
CMSC 657, Intro to Quantum Information Processing Lecture on November 15 and 20, 2018
Fall 2018, University of Maryland Prepared by Tongyang Li, Xiaodi Wu

Lecture notes for quantum semidefinite programming (SDP) solvers

1 Definitions

1.1 Linear program (LP)

Last time we introduced the HHL algorithm by Harrow, Hassidim, and Lloyd for solving linear systems.
In particular, it solves sparse linear systems with complexity only poly-logarithmic in dimension n. A
very natural question to ask is: beyond solving linear systems, could we give quantum speedup for other
perspective of linear systems?

In this lecture, we consider optimization of linear systems, also known as linear programs. Mathematically,
given an m× n matrix A, a constraint vector b ∈ Rn and a target vector c ∈ Rn, the goal is to solve

max
∑
j∈[n]

cixi (1)

s.t.
∑
j∈[n]

Aijxj ≤ bj ∀i ∈ [m]; (2)

xi ≥ 0 ∀i ∈ [m]. (3)

As an abbreviation, this is also written as

max c†x s.t. Ax ≤ b, x ≥ 0. (4)

Linear programmings are important for two reasons. First, it is widely used in real-world problems.
For instance, assume that you have access to apples and bananas from a farmer and sell it to customers.

It is known that the price of apples is $3 per lb, and the price of bananas is $2 per lb. The constraints are:
you can only store 10 lbs food; the farmer has only 6 lbs apples and 6 lbs bananas. The maximization of
your income is an LP problem:

max 3x+ 2y s.t. x+ y ≤ 10, 0 ≤ x, y ≤ 6. (5)

The best solution is when x = 6 and y = 4, and you get total income 3 · 6 + 2 · 4 = 26. In general, many
real-world optimization problems have linearity on the constraints and target, which perfectly fit into LPs.

On the other hand, LPs can be solved efficiently – there are polynomial time classical algorithms for
solving LPs. Actually, there exist efficient algorithms for a larger class of problems, namely semidefinite
programs (SDPs). This will be the main topic of today’s lecture.

1.2 Semi-definite program (SDP)

Similar to LP, SDP is a central topic in the study of mathematical optimization, theoretical computer science,
and operations research in the last decades. The power of SDP lies in their generality (that extends LP)
and the fact that it admits polynomial-time solvers. Mathematically, given m real numbers b1, . . . , bm ∈ R
and n× n Hermitian matrices A1, . . . , Am, C, the goal is to solve

max Tr[CX] (6)

s.t. Tr[AiX] ≤ bi ∀ i ∈ [m]; (7)

X � 0. (8)

1

Here, the variable matrix X is restricted to be positive semidefinite; this is the reason why it is called an SDP.
Notice that this SDP contains the LP as a special case if we take C = diag(c) and Ai = diag(Ai1, . . . , Ain)
for all i ∈ [m], where c is from Eq. (1) and Ai1, . . . , Ain are from Eq. (2), respectively.

We consider an example of SDP that is similar to (5). Consider

max Tr

[(
3 1
1 2

)
X

]
(9)

s.t. Tr

[(
1 0
0 1

)
X

]
≤ 10, Tr

[(
1 0
0 0

)
X

]
≤ 6, Tr

[(
0 0
0 1

)
X

]
≤ 6; X � 0. (10)

If we denote X =

(
x z
z y

)
, then the SDP is equivalent to

max 3x+ 2y + 2z s.t. x+ y ≤ 10, 0 ≤ x, y ≤ 6, xy − z2 ≥ 0. (11)

The maximum must take place when x ∈ [0, 6], y = 10− x and z =
√
xy =

√
x(10− x); in this case,

max
x∈[0,6]

3x+ 2y + 2z = max
x∈[0,6]

20 + x+ 2
√
x(10− x). (12)

Its optimal solution is x = 6, y = 4, z =
√

24, where the maximum is 26 + 2
√

24.
You might feel that SDP is more complicated than LP because the semi-definite constraint X � 0 seems

to be a bit involved to keep with. However, in the rest of my lecture I will introduce a framework called the
matrix multiplicative weight method, which can solve SDPs efficiently.

2 Matrix multiplicative weights (MMW)

2.1 Multiplicative weight (MW) method

To begin with, I will introduce how people come up with the multiplicative weight (MW) idea. We start with
a related problem: learning with experts. This problem has T rounds and n “experts”. At the beginning of
round t ∈ [T], there is an enclosed value yt ∈ {0, 1} and all experts make a guess for yt. The learner is then
asked to make her own prediction for yt, denoted ŷt. At the end of round t, the true value of yt is revealed
and the learner makes a mistake if ŷt 6= yt.

