
CS 880: Quantum Information Processing 9/20/10

Lecture 7: Query Lower Bounds

Instructor: Dieter van Melkebeek Scribe: Cong Han Lim

Last class, we covered Grover’s quantum search algorithm, which gives us a quadratic speedup
over classical and probabilistic algorithms. Today, we review some applications of Grover’s algo-
rithm and prove the optimality of the algorithm (up to a constant factor).

1 Applications of Grover’s Algorithm

1.1 Amplitude Amplification

Suppose we are given a function f and a quantum algorithm A that produces a superposition
over the base states, which can be partitioned into a good set (f(x) = 1) and a bad set of states
(f(x) = 0):

Output of A =
∑

x:f(x)=1

αx |x〉 |Garbage(x)〉+
∑

x:f(x)=0

αx |x〉 |Garbage(x)〉

(Grover’s quantum search algorithm produces precisely such an output, with the additional restric-
tion that our αx are uniform within each of the partitions). Our goal is to boost the probability of
observing a good state, which is

Pr[observing a good state] =
∑

x∈GOOD

|αx|2 .

This can be done by applying the technique of Amplitude Amplification, which we will briefly
outline since its a generalization of Grover’s algorithm. The notation here is the same as the one
used in our previous lecture.

Consider the state after we apply A. Just as in Grover’s algorithm we can think of the state as
a point on the unit circle on R2 with axes denoted by B and C (bad and correct), where the angle
between the point and the axes give the probabilities of observing a bad or good state.

Figure 1: State after one run of A

As in Grover’s algorithm, in each step we will be applying

1

1. Flips about the B axis

2. Rotation about the axis defined by the point.

To implement the flips, we simply need to apply Uf (phase kickback). For the rotations, we will

1. apply A−1 to ‘shift’ the axis defined by the point to the B axis,

2. perform a reflection about the B axis, denoted by U|0n〉, and finally

3. apply A.

Hence, we can describe each iteration of amplitude amplification as:

AU|0n〉A
−1Uf

(Note that if we consider Grover’s algorithm in this framework, the A here is simply the Hadamard
gate H⊗n.)

Repeating the same analysis as last lecture, we know the number of iterations required is O(1√
p),

where p is the probability of observing a good state after one run of A. This is again a quadratic
speedup over the classical case which requires Ω(1p) trials.

1.2 Finding a Witness for an NP Problem

Consider the Satisfiability problem. In the classical setting, the brute force approach would take
O(2n) trial to obtain a valid assignment. However, using Grover’s algorithm, we can search over
the space of all assignments and obtain a valid assigment in O(2

√
n) trials. While this does not

necessarily mean that for any classical algorithm for SAT we can always find a quantum algorithm
that gives a quadratic speedup, this has been true for known algorithms. Current known determin-
istic methods for solving SAT gives us a search space that we can recast in a quantum setting to
allow Grover’s algorithm to work efficiently.

1.3 Unstructured Database Search

One can view Grover’s algorithm as a way to search over an unstructured database where the keys
are precisely the boolean strings x of length n, corresponding to the 2n base states |x〉. While this
is often presented as an application of the algorithm (Grover’s original paper does this), this is
impractical in reality. Firstly, it is unlikely that a set of real-world data has no intrinsic structure.
Secondly, both the number of quantum gates required and the time needed to transform the real-
world data into the appropriate form for the algorithm will be at least linear in the number of
inputs.

1.4 Deciding OR(f)

We have been considering the search problem of finding an input x such that a given function
f : {0, 1}n → {0, 1} evaluates to f(x) = 1. We can consider a related decision problem OR(f):
Given the function f : {0, 1}n → {0, 1}, does there exist an x ∈ {0, 1}n such that f(x) = 1? (This
is equivalent to computing the boolean OR over all possible f(x)).

It is clear that the search problem is at least as difficult as deciding OR(f), and we will make
use of this fact to obtain a lower bound for quantum search.

2

2 Tight Lower Bound for Quantum Search

From the previous lecture we know that Grover’s algorithm runs in O(
√
N), where N = 2n denotes

the number of binary strings of length n. We will show that this is optimal by proving the following
theorem:

Theorem 1. Any quantum black-box algorithm that decides OR(f) with constant error ε < 1
2 needs

to make Ω(
√
N) queries to f .

