
Can Quantum Computers Overheat?
CMSC657: Final Report

Wade Hodson, Sandesh Kalantre, and Arthur Lin
(Dated: December 14, 2018)

We investigate the thermodynamics of realistic quantum circuits. Experimentally, any quantum
computing platform is not fully isolated from an environment, and this unwanted coupling may
give rise to errors in gate operations. A fidelity of exactly one would be expected for a perfect
gate operation and such an operation would be perfectly reversible; but otherwise in experiments
this is not achieved due to various technical limitations and decoherence from the environment.
In this paper, we try to ask the inverse question – for an imperfect quantum operation with a
given fidelity, what are the corresponding thermodynamic costs? We present a simplified model for
imperfect quantum operations with the dephasing channel, and extract the relationship between
entropy change and fidelities. We report numerical simulations for small quantum circuits (in terms
of qubits). We also present a summary of experimentally measured fidelities for various quantum
computing platforms, and delineate the thermodynamic implications of those under our model. We
conclude with a discussion of why thermodynamic costs would be relevant for scaling up quantum
systems in terms of architectures and required technical limitations.
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I. INTRODUCTION

In order to achieve practical, cost-effective com-
putation, computer hardware designers must con-
sider the thermodynamic costs associated with log-
ical operations. In the realm of classical comput-
ing, thermodynamic analysis of classical models of
computation has led to results such as the Landauer
bound [1], which identifies a fundamental lower limit
to the amount of heat which must be dissipated in
a logically irreversible computation. Currently, typ-
ical computers release heat quantities which are or-
ders of magnitude above this bound [2]. However,
as technological advancements lead to continually
smaller and more energy-efficient devices, theoret-
ical results such as the Landauer limit may become
increasingly relevant to the design and manufacture
of computer hardware.

Thermodynamic analysis of computation may
also be applied to quantum algorithms. In general,
any classical or quantum system must be coupled
to an external control mechanism for computations.
The system also interacts with uncontrolled environ-
mental degrees of freedom. Thus, every logical oper-
ation, when instantiated in a specific physical device,
will entail certain energetic and entropic costs. Just
as certain quantum algorithms perform better than
their classical counterparts in terms of memory us-
age or time complexity [3], one may also ask whether
a similar “quantum advantage” exists with respect
to the energetic costs of quantum computations.

In this paper, we aim to investigate such costs
in the context of quantum computation. Specifi-
cally, we will investigate the thermodynamic effects
of imperfect gates, measurement, and initialization
of qubits under a quantum circuit model. Using
tools from the field of quantum thermodynamics [4–
6], we will consider the thermodynamic heat dissipa-
tion associated with a given physical implementation
of quantum algorithms. We will analyze how this
heat cost scales as a function of input size, circuit
complexity, output fidelity, and computation speed.
We shall evaluate this cost for near-term quantum
computing implementations, and estimate the limit
at which this cost significantly impacts the feasibil-
ity of large-scale quantum computation.

II. PROBLEM DESCRIPTION

The central aim of this project is to establish
a thermodynamic heat cost associated with a quan-
tum circuit. Quantum gates, as is well known from
experimental efforts [7, 8], are not perfect in their
operation. In general, the desired final state of a
gate cannot be obtained with unit fidelity. This er-

ror stems from noise sources, and can be traced back
to the coupling of the qubit to its environment. We
refer to such gate operations as imperfect gate oper-
ations – such operations will generally lead to heat
dissipation into the environment. Our theoretical
model for describing these operations is detailed in
the Model section (Sec. IV) of this report.

The overall heat generated from a quantum
computer can be broken down into three compo-
nents: those involving qubit initialization, imperfect
gate operations, and qubit measurement. We seek to
investigate each of the three on a theoretical level,
and incorporate experimental data from near-term
quantum computers. We now briefly describe these
objectives in the following subsections.