This learning with expert problem is very natural as it is a basic case for many online problems. For
instance, you can put stock prediction into this problem: the experts are from the Wall Street, making
predictions about whether a certain stock is going up or down; you hear the opinions from these experts
and make your own predictions. At the end of the day, you know whether it is indeed going up or down,
and could then make corresponding changes for the next day. Intuitively, a good strategy at the end of
each round is to penalize those experts who make a wrong prediction for the round. How should we do this
mathematically?

One possible solution is to assign weights to the experts: at each round you make prediction according
to the weights of all experts, and penalize wrong experts by making their weight exponentially smaller. An
algorithm along this line looks like this:

Algorithm 1: Multiplicative weights method for learning with experts.

1 Initialization: Fix a δ ≤ 1/2. Initialize the weight vector w(1) = 1n;
2 for t = 1, 2, . . . , T do
3 For all i ∈ [m], receive the prediction ξi ∈ {0, 1} from expert i. Take q0 =

∑
i : ξi=0 w

(t) and

q1 =
∑
i : ξi=1 w

(t);

4 The learner predicts ŷ ∈ {0, 1} such that ŷ = 1 with probability q1/(q0 + q1);
5 The learner observes the true value y ∈ {0, 1};
6 For each i such that ξi 6= y, w

(t+1)
i ← δw

(t)
i ; otherwise w

(t+1)
i ← w

(t)
i .

2

For this problem, the learner cannot be absolutely good – it suffices that she is relatively good compared
to the experts, namely the expert making fewest mistakes (the “best” expert). In fact, we could prove:

Theorem 2.1. Denote LA as the number of mistakes made by Algorithm 1 and L as the number of mistakes
made by the best expert. Then

E[LA] ≤ ln(1/δ)

1− δ
L+

1

1− δ
lnn. (13)

Proof. At round t, we denote Wt =
∑n
i=1 w

(t)
i and denote lt as the probability that Algorithm 1 makes a

mistake: l =
∑
i : ξi 6=yt w

(t)
i /Wt. Then the weight in this round is changed as

Wt+1 =
∑

i : ξi 6=yt

δw
(t)
i +

∑
i : ξi=yt

w
(t)
i = δltWt + (1− lt)Wt = Wt

(
1− lt(1− δ)

)
. (14)

As a result,

WT = n

T∏
t=1

(
1− lt(1− δ)

)
≤ n

T∏
t=1

exp(−lt(1− δ)) = n · exp
[
− (1− δ)

T∑
t=1

lt

]
. (15)

Denote Li as the number of mistakes made by expert i. Because for all i ∈ [n], δLi = wTi ≤WT , we have

δL ≤WT ≤ n · exp
[
− (1− δ)

T∑
t=1

lt

]
. (16)

Notice that LA =
∑T
t=1 lt is the expected number of mistakes made by Algorithm 1. As a result, Eq. (13)

directly follows from Eq. (16).

2.2 Matrix version

For solving SDPs, we are going to follow this multiplicative weight idea. However, the first technical issue
is: the variables in Algorithm 1 are scalar (even boolean), but SDPs play with PSD matrices. Fortunately,
there is a matrix version for the MW method, namely the matrix multiplicative weight (MMW) method.

Algorithm 2: Matrix multiplicative weights method.

1 Initialization: Fix a δ ≤ 1/2. Initialize the weight matrix W (1) = In;
2 for t = 1, 2, . . . , T do

3 Set the density matrix ρ(t) = W (t)

Tr[W (t)]
;

4 Observe a gain matrix M (t) � 0;

5 Define the new weight matrix: W (t+1) = exp[−δ
∑t
τ=1M

(τ)];

Theorem 2.2. Algorithm 2 guarantees that after T rounds, for any density matrix ρ, we have

(1 + δ)

T∑
t=1

Tr[M (t)ρ(t)] ≥
T∑
t=1

Tr[M (t)ρ]− lnn

δ
. (17)

The proof of Theorem 2.2 is basically the same as that of Theorem 2.1, under the help of the the Golden-
Thompson inequality. Also notice that Theorem 2.1 is written as a loss result, but here for the convenience
of solving SDPs we write Theorem 2.2 as a gain result, i.e., the sum of traces is not much smaller than the
maximal possible trace sum.