2.1 Structure of Quantum Circuit

To prove Theorem 1, we first need to consider the structure of any quantum circuit that makes q
many queries. Each quantum circuit consists of two types of operators:

1. Unitary operators Vi, independent of f ,

2. Oracle Uf , which provides black-box access to f .

We will also assume that we postpone observation of the system till the end. Hence, our quantum
circuits have the following form:

repeat q times

V1

Uf

V2

Uf

· · ·

Vq

Uf

Vfinal

NM

· · · NM

· · · NM

· · · NM

· · · NM

· · · NM
∣∣ψ(0)

〉 ∣∣ψ(1)
〉 ∣∣ψ(2)

〉 ∣∣ψ(q)
〉 ∣∣ψfinal〉

Initial State Final State

Hence, the state after the ith Uf gate
∣∣ψ(i)

〉
is given by∣∣∣ψ(i)

〉
= (Uf ⊗ I) · Vi · . . . · (Uf ⊗ I) · V1 ·

∣∣∣ψ(0)
〉
,

where
∣∣ψ(0)

〉
= |0 . . . 0〉 without loss of generality.

2.2 Proof Idea for Theorem 1

Given any two functions f, g such that OR(f) 6= OR(g), the corresponding final states have to be
almost orthogonal for us to observe the correct answer with high probability. Therefore, we can

3

prove the theorem by picking an ‘adversarial’ set of functions f such that any quantum circuit that
correctly decides OR(f) for this set will require Ω(

√
N) queries.

We let
∣∣ψ(i)

〉
denote the states for the function f such that OR(f) = 0 and

∣∣∣ψ(i)
x̃

〉
for function

fx̃ such that fx̃(x) = 1 ⇔ x = x̃. Note that
∣∣∣ψ(0)
x̃

〉
=
∣∣ψ(0)

〉
, but

∣∣∣ψfinalx̃

〉
and

∣∣ψfinal〉 have to be

nearly orthogonal. Only the oracle gate Uf can affect the angles, and we will show that any query

can increase the angles between
∣∣∣ψ(i)
x̃

〉
and

∣∣ψ(i)
〉

by a small factor on average over all x̃. This

means many queries are required, giving us a lower bound.

2.3 Proof of Theorem 1

We will begin by making formal the ‘almost orthogonal’ condition. Consider the distance between
these two probability distributions:

D
(

Prψfinal ,Pr
ψfinal
x̃

)
≥
∣∣Pr[algorithm outputs 0 on f]− Pr[algorithm outputs 0 on fx̃]

∣∣+∣∣Pr[algorithm outputs 1 on f]− Pr[algorithm outputs 1 on fx̃]
∣∣

Since we want the error rate of the algorithm to be a constant factor ε, we obtain

D
(
Prψfinal ,Pr

ψfinal
x̃

)
. ≥ 2(1− 2ε)

which implies we need ∥∥∥∣∣∣ψfinal〉− ∣∣∣ψfinalx̃

〉∥∥∥ ≥ 2(1− δ) (1)

for some δ > 0 that is dependent only on ε.

Exercise 1. Verify Equation 1 and determine δ(ε) (there is a simple expression for δ(ε)).

Finally, we can begin the proof of Theorem 1.

Proof. We will now put an upper bound on how much the norm
∥∥∥∣∣ψ(i)

〉
−
∣∣∣ψ(i)
x̃

〉∥∥∥ in can change in

any one step of the quantum algorithm (where each step consists of a unitary gate Vi and the Uf
gate directly after it), thereby showing any quantum algorithm requires q = Ω(

√
N) iterations to

satisfy Equation 1. Since ∣∣∣ψ(i)
〉

= (I ⊗ I)Vi

∣∣∣ψ(i−1)
〉

∣∣∣ψ(i)
x̃

〉
= (Ufx̃ ⊗ I)Vi

∣∣∣ψ(i−1)
x̃

〉
,

we have ∥∥∥∣∣∣ψ(i)
〉
−
∣∣∣ψ(i)
x̃

〉∥∥∥ =
∥∥∥((I ⊗ I)Vi

∣∣∣ψ(i−1)
〉
− (Ufx̃ ⊗ I)Vi

∣∣∣ψ(i−1)
x̃

〉)∥∥∥
This equation can be simplified by applying the triangle inequality and removing the unitary terms
(which does not affect the norm):∥∥∥∣∣∣ψ(i)

