
CMSC 657, Introduction to Quantum Information Processing Lectures on November 6th & 8th
Fall 2018, University of Maryland Prepared by : Dantong Ji, Xiaodi Wu

Quantum Interactive Proofs and QIP = PSPACE

1 Introduction

We have discussed the complexity class IP in class. We know from before that IP = PSPACE, showing the
vast computational power of the interactive proof model. What about introducing some quantum flavor into
the interactive proof system? If both the prover and the verifier can do quantum computation, and they
are allowed to communicate with quantum information, we get a new complexity class QIP as the quantum
analog of IP. Clearly IP ⊆ QIP, since we can simulate classical computation, thus PSPACE = IP ⊆ QIP. A
natural question is whether we can gain extra computational power with quantum setting, namely whether
PSPACE ( QIP. Unfortunately the answer is no. It is proved that QIP ⊆ PSPACE, as we are going to show
in this lecture note.

This striking result is first proved by Jain, Ji, Upadhyay and Watrous in 2009[1], formulating as a semidef-
inite programming problem. Then it is simplified by Wu in 2010[2], establishing a connection between a
QIP-complete problem and the computation of some equilibrium value.

We start from a QIP-complete problem close images, and convert it into a min-max problem, which can
be solved by the matrix multiplicative weights update method. Since this method can be implemented using
a polynomial-space uniform family of Boolean circuits having polynomial-depth, namely close images ∈
NC(poly), together with the fact that NC(poly)=PSAPCE[3], we prove that QIP ⊆ PSPACE. The whole
lecture note will roughly follow these steps.

Readers are assumed to have basic acquaintance with quantum computation, though we do give a brief
explanation of quantum proof systems. This lecture note will go through the whole proof that QIP =
PSPACE. And as stated above, the major difficulty is to prove QIP ⊆ PSPACE. Even though we want to be
as self-contained as possible, we cannot dig into every detail due to the limited space. In this lecture note, we
mainly focus on the conversion to a min-max problem, and the matrix multiplicative weights update method
adopted in this case. In terms of the proofs to some conclusions mentioned, we will point the readers to
related materials when appropriate.

Be aware that even if QIP = IP, it does not mean quantum computation earn us nothing over classical
interactive proof systems. In the very brief summary of the quantum interactive proof system coming in
the next section, we will present some known results useful in our later proof, which is both elegant and
surprising.

2 Preliminaries

2.1 Basic Quantum Notation

A quantum system with k qubits is call a register X, and mathematically taken as a Hilbert space X with
dimension of 2k. The computational basis is an orthonormal basis of great importance, which is often written
using Dirac notation as {|x〉 : x ∈ Σk}, where Σ = {0, 1}. All pure states can be expressed using a column
vector |ψ〉 =

∑
x∈Σn αx|x〉, with

∑
x α

2
x = 1. Its conjugate transpose is written as 〈ψ|. The tensor product

of two Hilbert spaces X ,Y is written as X ⊗ Y.
The space of all linear mappings between two Hilbert spaces X ,Y is denoted as L(X ,Y), and L(X ) is

L(X ,X ) for short. An inner product is defined on the space L(X ,Y) as 〈A,B〉 = Tr(A∗B). In quantum
computation, we also call these linear mappings operators. An operator X ∈ L(X ) is unitary if X∗X = IX ,
and the subset of all unitary operators is denoted as U(X ); Hermitian if X∗ = X, denoted as Herm(X );
semidefinite if X is Hermitian and all eigenvalues are nonnegative, denoted as Pos(X ); projection operator
if XX2 = X, denoted as Proj(X ); density operator if X is positive semidefinite and Tr(X) = 1, denoted

1



as D(X ). An operator A ∈ L(X ,Y) is isometry if A∗A = IX , and the subset of all isometry operators is
denoted as U(X ,Y).