3

3 Solving SDP by matrix multiplicative weights

3.1 Feasibility of SDPs

To solve SDPs by the matrix multiplicative weight method, we first introduce the feasibility problem of
SDPs, defined as follows:

Definition 3.1 (Feasibility). Given an ε > 0, m real numbers a1, . . . , am ∈ R, and Hermitian n×n matrices
A1, . . . , Am where −I � Ai � I, ∀ j ∈ [m], define Sε as all X such that

Tr[AiX] ≤ ai + ε ∀ i ∈ [m]; (18)

X � 0; (19)

Tr[X] = 1. (20)

Notice that this is basically the same as the SDP optimization problem, with the only difference that we
only care about whether the SDP is feasible, i.e., whether Sε is an non-empty set or not. It is a standard fact
that one can use binary search to reduce any optimization problem to a feasibility one. For the normalized
case −I � A � I, we first guess a candidate value c1 = 0 for the objective function, and add that as a
constraint to the optimization problem:

s.t. Tr[CX] ≥ c1. (21)

If this problem is feasible, that means the optima is larger than c1 and we accordingly take c2 = c1 + 1
2 ; if

this problem is infeasible, that means the optima is smaller than c1 and we accordingly take c2 = c1− 1
2 ; we

proceed with c3 = c2 + 1
22 or c3 = c2 − 1

22 depending on whether the second problem is feasible or not, and
the same for all ci. By using this binary search idea, we could solve the optimization problem with precision
ε using dlog2

1
ε e calls to the feasibility problem.

It remains to solve the feasibility problem. Formally, for ε-approximate feasibility testing, we require that:

• If S0 = ∅, output “infeasible”;

• If Sε 6= ∅, output an X ∈ Sε.

Zero-sum game approach for SDPs. Next, we adopt the zero-sum game approach to solve SDPs. This
relies on an oracle that searches for violated constraints:

Input a density matrix X, output an i ∈ [m] such that Eq. (18) is violated. If no such i exists,
output “feasible”.

This oracle helps establish a game view to solve any SDP feasibility problem. Imagine Player 1 who wants
to provide a feasible X ∈ Sε. Player 2, on the other side, wants to find any violation of any proposed X.
(This is exactly the function of the oracle.) If the original problem is feasible, there exists a feasible point
X0 (provided by Player 1) such that there is no violation of X0 that can be found by Player 2. This actually
refers to an equilibrium point of the zero-sum game, which can be approximated by the matrix multiplicative
weight update method.

This game view of solving the SDP feasibility problem has appeared in the classical literatures and has
already been used in solving semidefinite programs in the context of quantum complexity theory, in particular
QIP = PSPACE as introduced in previous lectures. The main difference, however, lies in the way one make use
of the matrix multiplicative weight update method, which is a meta algorithm behind both the primal-dual
approach and the game view approach.

3.2 Main result

We use Algorithm 2 and Theorem 2.2 to test the feasibility of SDPs.

4

Algorithm 3: Matrix multiplicative weights algorithm for testing the feasibility of SDPs.

1 Initialize the weight matrix W (1) = In, and T = d 16 lnn
ε2 e;

2 for t = 1, 2, . . . , T do

3 Prepare the density matrix ρ(t) = W (t)

Tr[W (t)]
;

4 Find a j(t) ∈ {1, 2, . . . ,m} such that Tr(Aj(t)ρ
(t)) > aj(t) + ε by the oracle. Take

M (t) = 1
2 (In −Aj(t)) if such j(t) can be found; otherwise, claim that Sε 6= ∅, output ρ(t) as a

feasible solution, and terminate the algorithm;

5 Define the new weight matrix: W (t+1) = exp[− ε
4

∑t
τ=1M

(τ)];

6 Claim that S0 = ∅ and terminate the algorithm;

Theorem 3.2. For any ε > 0, feasibility of the SDP in (18), (19), and (20) can be tested by Algorithm 3
with at most d 16 lnn

ε2 e queries to the search-for-violation oracle.

Proof of Theorem 3.2. For all j ∈ [m], denote Mj = 1
2 (In − Aj); note that 0 � Mj � I ∀j ∈ [m]. In round

t, after computing the density matrix ρ(t), equivalently speaking, the oracle checks whether there exists a
j ∈ [m] such that Tr(Mjρ

(t)) < 1
2 −

aj+ε
2 . If not, then Tr(Mjρ

(t)) ≥ 1
2 −

aj+ε
2 ∀j ∈ [m], Tr(Ajρ

(t)) ≤
aj + ε ∀j ∈ [m], and hence ρ(t) ∈ Sε.