〉
−
∣∣∣ψ(i)
x̃

〉∥∥∥ ≤ ∥∥∥(I ⊗ I)Vi

∣∣∣ψ(i−1)
〉
− (Ufx̃ ⊗ I)Vi

∣∣∣ψ(i−1)
〉∥∥∥+

∥∥∥(Ufx̃ ⊗ I)Vi

(∣∣∣ψ(i−1)
〉
−
∣∣∣ψ(i−1)
x̃

〉)∥∥∥
=
∥∥∥(I ⊗ I)Vi

∣∣∣ψ(i−1)
〉
− (Ufx̃ ⊗ I)Vi

∣∣∣ψ(i−1)
〉∥∥∥︸ ︷︷ ︸

B

+
∥∥∥∣∣∣ψ(i−1)

〉
−
∣∣∣ψ(i−1)
x̃

〉∥∥∥ . (2)

4

We now analyze the term B in Equation (2), which gives us an upper bound on the change in
norm. Let

Vi

∣∣∣ψ(i−1)
〉

=
∑
z

αz |z〉

where |z〉 = |xbu〉, such that |xb〉 represents the input into Uf and |b〉 represents the ancilla qubit
that records the output of Uf . Note that

Ufx̃ ⊗ I : |xbu〉 7→

{∣∣xbu〉 if x = x̃

|xbu〉 if x 6= x̃ .

We can now proceed to bound B:

B =
∥∥∥[(I ⊗ I)− (Ufx̃ ⊗ I)

]∑
αz |z〉

∥∥∥
=

∥∥∥∥∥[(I ⊗ I)− (Ufx̃ ⊗ I)
] ∑
z=x̃bu

αz |z〉

∥∥∥∥∥
=

√ ∑
z=x̃bu

(
αx̃bu − αx̃bu

)2
≤
√ ∑
z=x̃bu

2
(
|αx̃bu|2 +

∣∣αx̃bu∣∣2)
=

√
4
∑
z=x̃bu

|αx̃bu|2

= 2

√
Pr[ith query for f ≡ 0 is x̃]. (3)

We return to the term
∥∥∥∣∣ψfinal〉− ∣∣∣ψfinalx̃

〉∥∥∥ which, by removing unitary transformations, is

simply
∥∥∥∣∣ψ(q)

〉
−
∣∣∣ψ(q)
x̃

〉∥∥∥ . By combining Equations (2) and (3), this gives us∥∥∥∣∣∣ψfinal〉− ∣∣∣ψfinalx̃

〉∥∥∥ =
∥∥∥∣∣∣ψ(q)

〉
−
∣∣∣ψ(q)
x̃

〉∥∥∥
≤ 2

q∑
i=1

√
Pr[ith query for f ≡ 0 is x̃] +

∥∥∥∣∣∣ψ(0)
〉
−
∣∣∣ψ(0)
x̃

〉∥∥∥︸ ︷︷ ︸
=0

. (4)

which is true for every possible x̃. While the probability term in Equation (4) might be large for
particular x̃, on average they have to be small since they add up to 1. So, we sum over all x̃ and
apply Cauchy-Schwarz inequality to obtain:∑

x̃

∥∥∥∣∣∣ψfinal〉− ∣∣∣ψfinalx̃

〉∥∥∥ ≤ 2

q∑
i=1

∑
x̃

√
Pr[ith query for f ≡ 0 is x̃]

≤ 2

q∑
i=1

(
1 ·
√
N
)

≤ 2q
√
N (5)

5

Finally, we combine the lower and upper bounds (Equations (1) and (5) respectively) to get

N · 2(1− δ) ≤ 2q
√
N ⇒ q ≥ (1− δ)

√
N,

so q = Ω(
√
N), as desired.

2.4 Conclusion

In the proof above, we used an adversial argument - we chose a relatively small set of functions
that is easy to analyze, where distinguishing between those with different outputs requires many
queries. This is a simplified form of the quantum adversial argument, which is a generalization of
the method used in the classical setting.

In the next lecture, we will outline two other methods to obtain lower bounds in the quantum
black-box model - the generalized quantum adversial method and the polynomial method.

6