All Hermitian matrices only have real eigenvalues. If n = dimX , any A ∈ Herm(X ) has n eigenvalues,
and we usually represent them as λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A), with λ1(A) being the largest one and
λn(A) the smallest. Although all pure states can be expressed as column vectors in X , density operators are
actually a more general way to represent all possible, pure or mixed, quantum states. The density matrix
corresponding to a pure state |ψ〉 is |ψ〉〈ψ|. Otherwise it is a mixed state. If the system ρ is defined on
a composite Hilbert space X ⊗ Y, we can perform the partial trace over one of its subsystem, say Y, as
TrY(ρ) =

∑
y(IX ⊗ 〈y|)ρ(IX ⊗ |y〉), where {|y〉} is an orthonormal basis on Y. The purification of a mixed

state ρ ∈ D(X ), is a pure state |ψ〉 defined on space X ⊗ Y, such that TrY(|ψ〉〈ψ|) = ρ, where Y is an
auxiliary space.

Theorem 2.1 (Unitary equivalence of purification). Let ρ ∈ D(X ) and suppose |ψ〉, |φ〉 ∈ X ⊗ Y satisfy

TrY(|ψ〉〈ψ|) = ρ = TrY(|φ〉〈φ|). (1)

There exists a unitary operator U ∈ U(Y) such that |φ〉 = (IX ⊗ U)|ψ〉.

An super-operator is a linear mapping Ψ : L(X ) → L(Y). The set of all super-operator is denoted as
T(X ,Y). Due to the Stinespring representation, any super-operator Ψ ∈ T(X ,Y) can always be written as
Ψ(X) = TrZ(AXB∗) for all X ∈ L(X ), where Z is an auxiliary space, and A,B ∈ L(X ,Y ⊗ Z). We define
Ψ∗ ∈ T(Y,X ) as the adjoint super-operator of Ψ if it satisfies that 〈B, Ψ(A)〉 = 〈Ψ∗(B),A〉 for all operators
A ∈ L(X ),B ∈ L(Y).

A super-operator Ψ is positive if Ψ(X) ∈ Pos(Y) for any X ∈ Pos(X ); Ψ completely positive if Ψ⊗ IL(Z)

is positive for any choice of a complex vector space Z; Ψ is trace preserving if Tr(Ψ(X )) = Tr(X ) for all
X ∈ L(X ). For a super-operator Ψ ∈ T(X ,Y) to be physically implementable (also called admissible), it
must be completely positive and trace-preserving. Such super-operator is called a channel, represented as
Ψ ∈ C(X ,Y). Using the Stinespring representation, Ψ ∈ C(X ,Y) if and only if A = B ∈ U(X ,Y). All
channels represent the discrete-time changes in quantum systems. The difference between two channels is a
super-operator.

Sometimes we want to measure the distance between different quantum states. The trace distance is
1
2‖ρ− σ‖1, where ‖ · ‖1 is the trace norm, defined as ‖X‖1 = Tr(

√
XX∗). Fidelity is another useful distance

measurement, defined as F(ρ,σ) = Tr(
√√

ρ σ
√
ρ) = ‖√ρ

√
σ‖1.

Theorem 2.2 (Uhlmann’s theorem).
F(ρ,σ) = max

|ψ〉,|φ〉
|〈ψ|φ〉| (2)

where |ψ〉, |φ〉 are the purifications of ρ,σ respectively.

Theorem 2.3 (Fuchs-van de Graaf inequalities).

1− F(ρ,σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F(ρ,σ)2 (3)

Fuchs-van de Graaf inequalities connects the trace distance and the fidelity. The trace distance is bounded
by the fidelity.

2.2 Quantum Interactive Proof

A quantum interactive game is the analog of the quantum interactive proof system. We assume an all-
powerful prover, who tries to convince a computationally bounded verifier that the input x is of certain
property, through m-turn communication. We say such is a m-turn interactive game, or the verifier is a
m-turn verifier, or the prover is a m-turn prover. The verifier want to protect himself from being conceived
by the prover. The prover and verifier are both able to do quantum computation, assisted with their private
memory registers untouchable by the other party, and they have a quantum channel to communicate. As in
the classical case, the verifier is allowed to use private coins as the source of randomness.