A. Initialization and measurement

In order to attain a full accounting of the heat
produced in a quantum algorithm, the costs asso-
ciated with initialization and measurement must be
considered. Initialization, as a process by which an
unknown quantum state is transformed into a def-
inite state, is irreversible, and is comparable to a
classical erasure protocol. So, just as classical era-
sure processes are associated with heat dissipation
bounded by the Landauer limit, quantum initializa-
tion is subject to analogous constraints [9]. Mea-
surement, as another irreversible quantum opera-
tion, may have similar thermodynamic costs [10].

B. Building a circuit with gates

Assuming a circuit with n qubits, a maximum
gate depth of d, and the associated fidelities of indi-
vidual gates of depth k to be xk, we aim to establish
an upper bound on the total heat generated by the
given circuit as some function Q(n, d, {xk}dk=1). We
plan to use the quantum channel approach to model
the interaction with the bath as has been investi-
gated for small quantum systems. [11, 12]. In the
Model section (Sec. IV) of this report, we explain
this approach in more detail, and we consider the
specific case of single-qubit gates in the presence of
a dephasing environment.

Since all quantum algorithms can be repre-
sented as quantum circuits [3], we will consider our
bounds in the context of specific algorithms, for in-
stance, Shor’s algorithm, Grover’s algorithm and so
on, thereby introducing a nominal “heat complex-
ity” for these algorithms. Such analysis will require
the computation of heat values for multi-qubit gates
and successive unitary operations. Through an ex-
tension of our single-qubit model, it may be possible
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to derive bounds relating the total heat generated
in a quantum circuit to the heat generated by each
circuit component considered in isolation.

C. Near-term quantum computers

We plan to incorporate experimental values in
our theoretical calculations from currently estab-
lished quantum computing platforms, and determine
a scale in the number of qubits, gate depth and cir-
cuit complexity at which this heat cost can detri-
mentally affect computation. We may also explore
if different implementations and architectures [13–
16] can offer different heat costs, and how they can
be leveraged for scalability. To this end, we have
collected data about existing qubit implementations
in the following section.

III. DATA ON CURRENT QUANTUM
COMPUTING IMPLEMENTATIONS

In this section, we summarize qubit proposals
currently under extensive experimental investigation
for building quantum computers. T1 is roughly the
timescale on which the state of the qubit decays (say
from |1〉 → |0〉) while T2 is the timescale during

which coherence is lost ( |0〉+|1〉√
2
→ |0〉). We begin

by briefly explaining the qubit proposals.

• Spin qubits: Single electrons confined in
solid-state structures called quantum dots are

used. Under the application of a magnetic
field, the electron-spin states form a two-level
system to be used as a qubit.

• Trapped Ions: Ions are trapped using radio-
frequency dynamic electrical potentials and
two electronic states within each ion are used
as a qubit. Optical transitions and the
Coulomb interaction between ions are used to
control the qubit state and measure the qubits.

• Photonic qubits: Photonic/optical quantum
computing covers a vast array of architectures.
The most encompassing paradigm is Linear
Optical Quantum Computing (loqc), wherein
qubits are encoded in photons and are manip-
ulated with linear optical elements. The pre-
dominate encoding schemes are polarization
qubits and time-bin qubits. The optical nature
of this architecture makes gate times negligible
compared to coherence times.

• Superconducting (SC) qubits: An elec-
tronic circuit consisting of a capacitor and
a Josephson junction provides a macroscopic
platform for quantum harmonic oscillators.
The harmonic potential is then manipulated
in various formats to isolate a two level sys-
tem. These formats include the two broad cat-
egories of charge qubits and flux qubits. The
most popular architecture, the transmon, is of
a charge qubit design with enhanced protec-
tion against charge noise.

