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ANNOUNCEMENTS
Project 3 due in two weeks!
• Anybody hitting any issues?  Visualization problems?

Final tutorial:
• Please think about it!  Or even start it!

• We’ll have a final (casual!) discussion/presentation during the 
last lecture (12/5)

• Good to learn about what people are doing!
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STATISTICAL INFERENCE
Statistical inference is the discipline that concerns itself with 
the development of procedures, methods, and theorems that 
allow us to extract meaning and information from data that 
has been generated by stochastic (random) processes. 

• Process of going from the world to the data, and then back to 
the world

• Often the goal is to develop a statistical model of the world 
from observed data

Conclusion is typically: 
• an estimate;
• or a confidence interval;
• or rejection of a hypothesis
• or clustering or classification of data points into groups
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BASIC PROBABILITY I
Probability is concerned with the outcome of a trial (also called 
experiment or observation) 
Sample Space: Set of all possible outcomes of a trial 
• Probability of Sample Space = 1
Event is the specification of the outcome of a trial 

• For example: Trial = Tossing a coin; Sample Space = {Heads, 
Tails}; Event = Heads

If two events E and F are independent, then: Probability of E 
does not change if F has already happend = P(E), i.e., P(E | F) = 
P(E)
Also: P(E AND F) = P(E) * P(F)
If two events E and F are mutually exclusive, then: P(E UNION F) 
= P(E) + P(F)
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BASIC PROBABILITY II
Bayes Theorem P(A | B) = P(B | A) * P(A) / P(B)

Simple equation, but fundamental to Bayesian inference

Conditional Independence: A and B are conditionally 
independent given C if: Pr(A AND B | C) = Pr(A | C) * Pr(B | C)

Powerful in reducing the computational efforts in storing and 
manipulating large joint probability distributions

Entropy: A measure of the uncertainty in a probability 
distribution

Wikipedia Article
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http://en.wikipedia.org/wiki/Entropy_(information_theory)


RECALL: NORMAL 
DISTRIBUTION

99.7% values will fall within 3 
standard deviations (around the 
mean) 

• 95% for 2 standard deviations; 
68% for 1

Central Limit Theorem: As sample 
size approaches infinity, 
distribution of sample means will 
follow a normal distribution 
irrespective of the original 
distribution
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HYPOTHESIS TESTING
Accepting or rejecting a statistical hypothesis about a 
population

H_0: null hypothesis, and H_1: the alternative hypothesis 
• Mutually exclusive and exhaustive
• H_0 can never be proven to be true, but can be rejected
• Sometimes don’t have H_1 at all (Fisher’s test)

Statistical significance: probability that the result is not due 
to chance
Example: Deciding if a coin is fair

• http://20bits.com/article/hypothesis-testing-the-basics
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HYPOTHESIS TESTING
H0: null hypothesis, and H1: the alternative hypothesis
• Mutually exclusive and exhaustive

• H0 can never be proven to be true
Statistical significance: probability that the result is not due to chance
Process: 
• Decide on H0 and H1

• Decide which test statistic is appropriate 

• Roughly, how well does my sample agree with the null hypothesis?

• Key question: what is the distribution of the test statistic over samples?

• Select a significance level (sigma), a probability threshold below which the 
null hypothesis will be rejected -- typically 5% or 1%.

• Compute the observed value of the test statistic tobs from the sample

• Compute p-value: the probability that the test statistic took that value by 
chance 

• Use the distribution above to compute the p-value
• Reject the null hypothesis if the p-value < \sigma 9



SUMMARY
Hypothesis testing allows us to formulate beliefs about investment 
attributes and subject those beliefs to rigorous testing following the 
scientific method.

• For parametric hypothesis testing, we formulate our beliefs 
(hypotheses), collect data, and calculate a value of the investment 
attribute in which we are interested (the test statistic) for that set of data 
(the sample), and then we compare that with a value determined under 
assumptions that describe the underlying population (the critical value). 
We can then assess the likelihood that our beliefs are true given the 
relationship between the test statistic and the critical value.

• Commonly tested beliefs associated with the expected return and 
variance of returns for a given investment or investments can be 
formulated in this way.
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Motivating setting

For a data science course, there has been very little “science” thus far…

“Science” as I’m using it roughly refers to “determining truth about the 
real world”
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Asking scientific questions

Suppose you work for a company that is considering a redesign of their 
website; does their new design (design B) offer any statistical advantage 
to their current design (design A)?

In linear regression, does a certain variable impact the response? (E.g. 
does energy consumption depend on whether or not a day is a weekday 
or weekend?)

In both settings, we are concerned with making actual statements about 
the nature of the world
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Sample statistics

To be a bit more consistent with standard statistics notation, we’ll 
introduce the notion of a population and a sample
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Sample mean as random variable

The same mean is an empirical average over ) independent samples 
from the distribution; it can also be considered as a random variable

This new random variable has the mean and variance
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where we used the fact that for independent random variables #1, #2
/01 #1 + #2 = /01 #1 + /01 #2

When estimating variance of sample, we use .2/) (the square root of 
this term is called the standard error)
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Central limit theorem

Central limit theorem states further that '̅ (for “reasonably sized” samples, 
in practice ) ≥ 30) actually has a Gaussian distribution regardless of the 
distribution of #

'̅ → 4 !,
$2

)
 or equivalently  

'̅ − !
$/)1/2 → 4(0,1)

In practice, for ) < 30 and for estimating $2 using sample variance, we 
use a Student’s t-distribution with ) − 1 degrees of freedom

'̅ − !
./)1/2 → 5,−1,  6 '; 7 ∝ 1 +

'2

7

−9+1
2
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Hypothesis testing

Using these basic statistical techniques, we can devise some tests to 
determine whether certain data gives evidence that some effect “really” 
occurs in the real world

Fundamentally, this is evaluating whether things are (likely to be) true 
about the population (all the data) given a sample

Lots of caveats about the precise meaning of these terms, to the point 
that many people debate the usefulness of hypothesis testing at all

But, still incredibly common in practice, and important to understand
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Hypothesis testing basics

Posit a null hypothesis :0 and an alternative hypothesis :1 (usually just 

that “:0 is not true”

Given some data ', we want to accept or reject the null hypothesis in 
favor of the alternative hypothesis

14

<= true <> true

Accept <= Correct
Type II error

(false negative)

Reject <=
Type I error 

(false positive)
Correct

6 reject :0 :0 true = “significance of test”

6 reject :0 :1 true = “power of test”
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Source: Wikipedia
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Basic approach to hypothesis testing

Basic approach: compute the probability of observing the data under 
the null hypothesis (this is the p-value of the statistical test)

6 = 6 data :0 is true)

Reject the null hypothesis if the p-value is below the desired significance 
level (alternatively, just report the p-value itself, which is the lowest 
significance level we could use to reject hypothesis)

Important: p-value is 6 data :0 is true) not 6 :0 not true data)
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Canonical example: t-test

Given a sample ' 1 ,… , ' , ∈ ℝ
 

:0: ! = 0 (for population)
:1: ! ≠ 0

By central limit theorem, we know that '̅ − ! /(./)1
2) ∼ 5,−1

(Student’s t-distribution with ) − 1 degrees of freedom)

So we just compute E = '/̅ ./)1
2 (called test statistic), then compute 

6 = 6 ' > E + 6 ' < − E = F − E + 1 − F E = 2F (− E )

 (where F is cumulative distribution function of Student’s t-distribution)
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Visual example

What we are doing fundamentally is modeling the distribution 6 '̅ :0
and then determining the probability of the observed '̅ or a more extreme 
value

17

6 = Area
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Code in Python

Compute E statistic and 6 value from data
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import numpy as np
import scipy.stats as st
x = np.random.randn(m)

# compute t statistic and p value
xbar = np.mean(x)
s2 = np.sum((x - xbar)**2)/(m-1)
std_err = np.sqrt(s2/m)
t = xbar/std_err

t_dist = st.t(m-1)
p = 2*td.cdf(-np.abs(t))

# with scipy alone
t,p = st.ttest_1samp(x, 0)
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Two-sided vs. one-sided tests

The previous test considered deviation from the null hypothesis in both 
directions (two-sided test), also possible to consider a one-sided test

:0: ! ≥ 0 (for population)
:1: ! < 0

Same E statistic as before, but we only compute the area under the left 
side of the curve

6 = 6 ' < E = F (E)

19



26

Outline

Motivation

Background: sample statistics and central limit theorem

Basic hypothesis testing

Experimental design

21



27

Experimental design: A/B testing

Up until now, we have assumed that the null hypothesis is given by some 
known mean, but in reality, we may not know the mean that we want to 
compare to

Example: we want to tell if some additional feature on our website makes 
user stay longer, so we need to estimate both how long users stay on the 
current site and how long they stay on redesigned site

Standard approach is A/B testing: create a control group (mean !1) and a 

treatment group (mean !2)
:0: !1 = !2 or e. g. !1 ≥ !2
:1: !1 ≠ !2 or e. g. !1 < !2
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Independent E-test (Welch’s E-test)

Collect samples (possibly different numbers) from both populations

'1
1 , … , '1

,1 , '2
1 , … , '2

,2

compute sample mean '1̅, '2̅ and sample variance .1
2, .2

2 for each group 

Compute test statistic

E =
'1̅ − '2̅

.1
2/)1 + .2

2/)2
1/2

And evaluate using a t distribution with degrees of freedom given by

.1
2/)1 + .2

2/)2
2

.1
2/)1

2

)1 − 1 + .2
2/)2

2

)2 − 1
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Starting seem a bit ad-hoc?