2



Figure 1: A four-turn interactive game.1

Let n = bm2 c, V (x) = (V1,V2, · · · ,Vn+1) is the action of the verifier; P (x) = (P0, · · · ,Pn) if m is odd,
or P (x) = (P1, · · · ,Pn) if m is even, is the action of the prover. V ,P are both decided by the input x.
All Vi,Pi must be able to be described by quantum channels. By adding auxiliary qubits, we can always
purify the circuit, which means all Vi,Pi are unitary or isometry operators, and the joint state of all of the
co-existing registers at each instant is a pure state. Since the verifier is computationally limited, V (x) should
be able to be computed within polynomial time. Conventionally, originally we set all qubits to |0〉, then
the registers are subject to V (x),P (x). No matter m is odd or even, the prover will always send the last
message to the verifier, and the first qubit of the result of Pn+1 is the output qubit of the system, denoted as
〈V ,P 〉(x). We will measure the output qubit with respect to the computational basis {|0〉, |1〉}, and accept
if the measurement is 1, otherwise reject. An example is shown in the figure 2.2. It is a four-turn interactive
game.

Once the protocol of an interactive game is set, and the input x is given, we can assume the behavior of the
verifier is fixed. The prover should try his best to increase the probability that the verifier accepts, as long as
his action is physically admissible. We define the value of a given verifier V (x) as ω(V (x)) = maxP 〈V ,P 〉(x),
which is the maximal probability that a verifier could accept given the input x.

Definition 2.4. A promise problem is a pair A = (Ayes,Ano), where Ayes ∩ Ano = ∅,Ayes ∪ Ano ⊆ Σ∗. It
is required that for any x ∈ Ayes, the output is 1; for any x ∈ Ano, the output is 0. If x /∈ Ayes ∪ Ano, the
output can be anything.

Definition 2.5. A promise problem A = (Ayes,Ano) is contained in the complexity class QIPa,b(m) if there
exists a polynomial-time computable function V , that possesses the following properties:

1. For every string x ∈ Ayes ∪Ano, one has that V (x) is an encoding of a quantum circuit description of
an m-turn verifier in an interactive game.

2. Completeness: For every string x ∈ Ayes, it holds that ω(V (x)) ≥ a.

3. Soundness: For every string x ∈ Ano, it holds that ω(V (x)) ≤ b

When when say QIP(m) without specification, usually it refers to QIP 2
3 , 13

(m).

Theorem 2.6. QIP = QIP1,2−p(3), where p is a constant or a polynomial function of the input length.

Theorem 2.6 is such a fascinating property of quantum interactive proof system. It means that we can
parallelize the quantum interactive proof systems to a high degree. Any quantum interactive proof system
can be completed using only three rounds of interaction. There is no similar theorem for classical interactive
proof systems. Actually it would cause the polynomial hierarchy collapses, namely PH = Σ2, if similar result
holds, which is conjectured to be not likely by many researcher.

The proof of theorem 2.6 contains three steps:

1Figure 1 in [4]

3



Figure 2: A purified three-turn interactive game. 2

1. Perfect completeness: QIPa,b(m) ⊆ QIP1,1−(a−b)2(m+ 2);

2. Parallelization: QIP1,1−ε(m) ⊆ QIP
1,1− ε2

4m2
(3),∀m ∈ poly;

3. Amplification: QIP1,b(3) ⊆ QIP1,bpoly (3).

If you look into the proof carefully, you will find that the verifier does not really need a private random coin,
a public coin works, too.

Corollary 2.7. QIP = QMAM.

The full proofs of theorem 2.6 and corollary 2.7 are beyond the scope of this lecture note. Curious readers
can look at the article by Kitaev and Watrous[4] for more details.

3 A QIP-Complete Problem: Close Images

The close images problem is actually the first QIP-complete problem ever defined. Proposed in 2000 by
Kitaev and Watrous[4], it is a problem closely related to the structure of quantum circuits.

Definition 3.1 (close images, CIα,β(Φ1, Φ2)). For constants 0 < β < α ≤ 1, the input consists of two
polynomial-time computable quantum circuits Φ1, Φ2 agreeing on the number of output qubits they produce.
The promise problem is to distinguish the following two cases

Yes: F(Φ1(ρ1), Φ2(ρ2)) ≥ α for some choice of input states ρ0, ρ1;

No: F(Φ1(ρ1), Φ2(ρ2)) ≤ β for all choices of input states ρ0, ρ1.