Qubit Proposal T1 T2 Single-qubit
gate time

Single-qubit
gate fidelity

Two-qubit
gate time

Two-qubit
gate fidelity

Spin qubits (GaAs)
[17]

1 s 0.44 µs 20 ns 0.86 350 ps (swap) N/A

Spin qubits (SiGe)
[18, 19]

N/A 20 µs 40 ns 0.99926 200 ns (cnot) 0.78

Trapped Ions [20] ∼ ∞ 0.5 s 20 µs 0.997 250 µs 0.965
Polarization qubits
[21, 22]

hours 0.1 ms 0.9984 >0.75

SC (transmon)
qubits [23–25]

1 µs 1 µs 15 ns 0.988 190 ns (cnot) 0.92

TABLE I. T1, T2, gate times and fidelities of experimental qubit proposals.

IV. MODEL

A. Overview

One goal of this project is to explore the rela-
tionship between entropy production, heat genera-

tion, and fidelity in quantum computation. To this
end, we develop a model of quantum computation
in the presence of an uncontrolled environment, in
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which environmental interactions reduce the fidelity
of ideal quantum logic operations. The basic struc-
ture of our model is as follows.

Consider a quantum logic gate acting on a set of
N qubits, carried out by applying the unitary oper-

ator Û = e−iĤt/~. In any real experimental setting,
the fidelity with which this gate is implemented is
limited by two factors. First, it may not be experi-
mentally feasible to engineer the exact Hamiltonian
Ĥ which generates the required unitary evolution.
Second, even if this Hamiltonian could be imple-
mented exactly, interactions with the environment
will generically entangle the qubits with the environ-
ment, perturbing them away from the desired final
state. Due to both of these limitations, the imple-
mentation of a quantum gate is inevitably subject
to deviations away from ideal performance.

In our model, we restrict our attention to losses
of fidelity due to the second of these effects: Interac-
tion with the environment. With this focus in mind,
we approximate the implementation of a gate as a
two-step process. Assuming that the qubits begin
in a pure state ρ̂0 = |ψ〉〈ψ|, we first apply the uni-

tary operation Û to this initial state. The gate time
of Û is assumed to be short compared to interac-
tions with the environment. During this step, the
coupling between the qubits and the environment is
ignored, and the system evolves to the pure state ρ̂1:

ρ̂0 → ρ̂1 = Û ρ̂0Û
† (1)

Interaction with the environment is modelled in
the second step. In this step, the state ρ̂1 is evolved
via a quantum channel, with an associated set of
Kraus operators {Âi}:

ρ̂1 → ρ̂2 =
∑
i

Âiρ̂1Â
†
i (2)

As a result of this second process, the final state
of the qubits, ρ̂2, will generically deviate from the
desired state ρ̂1, which would have been achieved in
the absence of environmental interaction (see Fig. 1).

ρ̂0 U
UE

ρ̂2

FIG. 1. Effective circuit to model a imperfect unitary
operation due to interaction with the environment. As a
result, the system state evolves under the action of Kraus
operators Âi as defined in the text after the action of the
unitary Û .

Most of the analysis for this project will be car-
ried out using this two-step evolution framework.

We believe that this framework is appropriate since
T2 time (which can be thought as the timescale to
interact with the environment) is much larger than
individual gate times (see Table I). Note that at this
stage, the model is sufficiently general to analyze
any N -qubit gate, followed by an arbitrary interac-
tion with the environment. However, we will begin
our analysis with a much more specific scenario, de-
tailed in Section IV C, in which the application of a
single-qubit gate is followed by a dephasing interac-
tion with the environment.

B. Relevant quantities

To analyze the quantum computation process
defined above in (1) and (2), there are several use-
ful quantities that we will consider. We will de-
scribe two especially important quantities here: The
fidelity loss in a quantum computation, and the en-
tropy change. First, the fidelity F , which charac-
terizes the deviation of a given density operator σ̂
relative to a “target” operator ρ̂, is defined as

F ≡ Tr

[√√
ρ̂σ̂
√
ρ̂

]
. (3)

In the context of the two-step evolution pro-
tocol defined previously, we would like to compare
the true final state of the qubits, represented by ρ̂2,
to the target state ρ̂1, which would be obtained if
environmental effects could be entirely suppressed.
Using the fact that this target states is pure, it is
straightforward to show that the fidelity loss ∆F
due to the two-step evolution is given by

∆F =
√

Tr [ρ̂1ρ̂2]− 1. (4)

For a quantum operation beginning from a pure
state, ∆F is necessarily non-positive, and its mag-
nitude quantifies the degree to which the noisy im-
plementation of this operation differs from the ideal
case.