There are a huge number of different tests for different situations

You probably won’t need to remember these, and can just look up 
whatever test is most appropriate for your given situation

But the basic idea in call cases is the same: you’re trying to find the 
distribution of your test statistic under the hull hypothesis, and then you 
are computing the probability of the observed test statistic or something 
more extreme

All the different tests are really just about different distributions based 
upon your problem setup
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P-values considered harmful

A basic problem is that 6 data :0 ≠ 6(:0|data) (despite being 
frequently interpreted as such)

People treat 6 < 0.05 with way too much importance

27

Histogram of p values from ~3,500 
published journal papers
(from E. J. Masicampo and Daniel 
Lalande, A peculiar prevalence of p 
values just below .05, 2012)



SCIENTIFIC METHOD: 
STATISTICAL ERRORS

Nature Article
P values not as reliable as many scientists assume
p-hacking: cherry picking data points etc., to get the p-values; 
repeating experiments if they fail till you get the result
Much discussion/debate about this issue in recent years
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http://www.nature.com/news/scientific-method-statistical-errors-1.14700


SAMPLING BIASES
Sampling effective at reducing the data you need to analyze
Ideally you want random sample 

• Otherwise you need to account for bias, which can be tricky
Bias in sampling: need to be very careful when generalizing 
inferences drawn from a sample 

• Even for random samples

Questions to ask: How was the sample selected? Was it truly 
random? Potential biases? How were questions worded? How 
is missing data/attrition handled? Was the sample size large 
enough?
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SOME POTENTIAL 
SOURCES OF BIASES

Sample Bias 
• Selection bias: some subjects more likely to be selected
• Volunteer bias: people who volunteer are not representative
• Nonresponse bias: people who decline to be interviewed

Survey/Response Bias 
• Interviewer bias
• Acquiescence bias – tendency to agree with all questions
• Social desirability bias: people are not going to admit to 

embarrassing things
Also watch out for: 

• Confirmation bias
• Anchor bias
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SOME POTENTIAL 
SOURCES OF BIASES

Gold Standard: Randomized Clinical Trials
• Some people receive "treatment", others in 

a "control" group
• Picked randomly to take care of all 

confounding factors
• Problems: 

• Ethically feasible only if 
clinically equipoise

• Can't ask some people to smoke to 
figure out the effects of smoking

• Very expensive and cumbersome
• Impossible in many cases

Recall: Recent Facebook experiment on 
emotions

34

A true state 
of equipoise exists when 
one has no good basis for 
a choice between two or 
more care options.  - NIH



DETERMINING 
CAUSATION

Bradford Hill’s Criteria: widely accepted in the modern era as 
useful guidelines for investigating causality in epidemiological
studies

• Strength: how large is the association
• Consistency across different samples
• How specific 
• Cause should precede effect (temporality)
• Biological gradient (increase dose à increase association)
• Plausibility
• Coherence
• Experiment
• Consideration of alternate explanations

35

https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Epidemiological


MISUSE OF 
STATISTICS

This famous, but old book on statistics goes into detail about 
How to lie with statistics
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http://www.horace.org/blog/wp-content/uploads/2012/05/How-to-Lie-With-Statistics-1954-Huff.pdf


BEWARE OF CHARTS !
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BEWARE OF CHARTS !
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Terry Schiavo Case

http://en.wikipedia.org/wiki/Terri_Schiavo_case


NEWSPAPERS EVEN 
MORE

Source

A Washington Post article says: In the first study of its kind, 
researchers from Washington State University and elsewhere 
found a 14 percent greater risk of head injuries to cyclists 
associated with cities that have bike share programs. In fact, 
when they compared raw head injury data for cyclists in five 
cities before and after they added bike share programs, the 
researchers found a 7.8 percent increase in the number of 
head injuries to cyclists.

Actually: head injuries declined from 319 to 273, and overall 
injuries declined from 757 to 545 

• So the proportion of head injuries went up !!
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http://andrewgelman.com/2014/06/17/lie-statistics-example-23110/
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OUTLINE
Informed Consent
Reproducibility
p-value Hacking
Who owns the data?
Privacy & Anonymity
Debugging Data Science
Algorithmic fairness
Data validity/provenance
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INFORMED CONSENT
Respect for persons -- cornerstone value for any conception 
of research ethics 
Informed consent de facto way to “operationalize” that 
principle 

• Integral component of medical research for many decades
• Applicable for any research where “personal information” is 

divulged or human experimentation performed
• Institutional Review Boards (IRBs) in charge of implementing

How it translates into the “big data” world?
• Largely ignored by most researchers
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HISTORY
Systematic scientific experimentation on human subjects rare and 
isolated prior to the late 19th century 
Some early directives in late 19th century and early 20th century

• Prussian directive in 1900: any medical intervention for any purpose 
other than diagnosis, healing, and immunisation must obtain 
“unambiguous consent” from patients after “proper explanation of the 
possible negative consequences” of the intervention 

Nuremberg Code, drafted after conclusion of Nazi Doctors’ trials:
• established a universal ethical framework for clinical research
• “the voluntary consent of the human subject is absolutely essential” to 

ethical research 
• Detailed specific guidelines on what to present to subjects 

(nature/duration/purpose, how conducted, effects on health, etc)
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HISTORY
Salgo v Leland Stanford etc. Board of Trustees (1957) … cited as 
establishing the legal doctrine of informed consent for medical 
practice and biomedical research in the United States 

• plaintiff was awarded damages for not receiving full disclosure of 
facts 

In 1953: NIH put the first IRB in place in its own hospital

• … voluntary agreement based on informed understanding shall 
be obtained from the patient 

• … will be given an oral explanation in terms suited for his 
comprehension 

• Only required a voluntary signed statement if the procedure 
involved “unusual hazard.” 
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HISTORY
A more detailed list of requirements emerged later

• 1) A fair explanation of the procedures to be followed, including 
an identification of those which are experimental;

• 2) A description of the attendant discomforts and risks;
• 3) A description of the benefits to be expected; 
• 4) A disclosure of appropriate alternative procedures that would 

be advantageous for the subject;
• 5) An offer to answer any inquires concerning the procedures; 
• 6) An instruction that the subject is free to withdraw his consent 

and to discontinue participation in the project or activity at any 
time

“Common Rule” – codification of “respect for persons, 
beneficence, and justice”

• Regulates use of human subjects in US today
• More elaborate treatment of all of these aspects 
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NON-MEDICAL RESEARCH
Unclear how the rules translate to other types of research
Identifying harm or potential risks difficult
Requirements and experiments change over the course of 
the study
The list of subjects itself evolving

CS has rarely had to deal with IRBs
• Although changing…
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INDUSTRY RESEARCH 
Less distinction between conventional or academic social 
scientific research and industry- or market-oriented research 

Data fusion can lead to new insights and uses of data

Hard to translate the “informed consent” requirements to 
these settings
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CASE STUDY: FACEBOOK
EMOTIONAL EXPERIMENT
Facebook routinely does A/B testing to test out new features 
(e.g., layouts, features, fonts, etc)

In 2014: intentionally manipulated news feeds of 700k users

• Changed the number of positive and negative stories the 
users saw

• Measured how the users themselves posted after that
Hypothesis: Emotions spread over the social media