Corollary 3.2. CI1, 12
is QIP-complete.

Proof. It follows directly from theorem 2.6. We will show that any L ∈ QIP1, 14
(3) can be reduced to a CI1, 12

problem. Figure 3 is an illustration of a three-turn interactive game. We assume the circuit is purified, thus
V1,P1,V2 are unitary, and the joint state of all co-existing registers at at moment is a pure state. We can
always perform purification by adding auxiliary input qubits.

For now let’s assume V ,P are both fixed. We define two channels, Φ1 ∈ C(Y0,Z1), Φ2 ∈ C(X2,Z1), as

Φ1(ρ1) = TrX1(V1(|0 · · · 0〉〈0 · · · 0| ⊗ ρ1)V ∗1 )

Φ2(ρ2) = TrY1(V ∗2 (|1〉〈1| ⊗ ρ2)V2)
(4)

2Figure 4.9 in [5]

4



for every ρ1 ∈ D(Y0), ρ2 ∈ D(X2), as marked in figure 3. Let’s assume |0 · · · 0,φ1〉 is the pure state of whole
system corresponding to ρ1, and |1,φ2〉 corresponds to ρ2. For a certain message ρ1 ∈ Y0 sent from the
prover, the acceptance probability is

max
|φ2〉∈D(X2⊗W2)

|〈1,φ2|(V2 ⊗ IW2
)(IZ1

⊗ P1)(V1 ⊗ IW1
)|0 · · · 0,φ1〉|2

= max
|φ2〉∈D(X2⊗W2)

|〈1,φ2|(V2 ⊗ IW2
)(V1 ⊗ IW1

)|0 · · · 0,φ1〉|2
(5)

We can eliminate P1, because P1 cannot affect the register Z2, and we are maximizing in the space
|φ2〉 ∈ DX2 ⊗W2. If the maximum of the left-hand side is reached when |φ2〉 = |ψ〉, due to the theorem 2.1,

we can always find another |ψ̂〉, such that

(IZ1
⊗ P ∗1 )(V ∗2 ⊗ IW2

)|1,ψ〉 = (V ∗2 ⊗ IW2
)|1, ψ̂〉. (6)

The maximum acceptance probability of V given P is

ω(V )|P = max
|φ1〉,|φ2〉

|(〈1,φ2|V2)(V1|0 · · · 0,φ1〉)|2. (7)

V ∗2 |1,φ2〉,V1|0 · · · 0,φ1〉 are purifications of Φ1(ρ1), Φ2(ρ2) respectively. And since we are going to maxi-
mize over all possible prover, and the prover is all-powerful, we can find a corresponding P for all possible
purification of Φ1(ρ1), Φ2(ρ2). From the property of fidelity shown in theorem 2.2,

ω(V ) = max
ρ1∈D(Y0)
ρ2∈D(X2)

F (Φ1(ρ1), Φ2(ρ2))2. (8)

Compare with the definition of CI. If ω(V ) = 1, there should exists ρ1 ∈ Y0, ρ2 ∈ X2, such that
F (Φ1(ρ1), Φ2(ρ2)) = 1; if ω(V ) ≤ 1

4 , F (Φ1(ρ1), Φ2(ρ2)) ≤ 1
2 ,∀ ρ1 ∈ Y0, ρ2 ∈ X2.

Now all we need to do is to prove that CI1, 12
∈ PSPACE. We will show this in the following several

sections.

4 CI as a Min-Max Problem

In this section, we are going to reduce CI to a min-max problem. This is the critical step in this proof. The
min-max form allow us to use the matrix multiplicative weights update method coming next section to solve,
which can be implemented as a PSPACE algorithm.