Second, we can compute the entropy change
associated with a given two-step evolution process.
The von Neumann entropy associated with a quan-
tum state ρ̂ is defined as S ≡ −Tr[ρ̂lnρ̂]. Here and
elsewhere, Boltzmann’s constant kB has been set to
one. Entropy is one metric for quantifying the im-
purity of a quantum state: Pure states possess zero
entropy, while the maximally mixed state is also the
maximum entropy state. Since ρ̂0 and ρ̂1 are both
pure states, the entropy change ∆S in the two-step
evolution protocol is simply the final entropy, asso-
ciated with ρ̂2:

∆S = −Tr [ρ̂2lnρ̂2] (5)
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In this project, we aim to explore the relation-
ships between these and other quantities of inter-
est, both by establishing analytical bounds and by
performing numerical simulations. In addition, we
will invoke the quantum Landauer bound [5, 6] to
relate the entropy production ∆S to the heat gener-
ated during the quantum operation. In some simple
models, such as the single-qubit dephasing model de-
scribed below, we expect that these quantities can
be evaluated explicitly in terms of a few relevant pa-
rameters.

C. Single-qubit gates with dephasing

In the simplest case, we will perform our analy-
sis in the context of a single qubit, interacting with
a dephasing environment. When a qubit undergoes
dephasing, the probabilities associated with finding
the qubit in either computational basis state |0〉 or
|1〉 remain fixed, but the coherences between these
states are reduced. Such an interaction can be mod-
elled as a quantum channel with two Kraus operators
[3]:

Â1 ≡
√
αÎ, Â2 ≡

√
1− αẐ (6)

Here, Î is the identity operator, Ẑ is the phase
flip or Pauli-z operator, and α is a real number be-
tween 0 and 1. When this channel is applied to the
quantum state ρ̂1, (2) tells us that the resulting state
ρ̂2 is given by

ρ̂2 = αρ̂1 + (1− α)Ẑρ̂1Ẑ. (7)

Speaking loosely, this evolution may be given
the following interpretation: With probability α, the
initial state ρ̂1 has been left unchanged; and with
probability 1 − α, the phase of the initial state has
been flipped.

In this dephasing model, we can compute the
fidelity loss (4) and the entropy change (5) as a func-
tion of the initial quantum state and the parameter
α. We will investigate these two quantities for dif-
ferent ranges of α, and for various choices of initial
state. For example, it may be instructive to consider
the limit where α ≈ 1, in which the state remains
approximately pure. Ultimately, it may also prove
fruitful to generalize this model to multi-qubit gates,
with each qubit interacting with an independent de-
phasing environment.

D. Numerical simulations on the single-qubit
dephasing channel

We tried to numerically understand the rela-
tionship between ∆S and F for a initial pure state ρ̂i

FIG. 2. Effect of the dephasing channel for initial pure
states uniformly randomly sampled on the Bloch sphere.
We plot the relationship between the change in entropy
∆S and fidelity F between the initial state and after
the effect of channel for different values of the channel
parameter α.

in the dephasing model. Our simulation proceeded
as follows:

Simulation algorithm

1. Sample ρ̂i uniformly on the Bloch sphere. This
is equivalent to sampling all possible single
qubit gates.

2. Calculate the effect of the dephasing channel
on ρ̂i as ρ̂f = αρ̂i + (1− α)Ẑρ̂iẐ

3. Plot the points (F (ρ̂f , ρ̂i),∆S = S(ρ̂f )−S(ρ̂i))

Let us first consider some limiting cases. When
F = 1, then ρ̂f = ρ̂i and hence ∆S = 0. This is
expected, as when F = 1, it is as if the channel has
no effect whatsoever, and the entropy change would
be zero. Now, for a fidelity not equal to 1, ∆S is
finite. Through this simulation we have numerically
established that there exists a well-defined relation-
ship between ∆S and F , and that ∆S is small but
finite for F close to but less than 1 (see Fig. 2). This
finite positive entropy production implies an upper
bound on the amount of heat added to the system
during the quantum operation, as a consequence of
the Second Law of Thermodynamics.

E. Channels on two-qubit gates

Moving on to understanding imperfect two-
qubit gates leads to a increased freedom for mod-
elling the environmental interaction. There are no
specific models like the dephasing channel that are
defined for two-qubit states. We therefore assume
a simplistic picture of the environmental interac-
tion, in which each qubit interacts with a separate
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FIG. 3. Effect of the dephasing channel for initial pure
states uniformly randomly sampled over two qubits. We
plot the relationship between the change in entropy ∆S
and fidelity F between the initial state and after the
effect of the channel, for different values of the channel
parameter α.

bath particular to that qubit. This leads to two
qubit Kraus operators B̂ defined by taking the ten-
sor product of single qubit Kraus operators:

B̂ij = Âi ⊗ Âj , (8)

where Âi are the Kraus operators for any single
qubit channel. We use this model to understand
two qubit gate fidelities and entropy change similar
to the case of single-qubit gates. The values could
then be compared to realistic experimental fidelities
(see Sec. III) to understand entropy and hence heat
production as a result of environmental interactions.
Since two-qubit gate fidelities are generally worse
than single-qubit fidelities, we expect this will cause
significant scalability issues for near term quantum
computers.

Fig. 3 shows the results of our numerical simula-
tions for the entropy generation versus fidelity. This
is a scatter plot obtained by starting with a random
pure two-qubit state, sampled with respect to the

Haar measure. This corresponds to sampling possi-
ble two-qubit gates. We they apply the channel with
four Kraus operators as defined in the product form
(Eqn. 8.) We see many interesting features which we
don’t fully understand. Instead of a well-defined re-
lationship between ∆S vs F as is seen for the single
qubit case (Fig. 2), we instead see a scatter of ∆S
values for each F . Also, the scatter is not spread
across the possible values of F , which is a restriction
caused by our distribution of sampled initial condi-
tions. As only eigenstates of the Z⊗N gate result in
fidelity 1, the more qubits we add, the more a ran-
domly uniform sampling of initial conditions skews
away from the finite amount of said eigenstates.

F. Channels on k-qubit gates

We now move on to numerically understanding
the effect of the dephasing channel on the k-qubit
case. Just like the two-qubit case, we make the sim-
plifying assumption that each qubit is acted upon
by an individual dephasing channel, so the set of all
possible Kraus operators is now defined as:

B̂ =

k⊗
l=1

Âl (9)

where B̂ is the k-qubit Kraus operator and Âl are
individual qubit Kraus operators.

Fig. 4 shows the scatter plots of the change in
entropy ∆S vs fidelity F for k = 3, 4, 5, 6 qubits
respectively and for three values of the channel pa-
rameter α = 0.7, 0.8, 0.9. Features present in the
two-qubit case reproduced, for instance the scatter
of ∆S values for each value of F. The general trend is
∆S values increase for a fixed F approxmiately lin-
early. The separation between then scatter of values
for different α also increases with increasing num-
ber of qubits. We believe that the sampling prob-
lem becomes severe for larger number of qubits as
the parameter space of all pure states increases ex-
ponentially. As a result, only a smaller section of
the ∆S vs F curve is seen for increasing number of
qubits.