Huge outcry

Facebook claims it gets the “consent” from the user 
agreement
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OKCUPID
EXPERIMENTS
Experiment 1: Love is Blind

• Turned off photos for a day
• Activity went way down, but deeper conversations, better 

responses
• Deeper analysis at the link below

Experiment 2: 
• Turned off text or not – kept picture
• Strong support for the hypothesis that the words don’t matter

Experiment 3: Power of Suggestion
• Told people opposite of what the algorithm suggested

https://theblog.okcupid.com/we-experiment-on-human-
beings-5dd9fe280cd5
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GDPR AND CONSENT
General Data Protection Regulation – new law in EU that 
recently went into play
Requires unambiguous consent

• data subjects are provided with a clear explanation of the 
processing to which they are consenting

• the consent mechanism is genuinely of a voluntary and "opt-
in" nature

• data subjects are permitted to withdraw their consent easily
• the organisation does not rely on silence or inactivity to collect 

consent (e.g., pre-ticked boxes do not constitute valid 
consent);
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THE REPRODUCIBILITY CHALLENGE
Noted by research community; in 
multiple publications

• Across research areas
• Especially in preclinical research
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Prinz, Schlange and Asadullah
Bayer HealthCare

Nature Reviews Drug Discovery 
2011; 10:712-713
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Perrin, Nature 2014; 507: 423-42555
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CHALLENGES TO RIGOR 
AND TRANSPARENCY IN 
REPORTING SCIENCE
Science often viewed as self-correcting 

• Immune from reproducibility problems?
• Principle remains true over the long-term 

In the short- and medium-term, interrelated factors can short-
circuit self-correction

• Leads to reproducibility problem
• Loss of time, money, careers, public confidence
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FACTORS THAT “SHORT CIRCUIT” 
SELF-CORRECTION

Current “hyper-competitive” environment 
fueled, in part, by:

• Historically low funding rates

• Grant review and promotion decisions depend 
too much on “high profile” publications

57
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FACTORS THAT “SHORT CIRCUIT” 
SELF-CORRECTION

Publication practices: 
• Difficulty in publishing negative findings
• Overemphasis on the “exciting, big picture” 
finding sometimes results in publications 
leaving out necessary details of experiments 
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Poor training

• Inadequate experimental design 
• Inappropriate use of statistics (“p-hacking”)
• Incomplete reporting of resources used and/or 
unexpected variability in resources

FACTORS THAT “SHORT CIRCUIT” 
SELF-CORRECTION
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REPRODUCIBILITY
Extremely important aspect of data analysis

• “Starting from the same raw data, can we reproduce your analysis 
and obtain the same results?”

Using libraries helps:
• Since you don’t reimplement everything, reduce programmer error

• Large user bases serve as “watchdog” for quality and correctness

Standard practices help:
• Version control: git, git, git, …, git, svn, cvs, hg, Dropbox

• Unit testing: unittest (Python), RUnit (R), testthat

• Share and publish: github, gitlab

60

Slides adapted from Hector Corrado Bravo



PRACTICAL TIPS

Many tasks can be organized in modular manner:
• Data acquisition:

• Get data, put it in usable format (many ‘join’ operations), clean 
it up – Anaconda lab from Tuesday!

• Algorithm/tool development:
• If new analysis tools are required

• Computational analysis:
• Use tools to analyze data

• Communication of results:
• Prepare summaries of experimental results, plots,  

publication, upload processed data to repositories

61

Usually a single language or tool does not handle all of 
these equally well – choose the best tool for the job!



PRACTICAL TIPS
Modularity requires organization and careful thought
In Data Science, we wear two hats:
• Algorithm/tool developer

• Experimentalist: we don’t get trained to think this way 
enough!

It helps two consciously separate these two jobs
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THINK LIKE AN 
EXPERIMENTALIST
Plan your experiment
Gather your raw data
Gather your tools
Execute experiment
Analyze
Communicate

63



THINK LIKE AN 
EXPERIMENTALIST
Let this guide your organization. One potential structure for 
organizing a project:

64

project/
| data/
| | processing_scripts
| | raw/
| | proc/
| tools/
| | src/
| | bin/
| exps
| | pipeline_scripts
| | results/
| | analysis_scripts
| | figures/



THINK LIKE AN 
EXPERIMENTALIST
Keep a lab notebook!
Literate programming tools are making this easier for 
computational projects:
• http://en.wikipedia.org/wiki/Literate_programming (Lec #2!)

• https://ipython.org/ 

• http://rmarkdown.rstudio.com/
• http://jupyter.org/
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http://en.wikipedia.org/wiki/Literate_programming


THINK LIKE AN 
EXPERIMENTALIST
Separate experiment from analysis from communication
• Store results of computations, write separate scripts to analyze 

results and make plots/tables

Aim for reproducibility
• There are serious consequences for not being careful

• Publication retraction
• Worse: 

http://videolectures.net/cancerbioinformatics2010_baggerly_i
rrh/

• Lots of tools available to help, use them! Be proactive: learn 
about them on your own!
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http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/
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Q:Why do so many colleges and grad schools teach p =0.05?
A: Because that’s still what the scientific community and journal 
editors use.

Q:Why do so many people still use p = 0.05?
A:Because that’s what they were taught in college or grad 
school.

ASA statement

- George Cobb, Professor Emeritus of Mathematics and 
Statistics - Mt Holyhoke College

AMERICAN STATISTICAL 
ASSOCIATION 
STATEMENT ON P-
VALUES

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108


WHAT IS A P-VALUE? 



The p-value is not the probability that the null hypothesis is true 
or the probability that the alternative hypothesis is false. It is not 
connected to either. 
The p-value is not the probability that a finding is "merely a 
fluke." 
The p-value is not the probability of falsely rejecting the null 
hypothesis. 
The p-value is not the probability that replicating the experiment 
would yield the same conclusion.
The significance level, such as 0.05, is not determined by the p-
value. 
The p-value does not indicate the size or importance of the 
observed effect. 
Misconceptions about p-value has its own Wikipedia page

MISCONCEPTIONS 
ABOUT THE P-VALUE

https://en.wikipedia.org/wiki/Misunderstandings_of_p-values


Informally, a p-value is the probability under a specified 
statistical model that a statistical summary of the data (e.g., 
the sample mean difference between two compared groups) 
would be equal to or more extreme than its observed value.

WHAT IS A P-VALUE?



P-values can indicate how incompatible the data are with a 
specified statistical model.

The smaller the p-value, the greater the statistical 
incompatibility of the data with the null hypothesis, 
if the underlying assumptions used to calculate the 
p-value hold. 

This incompatibility can be interpreted as casting 
doubt on or providing evidence against the null 
hypothesis or the underlying assumptions.

PRINCIPLE 1



P-values do not measure the probability that the studied 
hypothesis is true, or the probability that the data were 
produced by random chance alone.

The p-value is a statement about data in relation to a 
specified hypothetical explanation, and is not a statement 
about the explanation itself.

PRINCIPLE 2



p-value is not 
P(Ho is true | getting data this extreme)

p-value is 
P(getting data this extreme | Ho is true)

PRINCIPLE 2 – DON’T 
FLIP THE 
CONDITIONALITY



Suppose there is a 5% probability that a research hypothesis (Ha) 
is true (prior).
You conduct the test with 90% power.
The p-value of the test is 0.04
Using Bayes’ Rule:

ILLUSTRATIVE 
EXAMPLE (BAYESIAN)

( )( )
( )( ) ( )( )

.05 .9
( | ) .54

.05 .9 .95 .04
P Ha data = =

+



Scientific conclusions and business or policy 
decisions should not be based only on whether a 
p-value passes a specific threshold

A conclusion does not immediately become “true” on one 
side of the divide and “false” on the other.

Researchers should bring many contextual factors into play 
to derive scientific inferences, including the design of a 
study, the quality of the measurements, the external evidence 
for the phenomenon under study, and the validity of 
assumptions that underlie the data analysis. 

PRINCIPLE 3



Proper inference requires full reporting and transparency

p-values and related analyses should not be 
reported selectively.
Cherry picking promising findings, also known by such 
terms as data dredging, significance chasing, 
significance questing, selective inference, and 
“p-hacking,” leads to a spurious excess of statistically 
significant results in the published literature and 
should be vigorously avoided.
Example of p-hacking (from xkcd)

PRINCIPLE 4

https://xkcd.com/882/


A p-value, or statistical significance, does not measure the size 
of an effect or the importance of a result.

Statistical significance is not equivalent to scientific, 
human, or economic significance.