Lemma 4.1. We are given CI1, 12 (Φ1,Φ2), where Φ1 ∈ C(X1,Y), Φ2 ∈ C(X2,Y). Define Ψ1 = Φ1 ⊗ TrX2
∈

C(X1 ⊗ X2,Y ), Ψ2 = TrX1
⊗ Φ2 ∈ C(X1 ⊗ X2,Y ), Ξ = Ψ1 − Ψ2 ∈ T(X1 ⊗ X2,Y ). We define a real number

value
η = min

ρ∈D(X1⊗X2)
max
Π∈Γ
〈Π, Ξ(ρ)〉, (9)

where Γ = {Π : Π ∈ L(Y), 0 ≤ Π ≤ IY}. Then

[CI1, 12
(Φ1, Φ2) = 1]⇒ [η = 0]; [CI1, 12

(Φ1, Φ2) ≤ 1

2
]⇒ [η ≥ 1

2
]. (10)

Proof. Since D(X1 ⊗ X2), Proj(Y) are convex and compact sets, and 〈Π, Ξ(ρ)〉 is a bilinear function over
them. it follows from von Neumann’s Min-Max Theorem that

η = min
ρ∈D(X1⊗X2)

max
Π∈Γ
〈Π, Ξ(ρ)〉 = max

Π∈Γ
min

ρ∈D(X1⊗X2)
〈Π, Ξ(ρ)〉 (11)

We look at yes and no cases respectively:

5



Yes: If CI1, 12
(Φ1, Φ2) = 1, it means that we can find ρ1, ρ2, such that F(Φ1(ρ1), Φ2(ρ2)) = 1 ⇒ Φ1(ρ1) =

Φ2(ρ2). Set ρ = ρ1 ⊗ ρ2, then Ξ(ρ) = 0, η = maxΠ〈Π, 0〉 = 0.

No: If CI1, 12
(Φ1, Φ2) = 0, F(Φ1(ρ1), Φ2(ρ2) ≤ 1

2 , ∀ρ ∈ D(X1 ⊗X2). Due to theorem 2.3

‖Ξ(ρ)‖1 = ‖Φ1(ρ1)− Φ2(ρ2)‖1 ≥ 2− 2F(Φ1(ρ1), Φ2(ρ2)) ≥ 1, (12)

where ρ1 = TrX2(ρ), ρ2 = TrX1(ρ).

η = min
ρ∈D(X1⊗X2)

max
Π∈Γ
〈Π, Ξ(ρ)〉 ≥ min

ρ∈D(X1⊗X2)

1

2
‖Ξ(ρ)‖1 ≥

1

2
. (13)

We can see that there is a clear gap between yes and no instances. If we can approximately compute η,
which is an equilibrium value, then we can distinguish these two cases. In the following section, we are going
to introduce an algorithm to compute η.

5 The Matrix Multiplicative Weights Update Method

The matrix multiplicative weights update method is a meta-algorithm for convex optimization problems. We
will use an algorithm in this family that can be used to compute the equilibrium value η defined in equation
(11). They algorithm is as such:

Algorithm 1 (the matrix multiplicative weights update method). It is an iterative algorithm:

1. Set X1 = IN and T = d2 ln(N)
ε2 e;

2. For each t = 1, 2, · · · ,T , let

ρt =
Xt

Tr(Xt)
, (14)

let Πt ∈ Proj(CM ) be the projection operator corresponding to the positive eigenspace of Ξ(ρt), and
let

Xt+1 = exp(−εΞ∗
t∑
i=1

Πi) (15)

3. Output

η̂ =
1

T

T∑
t=1

〈Πt, Ξ(ρt)〉. (16)

Let’s see what this algorithm does. It iterates for T times. In each round, it normalizes Xt to get a density
matrix ρt. Πt being the projection operator corresponding to the positive eigenspace of Ξ(ρt) satisfies

Πt = argmax
Π∈Γ

〈Π, Ξ(ρt)〉. (17)

and then update Xt using the equation (15). The final output in equation (16) is

η̂ =
T

avg
i=1

max
Π∈Γ
〈Π, Ξ(ρi)〉 (18)

We will later prove that η̂ is a good approximation of η. Before proving, we need to introduce several lemmas.
Presumably ε is a small number, we assume ε < 1

4 without loss of generality.