V. BOUNDS AND GENERAL DISCUSSION

A. Quantum Landauer bound

In the context of classical computation, the
Landauer bound places a lower bound on the amount
of heat expelled to the environment during an irre-
versible logical operation [1]. This bound follows di-

rectly from the application of the second law of ther-
modynamics to a register of classical bits coupled to
a thermal bath. For example, for the resetting of
a single bit to the zero state, the Landauer bound
imposes the following constraint on the amount of
heat Qext released to the bath:

Qext ≥ T ln 2. (10)

Here, T is the temperature of the bath.
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FIG. 4. Effect of the dephasing channel for initial pure states uniformly randomly sampled over 3,4,5 and 6 qubits.
We plot the relationship between the change in entropy ∆S and fidelity F between the initial state and after the
effect of the channel, for different values of the channel parameter α.

For quantum systems, a version of the second
law of thermodynamics can also be derived [4] and
therefore statements akin to the classical Landauer
bound can be made. For example, in one formu-
lation of quantum thermodynamics [4], the second
law may be stated in terms of a type of average heat
〈Q〉 added to the quantum system of interest, and
the von Neumann entropy change ∆S:

∆S ≥ 〈Q〉
T

(11)

For a system with density operator ρ̂, the entropy
is defined as S =≡ −Tr[ρ̂lnρ̂], and the definition of
〈Q〉 takes the form

〈Q〉 ≡
∫ t2

t1

dt Tr

[
dρ̂

dt
Ĥ

]
(12)

for a process between two times t1 and t2. Ĥ denotes
the Hamiltonian of the quantum system.

This quantum version of the second law is rel-
evant to our project because it places a bound on
the amount of heat absorbed by a quantum system.
This may prove to be important for understand-
ing the conditions under which quantum computers
experience significant detrimental heating. Specifi-
cally, in the following sections we derive that, un-
der a suitable set of assumptions, the combination
of the quantum second law and a result called the
Fannes inequality yields a relation between the heat
absorbed by a quantum system and the fidelity as-
sociated with a given quantum operation.

B. Fannes inequality

As the heat generated by a quantum system is
bounded by the change in von Neumann entropy, we
would like to relate the entropy difference between
two quantum state with the trace distance between
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the two states of interest. In Fannes’ original paper
on spin lattices [26], the continuity of the von Neu-
mann entropy is shown to provide the inequality

|S(ρ)− S(σ)| ≤ 2T log2(d)− 2T log2(2T ), (13)

where T is the trace distance given by

T (ρ, σ) = ||ρ− σ||1 = Tr

[√
(ρ− σ)†(ρ− σ)

]
(14)

and d is just the the dimension of system. This
inequality can be further refined for qubit systems
to show [27]

|S(ρ)− S(σ)| ≤ T log2(d− 1) +H(T , 1−T ), (15)

where H is the (classical) Shannon entropy

H({pi}) = −
∑
i

pi log pi. (16)

If one were to assume minimal fidelity loss dur-
ing gate operation, such that the final state σ is per-
turbatively close to the targeted final state ρ, the
trace distance between the two states is small. We
note that from the Fuchs-van de Graff inequality [3],
for small trace distances

T ≈ ε ≈ 1− F. (17)

Therefore, we have

|S(ρ)− S(σ)| (18)

≤ T log2(d− 1) +H(T, 1− T ) (19)

= ε log2(d− 1)− ε log ε− (1− ε) log(1− ε) (20)

= ε log2(d− 1)− ε log ε+ ε+O(ε2). (21)

For an n-qubit system, d = 2n, giving us

|S(ρ)− S(σ)| / nε− ε log ε+ ε+O(ε2), (22)

or

|∆S| / nε. (23)

This provides us with an upper bound on entropy
change, which can then be used to calculate the heat
output of our quantum computer.