Smaller p-values do not necessarily imply the presence 
of larger or more important effects, and larger p-values 
do not imply a lack of importance or even lack of effect.

Some research journals no longer look at p-values, but 
instead look at effect sizes.

PRINCIPLE 5

https://www.sciencenews.org/blog/context/p-value-ban-small-step-journal-giant-leap-science


By itself, a p-value does not provide a good measure of 
evidence regarding a model or hypothesis.

Researchers should recognize that a p-value 
without context or other evidence provides limited 
information.
A relatively large p-value does not imply evidence 
in favor of the null hypothesis; many other 
hypotheses may be equally or more consistent 
with the observed data.

PRINCIPLE 6



Methods that emphasize estimation over testing, such as 
confidence, credibility, or prediction intervals
Bayesian methods
Alternative measures of evidence, such as likelihood ratios 
or Bayes Factors
Other approaches such as decision-theoretic modeling and 
false discovery rates

OTHER APPROACHES



FALSE-POSITIVES ARE 
EASY 
It is common practice in all sciences to report less than 
everything. 

• So people only report the good stuff. We call this p-Hacking. 
• Accordingly, what we see is too “good” to be true. 

We identify six ways in which people do that. 
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SIX WAYS TO P-HACK 
Stop collecting data once p<.05 
Analyze many measures,but report only those with p<.05. 
Collect and analyze many conditions, but only report those 
with p<.05. 
Use covariates to get p < .05. 
Exclude participants to get p<.05. 
Transform the data to get p<.05. 
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OK, BUT DOES THAT 
MATTER VERY MUCH? 
As a field we have agreed on p<.05. (i.e., a 5% false positive 
rate). 
If we allow p-hacking, then that false positive rate is actually 
61%. 
Conclusion: p-hacking is a potential catastrophe to scientific 
inference. 
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TRANSPARENT 
REPORTING 
Solution 1:

• Report sample size determination. 
• N > 20
• List all of your measures. 
• List all of your conditions. 
• If excluding, report without exclusion as well. 
• If covariates, report without. 
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TRANSPARENT 
REPORTING 

Solution 2:
• Report sample size determination. 
• N > 20
• List all of your measures. 
• List all of your conditions. 
• If excluding, report without exclusion as well. 
• If covariates, report without. 

85

P-Hacking is Solved Through 
Transparent Reporting 

• Solution 2: 

12 



Good statistical practice, as an essential component of good 
scientific practice, emphasizes:

• principles of good study design and conduct
• a variety of numerical and graphical summaries of data 
• understanding of the phenomenon under study
• Interpretation of results in context 
• complete reporting 
• Proper logical and quantitative understanding of what data 

summaries mean 
No single index should substitute for scientific reasoning.

CONCLUSION



OUTLINE
Informed Consent
Reproducibility
p-value Hacking
Who owns the data?
Privacy & Anonymity
Debugging Data Science
Algorithmic fairness
Data validity/provenance
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DATA OWNERSHIP
Consider your “biography”

• About you, but is it yours?
• No, the authors owns the copyright – not much you can do 

If someone takes your photo, they own it
• Limits on taking photos in private areas
• Can’t use the photo in certain ways, e.g., as implied 

endorsement or implied libel

Intellectual Property Basics:
• Copyright vs Patent vs Trade Secret
• Derivative works
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DATA OWNERSHIP
Data Collection and Curation takes a lot of effort, and 
whoever does this usually owns the data “asset”
Crowdsourced data typically belongs to the facilitator

• Rotten tomatoes, yelp, etc.
What about personal data though?

• e.g., videos of you walking around a store, etc?
• Written contracts in some cases, but not always

New regulations likely to come up allowing customers to 
have more control over what happens with their data (e.g., 
GDPR)
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OUTLINE
Informed Consent
Reproducibility
p-value Hacking
Who owns the data?
Privacy & Anonymity
Algorithmic fairness
Data validity/provenance
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PRIVACY
First concern that comes to mind

• How to avoid the harms that can occur due to data being 
collected, linked, analyzed, and propagated?

• Reasonable rules ?
• Tradeoffs?

No option to exit
• In the past, could get a fresh start by moving to a new place, 

waiting till the past fades
• big data is universal and never forgets
• Data science results in major asymmetries in knowledge
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WAYBACK MACHINES
Archives pages on the web (https://archive.org/web/ - 300 
billion pages saved over time) 

• almost everything that is accessible 
• should be retained forever 

If you have an unflattering page written about you, it will 
survive for ever in the archive (even if the original is 
removed) 
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RIGHT TO BE 
FORGOTTEN
Laws are often written to clear a person’s record Law in EU 
and Argentina since 2006 after some years. 
impacts search engines (not removed completely, but hard to 
find) 

Collection vs Use
• Privacy usually harmed upon use of data
• Sometimes collection without use may be okay
• Survenillance:

• By the time you know what you need, it is too late to go back 
and get it
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WHY PRIVACY?
Data subjects have inherent right and expectation of privacy

“Privacy” is a complex concept 
• What exactly does “privacy” mean?  When does it apply?

• Could there exist societies without a concept of privacy?

Concretely: at collection “small print” outlines privacy rules
• Most companies have adopted a privacy policy

• E.g. AT&T privacy policy att.com/gen/privacy-policy?pid=2506

Significant legal framework relating to privacy 
• UN Declaration of Human Rights, US Constitution

• HIPAA, Video Privacy Protection, Data Protection Acts



Individual 1
r1"

Individual 2
r2"

Individual 3
r3"

Individual N&
rN"

Server

DB"

RELEASE THE
DATA

“ANONYMOUSLY”
OR RELEASE A

MODEL? 



WHY ANONYMIZE?
For Data Sharing

• Give real(istic) data to others to study without compromising privacy of 
individuals in the data

• Allows third-parties to try new analysis and mining techniques not 
thought of by the data owner

For Data Retention and Usage
• Various requirements prevent companies from retaining customer 

information indefinitely 
• E.g. Google progressively anonymizes IP addresses in search logs
• Internal sharing across departments (e.g. billing ® marketing)



WHY ANONYMIZE?

5 
 

1 Introduction  

While devices, sensors and networks create large volumes and new types of data, and the cost 
of data storage is becoming negligible, there is a growing public interest in and demand for 
the re-use of these data. 'Open data' may provide clear benefits for society, individuals and 
organisations, but only if everybody’s rights are respected to the protection of their personal 
data and private life.  

Anonymisation may be a good strategy to keep the benefits and to mitigate the risks. Once a 
dataset is truly anonymised and individuals are no longer identifiable, European data 
protection law no longer applies. However, it is clear from case studies and research 
publications that the creation of a truly anonymous dataset from a rich set of personal data, 
whilst retaining as much of the underlying information as required for the task, is not a simple 
proposition. For example, a dataset considered to be anonymous may be combined with 
another dataset in such a way that one or more individuals can be identified.  

In this Opinion, the WP analyses the effectiveness and limits of existing anonymisation 
techniques against the EU legal background of data protection and provides recommendations 
for a cautious and responsible use of these techniques to build a process of anonymisation.  

2 Definitions & Legal Analysis 

2.1. Definitions in the EU Legal Context 

Directive 95/46/EC refers to anonymisation in Recital 26 to exclude anonymised data from 
the scope of data protection legislation: 

 “Whereas the principles of protection must apply to any information concerning an 
identified or identifiable person; whereas, to determine whether a person is 
identifiable, account should be taken of all the means likely reasonably to be used 
either by the controller or by any other person to identify the said person; whereas the 
principles of protection shall not apply to data rendered anonymous in such a way that 
the data subject is no longer identifiable; whereas codes of conduct within the 
meaning of Article 27 may be a useful instrument for providing guidance as to the 
ways in which data may be rendered anonymous and retained in a form in which 
identification of the data subject is no longer possible;”.1 

Close reading of Recital 26 provides a conceptual definition of anonymisation. Recital 26 
signifies that to anonymise any data, the data must be stripped of sufficient elements such that 
the data subject can no longer be identified. More precisely, thet data must be processed in 
such a way that it can no longer be used to identify a natural person by using “all the means 
likely reasonably to be used” by either the controller or a third party. An important factor is 
that the processing must be irreversible. The Directive does not clarify how such a de-
identification process should or could be performed2. The focus is on the outcome: that data 
should be such as not to allow the data subject to be identified via “all” “likely” and 
“reasonable” means. Reference is made to codes of conduct as a tool to set out possible 

                                                 
1 It should be noted, in addition, that this is the approach also followed in the draft EU data protection 
Regulation, under Recital 23 “to determine whether a person is identifiable, account should be taken of all the 
means likely reasonably to be used either by the controller or by any other person to identify the individual”. 
2 This concept is elaborated further on p. 8 of this Opinion.  