6



Lemma 5.1. Let N be a positive integer, let H ∈ Herm(CN ) be a Hermitian operator satisfying ‖H‖ ≤ 1,
and let ρ ∈ D(CN ) be a density operator. For every positive real number ε > 0, it holds that

〈ρ, exp(−εH)〉 ≤ exp(−ε exp(−2ε)〈ρ,H〉) · exp(2ε sinh(2ε)) (19)

Lemma 5.2. Let T ,N be positive integers, let H1,H2, · · · ,HT ∈ Herm(CN ) be Hermitian operators satis-
fying ‖Ht‖ ≤ 1 for each t ∈ {1, 2, · · · ,T}, and let ε > 0. Define

X1 = I,Xt+1 = exp(−ε
t∑
i=1

Hi), ρt =
Xt

Tr(Xt)
(20)

for each t ∈ {1, · · · ,T}. It holds that

λmin(

T∑
t=1

Ht) ≥ exp(−2ε)

T∑
t=1

〈ρt,Ht〉 −
ln(N)

ε
− 2T sinh(2ε). (21)

Proof. For each t ∈ {1, 2, · · · ,T}, one has

Tr(Xt exp(−εHt)) = Tr(Xt)〈ρt, exp(−εHt)〉 (22)

by a matrix inequality know as the Golden-Thompson inequality, which states that Tr(exp(A + B)) ≤
Tr(exp(A) exp(B)) for every choice of Hermitian operators A and B.By applying this inequality repeatedly,
and noting that Tr(X1) = N , one finds that

Tr(XT+1) ≤ N
T∏
t=1

〈ρt, exp(−εHt)〉. (23)

Because the trace of a positive semidefinite operator is at least as large as its largest eigenvalue, it follows
that

Tr(XT+1) ≥ λmax(XT+1) = exp(−ελmin(

T∑
t=1

Ht)). (24)

Combining equation (23) and equation (24), we can get

λmin(

T∑
t=1

Ht) ≥ −
ln(N)

ε
−

T∑
t=1

ln〈ρt, exp(−εHt)〉
ε

. (25)

Combining equation (25) with equation (19), we can get equation (21), which is what we want to prove.

Theorem 5.3.

η ≤ 1

T

T∑
t=1

〈Πt, Ξ(ρt)〉 ≤ η + 16ε (26)

Proof. From the equation (18), it is easy to see that η ≤ η̂, since η ≤ maxΠ∈Γ〈Π, Ξ(ρi)〉,∀ i.
The upper bound is deduced from lemma 5.2. Since Ξ is a difference between two channels, thus ‖Ξ‖ ≤ 1.

Set Ht = Ξ∗(Πt) for t ∈ {1, 2, ·,T}, we get

1

T

T∑
t=1

〈Πt, Ξ(ρt)〉 ≤ exp(2ε)λmin

(
Ξ∗

(
1

T

T∑
t=1

Πt

))
+

ln(N) exp(2ε)

εT
+ (exp(4ε)− 1). (27)

Notice that

λmin

(
Ξ∗

(
1

T

T∑
t=1

Πt

))
= min

ρ

〈
Ξ(ρ),

1

T

T∑
t=1

Πt

〉
≤ η, (28)

7



therefore

1

T

T∑
t=1

〈Πt, Ξ(ρt)〉 ≤ exp(2ε)η +
ε exp(2ε)

2
+ (exp(4ε)− 1). (29)

For any choice of δ ≤ 1, it holds that exp(δ) − 1 ≤ 2δ, and by combining this bound with the observation
that η ≤ 1, one obtains

η̂ =
1

T

T∑
t=1

〈Πt, Ξ(ρt)〉 ≤ η + 16ε. (30)

which completes the proof.

If we set ε = 1
128 , it is sufficient to distinguish Ayes and Ano: the gap is 1

2 , while the error is 16ε = 1
8 .