C. Upper bound on heat absorption

Using the results of the previous two sections,
we may now derive a relation between the heat ab-
sorbed by a quantum system during an operation,
and the fidelity loss associated with that operation.
This result is obtain by simply combining the second

law with the bound nε ≥ |∆S| ≥ ∆S. Chaining this
inequality with the second law and multiplying by
T yields

〈Q〉 ≤ Tnε. (24)

That is, we find that the heat absorbed by a quan-
tum system during an operation is bounded from
above, given the assumptions stated in the previous
section. This bound tells us that by keeping the
temperature of the environment very low, or by en-
suring that the fidelity loss ε is minimized, one may
be able to place strong limits on how much heat a
quantum system absorbs. However, even under such
conditions, a large number of qubits n means that
this bound will be very high.

D. Architecturally dependent bounds

Using a rough physical argument, we can make
some final general claims about the scaling of heat
absorption in quantum computers. Specifically, we
argue that the growth of heat absorption as a func-
tion of number of qubits will depend on whether the
physical architecture of the computer is one, two, or
three-dimensional.

Suppose that, over a given amount of time, a
typical qubit which is interacting with its environ-
ment absorbs an amount of heat q. Given this typ-
ical heat flow per qubit, let us examine how the
dimensionality of the quantum computer is related
to the total heat absorbed by the whole computer.
First, consider the case where the computer consists
of a one-dimensional array of n qubits. If we assume
that appreciable heat flow only occurs at the ends
of the array, then the total amount of heat absorbed
will be of order q, and approximately independent
of n.

The situation changes if we move to two dimen-
sions. For a two-dimensional grid of n qubits, which
can exchange heat with the environment only along
the edges, the total heat absorbed will be on the
scale of n1/2q. This is because the number of qubits
interacting with the environment is proportional to
the total edge length, which scales proportional to
n1/2. Finally, by an analogous argument, the total
heat absorbed by a three-dimensional quantum com-
puter will be of order n2/3q, assuming that heat can
only flow into the computer via its surface.

The consequence of the dimensionality of the
architectures is that they will have different bounds
on the maximum number of qubits. The heat gen-
erated, as found in the previous section, scales as

Q / T∆S ≈ εnT. (25)
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Therefore, for example, a 2D system able to dissipate√
nT of heat will have an upper bound on n of

Q / εnT <
√
nT (26)

⇒ n /
1

ε2
, (27)

whereas a 3D system is bound by

Q / εnT < n2/3T (28)

⇒ n /
1

ε3
, (29)

VI. OPEN PROBLEMS AND FUTURE
WORK

In this project, our aim has been to make con-
nections between fidelity, entropy generation, and
heat flow in quantum circuits. Exploring these re-
lationships naturally leads to several other potential
topics of investigation. Chiefly among these is the
relaence of the quantum Landauer bound: as the
heat generated by modern classical computations is
orders of magnitude above the Landauer bound [2],
this bound imposes no practical restrictions on cir-
cuit design. In contrast to this, will the quantum
Landauer bound prove to be practically relevant in
the design of quantum circuits?

In addition, there are also some general con-
ceptual issues in the fields of quantum computation
and quantum thermodynamics which our work is ad-
jacent to. These include:

• Definitions of thermodynamic quantities in the
quantum realm: Many distinct definitions of
heat and work have been proposed for quan-
tum systems [28]. Which ones are most useful
for understanding quantum computation?

• Thermodynamics of measurement: How can
quantum measurement be treated as a ther-
modynamic process, and how will the thermo-
dynamic costs of measurement affect the func-
tioning of quantum circuits?

• Comparisons of quantum and classical compu-
tations: The superiority of quantum computa-
tion is usually expressed in terms of computa-
tional complexity. Do certain quantum algo-
rithms also possess a “thermodynamic advan-
tage” over their classical counterparts?

In conclusion, we have established a quantum
channel model for dealing with imperfect unitary op-
erations. We evaluated our model with the dephas-
ing channel for a single and multi qubit system, es-
tablishing a framework to help understand imperfect

unitaries. At the end, we investigated limitations on
scalability due to heat arising from imperfect gates
for near-term quantum computers.
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