Releasing data is bad? 

What if we ensure our names and other
identifiers are never released?



CASE STUDY: US 
CENSUS
Raw data: information about every US household

• Who, where; age, gender, racial, income and educational data
Why released: determine representation, planning
How anonymized: aggregated to geographic areas (Zip code)

• Broken down by various combinations of dimensions
• Released in full after 72 years

Attacks: no reports of successful deanonymization
• Recent attempts by FBI to access raw data rebuffed

Consequences: greater understanding of US population
• Affects representation, funding of civil projects
• Rich source of data for future historians and genealogists



CASE STUDY: NETFLIX 
PRIZE
Raw data: 100M dated ratings from 480K users to 18K movies
Why released: improve predicting ratings of unlabeled examples
How anonymized: exact details not described by Netflix

• All direct customer information removed
• Only subset of full data; dates modified; some ratings deleted, 
• Movie title and year published in full

Attacks: dataset is claimed vulnerable [Narayanan Shmatikov 08]

• Attack links data to IMDB where same users also rated movies
• Find matches based on similar ratings or dates in both

Consequences: rich source of user data for researchers
• unclear if attacks are a threat—no lawsuits or apologies yet



THE MASSACHUSETTS GOVERNOR
PRIVACY BREACH [SWEENEY IJUFKS 2002]

•Name
•SSN
•Visit Date
•Diagnosis
•Procedure
•Medication
•Total Charge

MedicalData

• Zip

• Birth  
date

• Sex



•Name
•SSN
•Visit Date
•Diagnosis
•Procedure
•Medication
•Total Charge

•Name
•Address
•Date
Registered
•Party
affiliation
•Date last
voted

• Zip

• Birth  
date

• Sex

MedicalData
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PRIVACY BREACH [SWEENEY IJUFKS 2002]



•Name
•SSN
•Visit Date
•Diagnosis
• Procedure
•Medication
•Total Charge

•Name
•Address
•Date
Registered
•Party
affiliatioon
•Date last
voted

• Zip

• Birth  
date

• Sex

MedicalData VoterList

• Governor of MA
uniquely identified
using ZipCode,
Birth Date, and Sex.

NamelinkedtoDiagnosis

THE MASSACHUSETTS GOVERNOR    
PRIVACY BREACH [SWEENEY IJUFKS 2002]



Governor of MA

using ZipCode,
Birth Date, and Sex.

Quasi-Identifiers

• 87 % of US population
uniquely identified

•Name
•SSN
•Visit Date
•Diagnosis
• Procedure
•Medication
•Total Charge

•Name
•Address
•Date
Registered
•Party
affiliatioon
•Date last
voted

• Zip

• Birth  
date

• Sex

MedicalData VoterList

THE MASSACHUSETTS GOVERNOR    
PRIVACY BREACH [SWEENEY IJUFKS 2002]



AOL “anonymously” released a list of 21 million web search queries.

Ashwin222  
Ashwin222  
Ashwin222  
Ashwin222  
Pankaj156  
Pankaj156  
Cox12345  
Cox12345  
Cox12345  
Cox12345
Ashwin222
Ashwin222

Uefa cup
Uefa champions league  
Champions league final  
Champions league final 2007  
exchangeability
Proof of deFinitti s theorem  
Zombie games
Warcraft
Beatles anthology  
Ubuntu breeze
Grammy 2008 nominees
Amy Winehouse rehab

AOL DATA PUBLISHING 
FIASCO …



AOL “anonymously” released a list of 21 million web search queries.
UserIDs were replaced by random numbers …

865712345 Uefa cup
865712345 Uefa champions league
865712345 Champions league final
865712345 Champions league final 2007
236712909 exchangeability
236712909 Proof of deFinitti s theorem
112765410 Zombie games
112765410 Warcraft
112765410 Beatles anthology
112765410 Ubuntu breeze
865712345 Grammy 2008 nominees
865712345 Amy Winehouse rehab

AOL DATA PUBLISHING 
FIASCO …



Privacy Breach
[NYTimes 2006]



CASE STUDY: AOL 
SEARCH DATA
Raw data: 20M search queries for 650K users from 2006
Why released: allow researchers to understand search patterns
How anonymized: user identifiers removed

• All searches from same user linked by an arbitrary identifier
Attacks: many successful attacks identified individual users

• Ego-surfers: people typed in their own names

• Zip codes and town names identify an area

• NY Times identified 4417749 as 62yr old GA widow [Barbaro Zeller 06]
Consequences: CTO resigned, two researchers fired

• Well-intentioned effort failed due to inadequate anonymization



CAN WE RELEASE A
MODEL ALONE?

Individual 1
r1"

Individual 2
r2"

Individual 3
r3"

Individual N&
rN"

Server

DB"

Release the data
“anonymously” or
release a model



RELEASING A MODEL
CAN ALSO BE BAD
Facebookprofile

+
OnlineData

[Korolova JPC 2011]

Numberof
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interested in
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Facebook's learning algorithm uses private information to predict match to ad



• An attacker, given the model and some demographic information
about a patient, can predict the patient's genetic markers.

Model Inversion
[Frederickson et al., USENIX Security 2014]

18 23rd USENIX Security Symposium USENIX Association
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Figure 1: Mortality risk (relative to current clinical practice)
for, and VKORC1 genotype disclosure risk of, ε-differentially
private linear regression (LR) used for warfarin dosing (over
five values of ε , curves are interpolated). Dashed lines corre-
spond to non-private linear regression.

Model inversion. We study the degree to which these
models leak sensitive information about patient geno-
type, which would pose a danger to genomic privacy. To
do so, we investigate model inversion attacks in which
an adversary, given a model trained to predict a specific
variable, uses it to make predictions of unintended (sensi-
tive) attributes used as input to the model (i.e., an attack
on the privacy of attributes). Such attacks seek to take
advantage of correlation between the target, unknown at-
tributes (in our case, demographic information) and the
model output (warfarin dosage). A priori it is unclear
whether a model contains enough exploitable informa-
tion about these correlations to mount an inversion at-
tack, and it is easy to come up with examples of models
for which attackers will not succeed.

We show, however, that warfarin models do pose a
privacy risk (Section 3). To do so, we provide a gen-
eral model inversion algorithm that is optimal in the
sense that it minimizes the attacker’s expected mispre-
diction rate given the available information. We find that
when one knows a target patient’s background and stable
dosage, their genetic markers are predicted with signifi-
cantly better accuracy (up to 22% better) than guessing
based on marginal distributions. In fact, it does almost as
well as regression models specifically trained to predict
these markers (only ˜5% worse), suggesting that model
inversion can be nearly as effective as learning in an
“ideal” setting. Lastly, the inverted model performs mea-
surably better for members of the training cohort than
others (yielding an increased 4% accuracy) indicating a
leak of information specifically about those patients.

Role of differential privacy. Differential privacy (DP)
is a popular framework for designing statistical release
mechanisms, and is often proposed as a solution to pri-
vacy concerns in medical settings [10, 12, 45, 47]. DP is
parameterized by a value ε (sometimes referred to as the

privacy budget), and a DP mechanism guarantees that the
likelihood of producing any particular output from an in-
put cannot vary by more than a factor of eε for “similar”
inputs differing in only one subject.

Following this definition in our setting, DP guaran-
tees protection against attempts to infer whether a subject
was included in the training set used to derive a machine
learning model. It does not explicitly aim to protect at-
tribute privacy, which is the target of our model inversion
attacks. However, others have motivated or designed DP
mechanisms with the goal of ensuring the privacy of pa-
tients’ diseases [15], features on users’ social network
profiles [33], and website visits in network traces [38]—
all of which relate to attribute privacy. Furthermore, re-
cent theoretical work [24] has shown that in some set-
tings, including certain applications of linear regression,
incorporating noise into query results preserves attribute
privacy. This led us to ask: can genomic privacy benefit
from the application of DP mechanisms in our setting?