6 CI ∈ PSAPCE

Now that we have a algorithm to compute η accurately enough to distinguish Ayes and Ano, the last step is
whether we can implement this algorithm using only polynomial space. While it is not an easy step, because
to design a space-efficient implementation is not very intuitive. However, thanks to Borodin’s work[3] proving
that PSPACE = NC(poly), we can seek to implement using bounded-depth boolean circuits instead.

NC(poly) is the class of promise problems computed by the polynomial-space uniform boolean circuits
with polynomial depth. It can be seen as an extension of NC, which is the class of promise problems
computed by logarithmic-space uniform boolean circuits with poly-logarithmic depth.

Fact 1. If f ∈ NC(poly), g ∈ NC, then g ◦ f ∈ NC(poly).

Fact 2. Elementary matrix computations can be performed in NC. Matrix exponentials and positive eigenspace
projections can be approximated to high precision in NC.

Theorem 6.1. CI1, 12
(Π1, Π2) ∈ PSPACE.

Sketch Proof. We have shown how to convert CI1, 12
(Π1, Π2) as an equilibrium problem, then solve using

algorithm 1. To decide CI1, 12
(Π1, Π2), it suffices to compose the following families of boolean circuits.

1. A family of boolean circuits that output the representation of the quantum channel Ξ generated from
the input x, namely, the descriptions of two mixed quantum circuits.

2. Follow algorithm 1. Compose all the operations in each iteration. Consider the fact that fundamental
matrix operations can be done in NC and the number of iterations T = d 2 lnN

ε2 e is polynomial in the
size of x since ε is a constant and N is exponential in the size of x.

3. The circuits to distinguish between the two promises by making use of the value returned in the circuits
above.

The first family is easily done in NC(poly), by computing the product of a polynomial number of
exponential-size matrices, which corresponds to the mixed quantum circuits. The second family is in NC by
composing polynomial number of NC circuits. The third one is obviously in NC. The whole process is in
NC(poly) by composing the NC(poly) and NC circuits above, and thus in PSPACE.

Careful reader may have noticed that in the proof to theorem 6.1, the circuits we design can only approx-
imately compute matrix exponentials and positive eigenspace projections in the looping step of algorithm
1. Will it cause any problem? The answer is no. We can ensure the approximation is within constant
error δ. If we go through the proof again, adding small noise to ρt, Πt, we can find that all the steps are
basically unchanged except for additional error poly(δ). We will get a similar result, with the maximal error
of η̂ slightly increased. If we make δ small enough, the gap between Ayes and Ano will still be sufficient to
distinguish. You may find more details on this issue in [1].

Hereby we finished the whole proof. We will conclude with the following corollary.

Corollary 6.2. QIP = PSPACE.

8



7 Discussion

QIP = PSPACE is a fascinating result, while at the same time a disappointing one. Since IP = PSPACE,
it seems that quantum does not work in the interactive proof system. But we can also take an alternative
view: this result shows the extraodinary expressive power of the interactive proof system, which overshadow
the benefit of quantum computation. If we look a little close, we will find that even in the interactive proof
system, quantum computing makes difference. As we see in theorem 2.6, the quantum interactive proof
system can be parallelized to a constant number of turns without losing their expressive power, which is not
known (and perhaps not expected) to be true for classical systems.

References

[1] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. Qip= pspace. Journal of the ACM
(JACM), 58(6):30, 2011.

[2] Xiaodi Wu. Equilibrium value method for the proof of qip= pspace. arXiv preprint arXiv:1004.0264,
2010.

[3] Allan Borodin. On relating time and space to size and depth. SIAM journal on computing, 6(4):733–744,
1977.

[4] Alexei Kitaev and John Watrous. Parallelization, amplification, and exponential time simulation of
quantum interactive proof systems. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 608–617. ACM, 2000.

[5] Thomas Vidick, John Watrous, et al. Quantum proofs. Foundations and Trends R© in Theoretical Com-
puter Science, 11(1-2):1–215, 2016.

9


	Introduction
	Preliminaries
	Basic Quantum Notation
	Quantum Interactive Proof

	A QIP-Complete Problem: Close Images
	CI as a Min-Max Problem
	The Matrix Multiplicative Weights Update Method
	CI in PSAPCE
	Discussion

