURING
SIMILARITY
Given 2 target words v and w
• Need a way to measure their similarity.
Most measure of vectors similarity are based on the:
• Dot product or inner product from linear algebra

• High when two vectors have large values in same
dimensions.

• Low (in fact 0) for orthogonal vectors with zeros in
complementary distribution

47

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

[DJ]

PROBLEM WITH DOT
PRODUCT

Dot product is longer if the vector is longer. Vector length:

Vectors are longer if they have higher values in each dimension
That means more frequent words will have higher dot products
That’s bad: we don’t want a similarity metric to be sensitive to
word frequency

48

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

[DJ]

SOLUTION: COSINE
Just divide the dot product by the length of the two vectors!

This turns out to be the cosine of the angle between them!

49

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

SIMILARITY BETWEEN
DOCUMENTS
Given two documents x and y, represented by their TF-IDF
vectors (or any vectors), the cosine similarity is:

Formally, it measures the cosine of the angle between two
vectors x and y:
• cos(0o) = 1, cos(90o) = 0 ??????????

Similar documents have high cosine similarity;
dissimilar documents have low cosine similarity.

50

similarity(x,y) =
x|y

|x|⇥ |y|

EXAMPLE
large data computer

apricot 2 0 0
digital 0 1 2
information 1 6 1

51

Which pair of words is more similar?

cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4
 0+ 6+ 2

 0+ 0+ 0

=
8
38 5

= .58

= 0

2 + 0 + 0
2 + 0 + 0 = 2

2 38 = .23

(MINIMUM) EDIT
DISTANCE
How similar are two strings?
Many different distance metrics (as we saw earlier when
discussing entity resolution

• Typically based on the number of edit operations needed to
transform from one to the other

Useful in NLP context for spelling correction, information
extraction, speech recognition, etc.

52

BRIEF ASIDE: N-
GRAMS
n-gram: Contiguous sequence of n tokens/words etc.
• Unigram, bigram, trigram, “four-gram”, “five-gram”, …

53

LANGUAGE MODELING
Assign a probability to a sentence

• Machine Translation:

• P(high winds tonite) > P(large winds tonite)

• Spell Correction

• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets
from)

• Speech Recognition

• P(I saw a van) >> P(eyes awe of an)

• + Summarization, question-answering, etc., etc.!!

54

LANGUAGE MODELING
Goal: compute the probability of a sentence or sequence of
words:
• P(W) = P(w1,w2,w3,w4,w5…wn)

Related task: probability of an upcoming word:
• P(w5|w1,w2,w3,w4)

A model that computes either of these:
• P(W) or P(wn|w1,w2…wn-1) is called a language model.

(We won’t talk about this much further in this class.)

55

SIMPLEST CASE:
UNIGRAM MODEL

56

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model

€

P(w1w2…wn) ≈ P(wi)
i
∏

BIGRAM MODEL
Condition on the previous word:

57

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

N-GRAM MODELS
We can extend to trigrams, 4-grams, 5-grams
In general this is an insufficient model of language

• because language has long-distance dependencies:

• “The computer which I had just put into the machine
room on the fifth floor crashed.”

But we can often get away with N-gram models

58

MOVING ON …
Words words words!
• Free text and natural language processing in data science

• Bag of words and TF-IDF

• N-Grams and language models

• Information extraction & sentiment mining

59

Thanks to Amol
Deshpande (UMD)

INFORMATION
EXTRACTION (IE)
Information extraction (IE) systems

• Find and understand limited relevant parts of texts
• Gather information from many pieces of text
• Produce a structured representation of relevant information:

• relations (in the database sense), a.k.a.,
• a knowledge base

• Goals:
• Organize information so that it is useful to people
• Put information in a semantically precise form that allows

further inferences to be made by computer algorithms

60

INFORMATION
EXTRACTION (IE)
IE systems extract clear, factual information

• Roughly: Who did what to whom when?
E.g.,

• Gathering earnings, profits, board members, headquarters,
etc. from company reports

• The headquarters of BHP Billiton Limited, and the global
headquarters of the combined BHP Billiton Group, are located
in Melbourne, Australia.

• headquarters(“BHP Biliton Limited”, “Melbourne, Australia”)
• Learn drug-gene product interactions from medical research

literature

61

LOW-LEVEL INFORMATION
EXTRACTION
Is now available and popular in applications like Apple or
Google mail, and web indexing

Often seems to be based on regular expressions and name
lists

62

LOW-LEVEL INFORMATION
EXTRACTION

63

WHY IS IE HARD ON
THE WEB?

Need this
price

Title

A book,
Not a toy

64

WHY DOESN’T TEXT
SEARCH (IR) WORK?
What you search for in real estate advertisements:
Town/suburb. You might think easy, but:

• Real estate agents: Coldwell Banker, Mosman
• Phrases: Only 45 minutes from Parramatta
• Multiple property ads have different suburbs in one ad

Money: want a range not a textual match
• Multiple amounts: was $155K, now $145K
• Variations: offers in the high 700s [but not rents for $270]

Bedrooms: similar issues: br, bdr, beds, B/R

65

NAMED ENTITY
RECOGNITION (NER)

A very important sub-task: find and classify names in text

66

NAMED ENTITY
RECOGNITION (NER)
The uses:

• Named entities can be indexed, linked off, etc.
• Sentiment can be attributed to companies or products
• A lot of IE relations are associations between named entities
• For question answering, answers are often named entities.

Concretely:
• Many web pages tag various entities, with links to bio or topic

pages, etc.
• Reuters’ OpenCalais, Evri, AlchemyAPI, Yahoo’s Term

Extraction, …
• Apple/Google/Microsoft/… smart recognizers for document

content

67