To answer this question, we performed the first end-
to-end evaluation of DP in a medical application (Sec-
tion 5). We employ two recent algorithms on the IWPC
dataset: the functional mechanism of Zhang et al. [47]
for producing private linear regression models, and Vin-
terbo’s privacy-preserving projected histograms [44] for
producing differentially-private synthetic datasets, over
which regression models can be trained. These algo-
rithms represent the current state-of-the-art in DP mech-
anisms for their respective models, with performance re-
ported by the authors that exceeds previous DP mecha-
nisms designed for similar tasks.

On one end of our evaluation, we apply a model in-
verter to quantify the amount of information leaked about
patient genetic markers by ε-DP versions of the IWPC
model. On the other end, we quantify the impact of
ε on patient outcomes, performing simulated clinical
trials via techniques widely used in the medical litera-
ture [4, 14, 18, 19]. Our main results, a subset of which
are shown in Figure 1, show a clear trade-off between
patient outcomes and privacy:

• “Small ε”-DP protects genomic privacy: Even though
DP was not specifically designed to protect attribute
privacy, we found that for sufficiently small ε (≤ 1),
genetic markers cannot be accurately predicted (see the
line labeled “Disclosure, private LR” in Figure 1), and
there is no discernible difference between the model
inverter’s performance on the training and validation
sets. However, this effect quickly vanishes as ε in-
creases, where genotype is predicted with up to 58%
accuracy (0.76 AUCROC). This is significantly (22%)
better than the 36% accuracy one achieves without the
models, and not far below (5%) the “best possible” per-
formance of a non-private regression model trained to
predict the same genotype using IWPC data.
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MODELS OF 
ANONYMIZATION
Interactive Model (akin to statistical databases)

• Data owner acts as “gatekeeper” to data
• Researchers pose queries in some agreed language
• Gatekeeper gives an (anonymized) answer, or refuses to answer

“Send me your code” model
• Data owner executes code on their system and reports result
• Cannot be sure that the code is not malicious

Offline, aka “publish and be damned” model
• Data owner somehow anonymizes data set 
• Publishes the results to the world, and retires
• Our focus in this tutorial – seems to model most real releases



OBJECTIVES FOR 
ANONYMIZATION
Prevent (high confidence) inference of associations

• Prevent inference of salary for an individual in “census”
• Prevent inference of individual’s viewing history in “video”
• Prevent inference of individual’s search history in “search”
• All aim to prevent linking sensitive information to an individual

Prevent inference of presence of an individual in the data set
• Satisfying “presence” also satisfies “association” (not vice-versa)
• Presence in a data set can violate privacy (eg STD clinic patients)

Have to model what knowledge might be known to attacker
• Background knowledge: facts about the data set (X has salary Y)
• Domain knowledge: broad properties of data (illness Z rare in men)



UTILITY

Anonymization is meaningless if utility of data not 
considered

• The empty data set has perfect privacy, but no utility
• The original data has full utility, but no privacy

What is “utility”?  Depends what the application is…
• For fixed query set, can look at max, average distortion
• Problem for publishing: want to support unknown applications!
• Need some way to quantify utility of alternate anonymizations



PRIVACY IS NOT
ANONYMITY

• Bob's record is indistinguishable from records of other Cancer  
patients
– We can infer Bob has Cancer !

• “New Information” principle
– Privacy is breached if releasing D (or f(D)) allows an adversary to learn

sufficient new information.
– New Information = distance(adversary's prior belief,

adversary's posterior belief after seeing D)
– New Information can't be 0 if the output D or f(D) should be useful.



PRIVACY
DEFINITIONS
• Many privacy definitions

– L-diversity, T-closeness, M-invariance, ε- Differential privacy, E- Privacy, …

• Definitions differs in
– What information is considered sensitive

• Specific attribute (disease) vs all possible properties of an individual

– What is the adversary's prior
• All values are equally likely vs Adversary knows everything about all but one

individuals
– How is new information measured

• Information theoretic measures
• Pointwise absolute distance
• Pointwise relative distance



NO FREE LUNCH

• Why can't we have a single definition for privacy?
– For every adversarial prior and every property about an individual, new  

information is bounded by some constant.

• No Free Lunch Theorem: For every algorithm that outputs a D  
with even a sliver of utility, there is some adversary with a prior  
such that privacy is not guaranteed.



RANDOMIZED RESPONSE MODEL

• N respondents asked a sensitive “yes/no” question.
• Surveyor wants to compute fraction π who answer “yes”.
• Respondents don't trust the surveyor.
• What should the respondents do?



• Flip a coin
– heads with probability p, and
– tails with probability 1-p (p > ½)

• Answer question according to the following table:

True Answer = Yes True Answer = No
Heads Yes No
Tails No Yes

RANDOMIZED RESPONSE MODEL



SAMPLE MICRODATA
SSN Zip Age Nationality Disease

631-35-1210 13053 28 Russian Heart

051-34-1430 13068 29 American Heart
120-30-1243 13068 21 Japanese Viral
070-97-2432 13053 23 American Viral
238-50-0890 14853 50 Indian Cancer
265-04-1275 14853 55 Russian Heart
574-22-0242 14850 47 American Viral
388-32-1539 14850 59 American Viral
005-24-3424 13053 31 American Cancer
248-223-2956 13053 37 Indian Cancer
221-22-9713 13068 36 Japanese Cancer
615-84-1924 13068 32 American Cancer



REMOVING SSN …
Zip Age Nationality Disease
13053 28 Russian Heart

13068 29 American Heart
13068 21 Japanese Viral
13053 23 American Viral
14853 50 Indian Cancer
14853 55 Russian Heart
14850 47 American Viral
14850 59 American Viral
13053 31 American Cancer
13053 37 Indian Cancer
13068 36 Japanese Cancer
13068 32 American Cancer



LINKAGE ATTACKS

Public Information

Quasi-
Identifier

Zip Age Nationality Disease
13053 28 Russian Heart

13068 29 American Heart
13068 21 Japanese Viral
13053 23 American Viral
14853 50 Indian Cancer
14853 55 Russian Heart
14850 47 American Viral
14850 59 American Viral
13053 31 American Cancer
13053 37 Indian Cancer
13068 36 Japanese Cancer
13068 32 American Cancer



K-ANONYMITY
[Samarati et al, PODS 1998]

• Generalize, modify, or distort quasi-identifier values so that no
individual is uniquely identifiable from a group of k

• In SQL, table T is k-anonymous if each

SELECT COUNT(*)  
FROM T
GROUP BY Quasi-Identifier

is ≥ k

• Parameter k indicates the “degree” of anonymity



EXAMPLE: GENERALIZATION
(COARSENING)

Zip Age Nationality

13053

13068 36 Japanese Cancer

13068 32 American Cancer

Disease

13053 28 Russian Heart

13068 29 American Heart

13068 21 Japanese Flu

13053 23 American Flu

14853 50 Indian Cancer

14853 55 Russian Heart

14850 47 American Flu

14850 59 American Flu

13053 31 American Cancer

Zip Age Nationality Disease

130** <30 * Heart

130** <30 * Heart

130** <30 * Flu

130** <30 * Flu

1485* >40 * Cancer

1485* >40 * Heart

1485* >40 * Flu

1485* >40 * Flu

130** 30-40 * Cancer

130** 30-40 * Cancer

130** 30-40 * Cancer

130** 30-40 * Cancer

Eq37uivalencIendCialnass: GroCaunpcer
of k-anonymous records

that share the same value
for Quasi-identifier

attribtutes

Example 1: Generalization (Coarsening) 
Zip Age Nationality Disease 

13053 28 Russian Heart 

13068 29 American Heart 

13068 21 Japanese Flu 

13053 23 American Flu 

14853 50 Indian Cancer 

14853 55 Russian Heart 

14850 47 American Flu 

14850 59 American Flu 

13053 31 American Cancer 

13053 37 Indian Cancer 

13068 36 Japanese Cancer 

13068 32 American Cancer 

Zip Age Nationality Disease 

130** <30 * Heart 

130** <30 * Heart 

130** <30 * Flu 

130** <30 * Flu 

1485* >40 * Cancer 

1485* >40 * Heart 

1485* >40 * Flu 

1485* >40 * Flu 

130** 30-40 * Cancer 

130** 30-40 * Cancer 

130** 30-40 * Cancer 

130** 30-40 * Cancer 

Equivalence Class: Group 
of k-anonymous records 

that share the same value 
for Quasi-identifier 

attribtutes 



K-ANONYMITY THROUGH 
MICROAGGREGATION

Zip Age Nationality Disease

4 tuples
Zip code = 130**  

23 < Age < 29

2 Heart  
and

2 Flu

Average(age) = 25
4 tuples 1 Cancer,

Zip = 1485*
47 < Age < 59

1 Heart  
and

Average(age) = 53 2 Flu

4 tuples  
Zip = 130**  
31 < Age < 37

All  
Cancer  

patients

Avergae(age) = 34

Zip Age Nationality Disease

13053 28 Russian Heart

13068 29 American Heart

13068 21 Japanese Flu

13053 23 American Flu

14853 50 Indian Cancer

14853 55 Russian Heart

14850 47 American Flu

14850 59 American Flu

13053 31 American Cancer

13053 37 Indian Cancer

13068 36 Japanese Cancer

13068 32 American Cancer



DIFFERENTIAL PRIVACY

For every output …

OD1 D2

Adversary should not be able to distinguish
between any D1 and D2 based on any O

For every pair of inputs
that differ in one row

[DworkICALP2006]