Otherwise, the oracle outputs anMj(t) ∈ {Mj}mj=1 such that Tr(Mj(t)ρ
(t)) < 1

2−
a
j(t)

+ε

2 . After T = d 16 lnn
ε2 e

iterations, by Theorem 2.2 (taking δ = ε/4 therein), this matrix multiplicative weights algorithm promises
that for any density matrix ρ, we have

(
1 +

ε

4

) T∑
t=1

Tr(Mj(t)ρ
(t)) ≥

T∑
t=1

Tr(Mj(t)ρ)− 4 lnn

ε
. (22)

If S0 6= ∅, there exists a ρ∗ ∈ S0 such that Tr(Mj(t)ρ
∗) ≥ 1

2 −
a
j(t)

2 for all t ∈ [T]. On the other hand,

Tr(Mj(t)ρ
(t)) < 1

2 −
a
j(t)

+ε

2 for all t ∈ [T]. Plugging these two inequalities into (22), we have

(
1 +

ε

4

) T∑
t=1

(1

2
−
aj(t) + ε

2

)
>

T∑
t=1

(1

2
−
aj(t)

2

)
− 4 lnn

ε
, (23)

which is equivalent to

ε

4

T∑
t=1

(1

2
−
aj(t)

2

)
−
(

1 +
ε

4

)Tε
2

+
4 lnn

ε
> 0 (24)

and

16 lnn

ε2
>

3 + ε

2
T +

1

2

T∑
t=1

aj(t) . (25)

Furthermore, since 1
2 −

a
j(t)

2 ≤ Tr(Mj(t)ρ
∗) ≤ 1, we have aj(t) ≥ −1 for all t ∈ [T]. Plugging this into (25),

we have 16 lnn
ε2 > (1 + ε

2)T , and hence

T <
16 lnn

ε2(1 + ε/2)
<

16 lnn

ε2
, (26)

contradiction! Therefore, if Tr(Mj(t)ρ
(t)) < 1

2 −
a
j(t)

+ε

2 happens for at least d 16 lnn
ε2 e times, it must be the

case that S0 = ∅.

5

4 Quantum SDP solver

We consider a quantum version of Algorithm 3. To be more specific, inside each iteration of the algorithm,
the cost mainly comes from two steps:

1. Apply the oracle for searching a violated constraint;

2. Prepare the density matrix

ρ(t) =
exp[− ε

4

∑t−1
τ=1M

(τ)]

Tr[exp[− ε
4

∑t−1
τ=1M

(τ)]]
. (27)

The first step is nontrivial, but you could imagine that quantumly it can be done with cost Õ(
√
m) by

Grover search; this is formally solved by “fast quantum OR lemma” in arXiv:1710.02581v2. We very briefly
introduce how to achieve the second step, with the full details presented in the same paper; because (27) is
essentially a thermal state or a Gibbs state, this is known as Gibbs state preparation in quantum algorithm
literatures.

Recall that in phase estimation, we are given a unitary U and a state |ψ〉 such that U |ψ〉 = e2πiθ|ψ〉,
PhaseEst(U)|ψ〉 = |ψ〉|θ〉. We denote the eigen-decomposition of ρ as ρ =

∑
l λl|ψl〉〈ψl|. Then e2πρi =∑

l e
2πλli|ψl〉〈ψl|. As a result,

PhaseEst(e2πρi) · ρ · PhaseEst(e2πρi)† =
∑
l

λl|ψl〉〈ψl| ⊗ |λl〉〈λl|. (28)

Measuring the second register, with probability λl we get λl, and the first system collapses to |ψl〉〈ψl|.
The quantum algorithm for Gibbs state preparation works as follows (denote ρ = ε

4

∑t−1
τ=1M

(τ)):

1. Implement the phase estimation of the unitary operator e2πρi on ρ (by the quantum PCA technique
by Lloyd et al.); the output state is

ρ̄ :=
∑
l

λl|ψl〉〈ψl| ⊗ |λl〉〈λl|. (29)

2. We first estimate Tr[e−ρ]: Measure the second system of ρ̄. If the output is λ, return λ−1e−λ. The
expectation of this step is ∑

l

λl · λ−1l e−λl = Tr[e−ρ]. (30)

3. Run Step 1 again. Measure the second system of ρ̄. If the output is λ, accept the first system with

probability
δλ−1
l e−λl

Tr[e−ρ] (δ is a chosen parameter). If rejected, run this step again until accepted. The

expectation of this step is

∑
l

λl ·
δλ−1l e−λl

Tr[e−ρ]
· |ψl〉〈ψl| =

δe−ρ

Tr[e−ρ]
, (31)

which is proportional to the Gibbs state.

6

	Definitions
	Linear program (LP)
	Semi-definite program (SDP)

	Matrix multiplicative weights (MMW)
	Multiplicative weight (MW) method
	Matrix version

	Solving SDP by matrix multiplicative weights
	Feasibility of SDPs
	Main result

	Quantum SDP solver