DifferenFal'Privacy'

For'every'output'…'

O"D2"D1"

Adversary'should'not'be'able'to'disFnguish'
between'any'D1'and'D2'based'on'any'O'

&
& &Pr[A(D1)&=&O]&&&&
& &Pr[A(D2)&=&O]&&&&&&&&&&&&&&&&.&

For'every'pair'of'inputs'
that'differ'in'one'row"

&&<&&ε&&&(ε>0)&log'

[Dwork&ICALP&2006]&

34'Lecture'1':'590.03'Fall'16'



DIFFERENTIAL PRIVACY
• Typically achieved by adding controlled noise (e.g., 

Laplace Mechanism)

• Some adoption in the wild:
• US Census Bureau
• Google, Apple, and some others have used this for 

collecting data

• Issues:
• Effectiveness in general still unclear
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Traditional debugging

Traditional debugging of programs is relatively straightforward

You have some desired input/output pairs

You have a mental model (or maybe something more formal) of how each 
step in the algorithm “should” work

You trace through the execution of the program (either through a 
debugger or with print statement), to see where the state diverges from 
your mental model (or to discover your mental model is wrong)

4



13
0

Data science debugging

You have some desired input/output pairs

Your mental model is that an ML algorithm should work because … 
math? ... magic?

What can you trace through to see why it may not be working?  Not very 
useful to step through an implementation of logistic regression…

5
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Debugging data science vs. machine learning

Many of the topics here overlap with material on “debugging machine 
learning”

We are indeed going to focus largely on debugging data science 
prediction tasks (debugging web scraping, etc, is much more like 
traditional debugging)

But, 

6
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The first step of data science debugging

Step 1: determine if your problem is impossible

There are plenty of tasks that would be really nice to be able to predict, 
and absolutely no evidence that there the necessary signals to predict 
them (see e.g., predicting stock market from Twitter)

But, hope springs eternal, and it’s hard to prove a negative…
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A good proxy for impossibility

Step 1: determine if your problem is impossible see if you can solve your 
problem manually

Create an interface where you play the role of the prediction algorithm, 
you need to make the predictions of the outputs given the available inputs

To do this, you’ll need to provide some intuitive way of visualizing what a 
complete set of input features looks like: tabular data for a few features, 
raw images, raw text, etc

Just like a machine learning algorithm, you can refer to training data 
(where you know the labels), but you can’t peak at the answer on your 
test/validation set

8
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An example: predictive maintenance

An example task: you run a large factory and what to predict whether any 
given machine will fail within the next 90 days

You’re given signals monitoring the state of this device

Your interface: visualize the signals (but not whether there was a failure or 
not), and see if you can identify whether or not a machine is about to fail?

9
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What about “superhuman” machine learning

It’s a common misconception that machine learning will outperform 
human experts on most tasks

In reality, the benefit from machine learning often doesn’t come from 
superhuman performance in most cases, it comes from the ability to 
scale up expert-level performance extremely quickly

If you can’t make good predictions, neither will a machine learning 
algorithm (at least the first time through, and probably always)

10
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Decision diagram

11
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Dealing with “impossible” problems

So you’ve built a tool to manually classify examples, run through many 
cases (or had a domain expert run through them), and you get poor 
performance

What do you do?

You do not try to throw more, bigger, badder, machine learning algorithms 
at the problem

Instead you need to change the problem by: 1) changing the input (i.e., 
the features), 2) changing the output (i.e., the problem definition)

12
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Changing the input (i.e., adding features)

The fact that we can always add more features is what makes these 
problems “impossible” (with quotes) instead of impossible (no quotes)

You can always hold out hope that you just one data source away from 
finding the “magical” feature that will make your problem easy

But you probably aren’t… adding more data is good, but:

1. Do spot checks (visually) to see if this new features can help you
differentiate between what you were previously unable to predict

2. Get advice from domain experts, see what sorts of data source they 
use in practice (if people are already solving the problem)

13
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Changing the output (i.e., changing the problem)

Just make the problem easier! (well, still need to preserve the character of 
the data science problem)

A very useful procedure: instead of trying to predict the future, try to 
predict what an expert would predict given the features you have 
available

E.g., for predictive maintenance this shifts the question from: “would this 
machine fail?” to “would an expert choose to do maintenance on this 
machine?”

With this strategy we already have an existence proof that it’s feasible

14
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Changing the output #2

Move from a question of getting “good” prediction to a question of 
characterizing the uncertainty of your predicts

Seems like a cop-out, but many tasks are inherently stochastic, the best 
you can do is try to quantify the likely uncertainty in output given the input

E.g.: if 10% of all machines fail within 90 days, it can still be really valuable 
to predict if whether a machine will fail with 30% probability

15
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Dealing with feasible problems

Good news! Your prediction problem seems to be solvable (because you 
can solve it)

You run your machine learning algorithm, and find that it doesn’t work 
(performs worse than you do)

Again, you can try just throwing more algorithms, data, features, etc, at 
the problem, but this is unlikely to succeed

Instead you want to build diagnostics that can check what the problem 
may be

16
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Characterizing bias vs. variance

Consider the training and testing loss of your algorithm (often plotting 
over different numbers of samples), to determine if you problem is one of 
high bias or high variance

For high bias, add features based upon your own intuition of how you 
solved the problem

For high variance, add data or remove features (keeping features based 
upon your intuition)

17
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Characterizing optimization performance

It is a much less common problem, but you may want to look at 
training/testing loss versus algorithm iteration, may look like this:

But it probably looks like this:

18
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Consider loss vs. task error

Remember that machine learning algorithms try to minimize some loss, 
which may be different from the task error you actually want to optimize

This is common when dealing e.g. with imbalanced data sets for which 
cost of different classifications is very different

19
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THE DREAM
You run your ML algorithm(s) and it works well (?!)

Still: be skeptical …

Very easy to accidentally let your ML algorithm cheat:

• Peaking (train/test bleedover)

• Including output as an input feature explicitly
• Including output as an input feature implicitly

Try to solve the problem by hand;

Try to interpret the ML algorithm / output

Continue being skeptical.  Always be skeptical.

14
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DATA SCIENCE LIFECYCLE: AN 
ALTERNATE VIEW
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COMBATING BIAS
Fairness through blindness:
• Don’t let an algorithm look at protected attributes

Examples currently in use ??????????
• Race

• Gender
• Sexuality

• Disability

• Religion

Problems with this approach ?????????

14
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COMBATING BIAS
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COMBATING BIAS
If there is bias in the training data, the algorithm/ML 
technique will pick it up

• Especially social biases against minorities
• Even if the the protected attributes are not used

Sample sizes tend to vary drastically across groups
• Models for the groups with less representation are less 

accurate
• Hard to correct this, and so fundamentally unfair
• e.g., a classifier that performs no better than coin toss on a 

minority group, but does very well on a majority group
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COMBATING BIAS
Cultural Differences

• Consider a social network that tried to classify user names 
into real and fake

• Diversity in names differs a lot – in some cases, short 
common names are ‘real’, in others long unique names are 
‘real’

15
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COMBATING BIAS
Undesired complexity

• Learning combinations of linear classifiers much harder than 
learning linear classifiers

15
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COMBATING BIAS
Demographic parity:
• A decision must be independent of the protected attribute

• E.g., a loan application’s acceptance rate is independent of an 
applicant’s race (but can be depenedent on non-protected 
features like salary)

Formally: binary decision variable C, protected attribute A
• P{ C = 1 | A = 0 } = P{ C = 1 | A = 1 }

Membership in a protected class should have no correlation 
with the final decision.
• Problems ????????

15
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COMBATING BIAS
What if the decision isn’t the thing that matters?
“Consider, for example, a luxury hotel chain that renders a promotion 
to a subset of wealthy whites (who are likely to visit the hotel) and a 
subset of less affluent blacks (who are unlikely to visit the hotel). The 
situation is obviously quite icky, but demographic parity is completely 
fine with it so long as the same fraction of people in each group see 
the promotion.”

Demographic parity allows classifiers that select qualified 
candidates in the “majority” demographic and unqualified 
candidate in the “minority” demographic, within a protected 
attribute, so long as the expected percentages work out.

More: http://blog.mrtz.org/2016/09/06/approaching-fairness.html

15
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FATML
This stuff is really tricky (and really important).
• It’s also not solved, even remotely, yet!

New community: Fairness, Accountability, and Transparency in 
Machine Learning (aka FATML)

“… policymakers, regulators, and advocates have expressed fears 
about the potentially discriminatory impact of machine learning, 
with many calling for further technical research into the dangers of 
inadvertently encoding bias into automated decisions.”

15
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F IS FOR FAIRNESS 
In large data sets, there is always proportionally less data 
available about minorities.
Statistical patterns that hold for the majority may be invalid 
for a given minority group.
Fairness can be viewed as a measure of diversity in the 
combinatorial space of sensitive attributes, as opposed to 
the geometric space of features.

15
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A IS FOR 
ACCOUNTABILITY
Accountability of a mechanism implies an obligation to 
report, explain, or justify algorithmic decision-making as well 
as mitigate any negative social impacts or potential harms.
• Current accountability tools were developed to oversee human 

decision makers

• They often fail when applied to algorithms and mechanisms 
instead

Example, no established methods exist to judge the intent of 
a piece of software. Because automated decision systems 
can return potentially incorrect, unjustified or unfair results, 
additional approaches are needed to make such systems 
accountable and governable. 
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T IS FOR 
TRANSPARENCY
Automated ML-based algorithms make many important 
decisions in life.
• Decision-making process is opaque, hard to audit

A transparent mechanism should be:
• understandable;

• more meaningful;
• more accessible; and

• more measurable.

15
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DATA COLLECTION
What data should (not) be collected
Who owns the data
Whose data can (not) be shared
What technology for collecting, storing, managing data
Whose data can (not) be traded
What data can (not) be merged
What to do with prejudicial data

15
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DATA MODELING
Data is biased (known/unknown)
• Invalid assumptions

• Confirmation bias

Publication bias
• WSDM 2017: https://arxiv.org/abs/1702.00502
Badly handling missing values

16
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DEPLOYMENT
Spurious correlation / over-generalization

Using “black-box” methods that cannot be explained

Using heuristics that are not well understood

Releasing untested code

Extrapolating

Not measuring lifecycle performance (concept drift in ML)

16
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We will go over ways to counter 
this in the ML/stats/hypothesis 
testing portion of the course



GUIDING PRINCIPLES
Start with clear user need and public benefit
Use data and tools which have minimum intrusion necessary
Create robust data science models
Be alert to public perceptions
Be as open and accountable as possible
Keep data secure

16
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SOME REFERENCES
Presentation on ethics and data analysis, Kaiser Fung @ 
Columbia Univ. http://andrewgelman.com/wp-
content/uploads/2016/04/fung_ethics_v3.pdf
O’Neil, Weapons of math destruction. 
https://www.amazon.com/Weapons-Math-Destruction-Increases-
Inequality/dp/0553418815
UK Cabinet Office, Data Science Ethical Framework. 
https://www.gov.uk/government/publications/data-science-
ethical-framework
Derman, Modelers’ Hippocratic Oath. 
http://www.iijournals.com/doi/pdfplus/10.3905/jod.2012.20.1.035
Nick D’s MIT Tech Review Article.  
https://www.technologyreview.com/s/602933/how-to-hold-
algorithms-accountable/

16
3

http://andrewgelman.com/wp-content/uploads/2016/04/fung_ethics_v3.pdf
https://www.amazon.com/Weapons-Math-Destruction-Increases-Inequality/dp/0553418815
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/524298/Data_science_ethics_framework_v1.0_for_publication__1_.pdf
http://www.iijournals.com/doi/pdfplus/10.3905/jod.2012.20.1.035
https://www.technologyreview.com/s/602933/how-to-hold-algorithms-accountable/


OUTLINE
Informed Consent
Reproducibility
p-value Hacking
Who owns the data?
Privacy & Anonymity
Algorithmic fairness
Some other issues
Data Science in Industry

16
4



DATA 
VALIDITY/PROVENANCE
Provenance: a history of how a data item or a dataset came 
to be

• Also called lineage

Crucial to reason about the validity of any results, or to do 
auditing

Lot of research over the years
• File system/OS-level provenance, data provenance, workflow 

provenance
Increasing interest in industry, but pretty nascent field
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INTERPRETABILITY/E
XPLAINABILITY
Can you explain the results of an ML model?
Easy for decision trees (relatively), nearly impossible for 
deep learning
Can’t use black box models in many domains

• e.g., health care, policy-making

Several recent proposals on simpler models, but those tend 
to have high error rates
Other proposals on trying to interprete more complex models

• Evolving area…
• Big DARPA project: Explainable AI
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INTERPRETABILITY/E
XPLAINABILITY
From https://www.darpa.mil/program/explainable-artificial-
intelligence
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INTERPRETABILITY/E
XPLAINABILITY
From https://www.darpa.mil/program/explainable-artificial-
intelligence
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WHAT IS A DATA SCIENTIST?
Many types of “data scientists” in industry …
• Business analysts, renamed

• “… someone who analyzes an organization or business 
domain (real or hypothetical) and documents its business 
or processes or systems, assessing the business model or 
its integration with technology.”  – Wikipedia

• Statisticians
• Machine learning engineer
• Backend tools developer

17
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KEY DIFFERENCES
Classical statistics vs machine learning approaches
• (Two are nearly mixed in most job calls you will see.)

Developing data science tools vs. doing data analysis

Working on a core business product vs more nebulous 
“identification of value” for the firm

17
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FINDING A JOB
Make a personal website.
• Free hosting options: GitHub Pages, Google Sites

• Pay for your own URL (but not the hosting).

• Make a clean website, and make sure it renders on mobile:

• Bootstrap: https://getbootstrap.com/
• Foundation: http://foundation.zurb.com/

Highlight relevant coursework, open source projects, 
tangible work experience, etc
Highlight tools that you know (not just programming 
languages, but also frameworks like TensorFlow and general 
tech skills)

17
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“REQUIREMENTS”
Data science job postings – and, honestly, CS postings in 
general – often have completely nonsense requirements
1. The group is filtering out some noise from the applicant pool

2. Somebody wrote the posting and went buzzword crazy

In most cases (unless the position is a team lead, pure R&D, 
or a very senior role) you can work around requirements:
• A good, simple website with good, clean projects can work 

wonders here …
• Reach out and speak directly with team members

• Alumni network, internship network, online forums
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INTERVIEWING
We saw that there is no standard for being a “data scientist” 
– and there is also no standard interview style …
… but, generally, you’ll be asked about the five “chunks” we 
covered in this class, plus core CS stuff:
• Software engineering questions
• Data collection and management questions (SQL, APIs, 

scraping, newer DB stuff like NoSQL, Graph DBs, etc)
• General “how would you approach …” EDA questions
• Machine learning questions (“general” best practices, but you 

should be able to describe DTs, RFs, SVM, basic neural nets, 
KNN, OLS, boosting, PCA, feature selection, clustering)

• Basic “best practices” for statistics, e.g., hypothesis testing
Take-home data analysis project (YMMV)
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GRADUATE SCHOOL, 
ACADEMIA, R&D, …
Data science isn’t really an academic discipline by itself, but it 
comes up everywhere within and without CS
• Modern science is built on a “CS and Statistics stack” …
Academic work in the area:
• Outside of CS, using techniques from this class to help 

fundamental research in that field
• Within CS, fundamental research in:

• Machine learning
• Statistics (non-pure theory)
• Databases and data management
• Incentives, game theory, mechanism design

• Within CS, trying to automate data science (e.g., Google 
Cloud’s Predictive Analytics, “Automatic Statistician,” …)
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CONCLUSIONS
Final project due in 2 weeks
Will send out a survey in a few days – please complete it
Sign up for remaining courses
Converting to MS
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