
Fault-Tolerant Quantum Computation with Topological Codes

Group 11: Kaixin Huang, Yixu Wang, Yong-Chan Yoo

1 Motivation and Goals

Quantum computation is accompanied by errors intrinsically. The two main sources of the errors are

the decoherence from the perturbance of the environment and the limited precision of implementing an

element of a Lie group from discretized operations. The inevitable errors make quantum error correction

(QEC) and fault-tolerant quantum computation (FTQC) essential for the manifestation of practical and

reliable quantum computation. [1]

Topological features of a system are characters that are invariant under continuous deformation or

local perturbations. So, one can expect if quantum information is encoded in some topological feature

of the quantum system, it should be protected robustly against any local error. Performing FTQC in a

topological manner is resource- and time-saving. The topological codes are interesting from the aspects

of physics as well. They are deeply related to many fields with profound implications, such as fractional

quantum hall effect, categorization of symmetries and phases of matter, topological quantum field theory,

etc.

We would like to review different aspects of topological code modes. We start by introducing the

stabilizer formalism, on which important concepts of QEC codes are based. We introduce two types

of topological stabilizer codes which are based on the notion of Z2 chain complex on torus and plane

respectively. For planar stabilizer code, we further discuss the methods of creating logical qubits and

performing fault-tolerent quantum computation for that. Finally we discuss about the topological error

correction and decoding methods.

2 Stabilizer Formalism

Stabilizer formalism focuses on the group of the Pauli matrices. For an n-qubit system, we consider the

set

Gn = {±1,±i} × {I,X, Y, Z}⊗n (1)

The set is closed under the matrix multiplication so forms a group. An interesting property of Gn is

that the group elements either commute or anti-commute with each other.

We are interested in an Abelian subgroup of Gn, denoted by S, such that

S = {g|g 6= I,g ∈ Gn and ∀i, j, [gi, gj ] = 0} (2)

One can show that if −I /∈ S, then the eigenvalues of any element of S can only be ±1. Since S is an

Abelian group, there always exists a vector space Vs which is spanned by the common eigenvectors of S

with eigenvalue 1. We call Vs the space stabilized by S, and S its stabilizer.



An efficient way of describing the stabilizer group is to specify its generators. The generators

{g1, g2, ..., gl} form a subset of S such that any element g of S can be written as the product of the

generators.

g =

l∏
i=1

gni
i , ni ∈ {0, 1}. (3)

Furthermore, to have a minimal description, we require that any gi cannot be written as the product of

other generators. In the case of the stabilizer group, a group of 2n elements needs only n generators,

which is efficient for description. For an n-qubit system, if a stabilizer group is specified by k generators,

then the corresponding Vs is of dimension 2n−k.

The stabilizer formalism is efficient in describing the dynamics of the system as well. If a state

|ψ〉 ∈ Vs is evolved by a unitary U , then

U |ψ〉 = Ug|ψ〉 = UgU†U |ψ〉 (4)

This means that the vector U |ψ〉 is stabilized by the group USU† = {UgU†, g ∈ S}. Correspondingly,

USU† is the stabilizer of linear space UVs.

An interesting type of unitary evolution keeps the stabilizer group invariant, i.e. USU† = S. We

denote the set of such U ’s as N(s), the normalizer of S. Obviously S ⊂ N(S). For 1-qubit stabilizer

group, the Hadamard gate H and the phase gate ( 1 0
0 i ) are in N(S). For 2-qubit stabilizer group, the

CNOT gate is a normalizer of 2-qubit stabilizer group as well. Actually any normalizer of the n-qubit

stabilizer group can be constructed by the Hadamard, phase and CNOT gates.

The stabilizer formalism can describe certain types of measurement. We would like to measure an

element of the Pauli group g ∈ Gn.There are two possible relations between g and the elements of the

generators. The first case is that g commutes with all the generators of S. In this case, g and S share the

same set of eigenvectors. This means if we measure the operator g in the space Vs, we get the probability

1 or −1 with probability 1. The second case is that g anticommutes with some of the generators of S. In

this case, one can show that the probability 1 or −1 is 1
2 respectively. In particular the posterior state

after measurement of the operator g is given by

|ψ(±)〉 =
I ± g√

2
|ψ〉 (5)

where the choice of the sign depends on whether the result of the measurement is ±1.

We can in general define a stabilizer code. In quantum error correction, an [n, k] code means we

store the information represented by k qubits (logical qubits) in a system of n physical qubits. An [n, k]

stabilizer code is defined to be the vector space Vs stabilized by an Abelian subgroup S of Gn with

n − k generators and −I /∈ S. We call this code C(S). C(S) is of dimension 2k. A systematic way of

generating the computational basis of C(S) is to find a set of k operators {Z̄1, ..., Z̄k} in Gn such that

they mutually commute and commute with the generators of S {g1, ...gn−k} as well. The elements in

this set gets the name of logical operators. The computational basis of C(S), |x1, ..., xk〉 is defined to be



the vector stabilized by the generators

〈g1, ...gn−k, (−1)x1Z̄1, ..., (−1)xk Z̄k〉. (6)

The above set of {Z̄1, ..., Z̄k} gets the name of the logical Z operators for each logical qubit. We can

define the corresponding logical X operators {X̄1, ..., X̄k} by requiring X̄i anti-commutes with Z̄i, but

commutes with all other Z̄j ’s, X̄j ’s and generators. We mention that this section is transcribed from

Chapter 10.5 of [2].

3 Z2 chain complex

In this part we will go through some important concepts about the Z2 chain complex, which is a useful

tool towards the surface code.

1. A surface: G = (V,E, F ), vertices: V = {vk}, edges: E = {el}, faces: F = {fm}.
The corresponding Abelian groups:

C0 : c0 =
∑
k zkvk, C1 : c1 =

∑
l zlel, C2 : c2 =

∑
m zmfm, where zk, zl, zm = {0, 1}referred to the

0-chain, 1-chain and 2-chain.

2. A homomorphism (boundary operator): ∂i : Ci → Ci−1 s.t. ∂i ◦ ∂i−1 = 0. ∂ici is an (i− 1)-chain

which is the boundary of ci.

3. ci is called a cycle if it’s in a kernel of ∂i, and is called a trivial i-cycle if there exists an (i+1)-chain

s.t. ci = ∂ci+1(ci ∈ Img(∂i+1)).

A homology group hi is defined as a quotient group: hi = ker(∂i)/Img(∂i+1). An element in it is

called a homology class. For any ci and c′i chains that belong to the same homology class, there

exists an (i+1)-chain s.t. ci = c′i + ∂ci+1, and they are said to be homologically equivalent.

4. A qubit is defined on each edge el ∈ E of the surface G (or equivalently the dual edge ēl of the

dual surface Ḡ). The corresponding Pauli product: W (c1) =
∏
lW

zl
l , where Wl ∈ {Xl, Yl, Zl}.

The commutability of two operators is determined by the inner product of the chains.

5. M(∂i) is the matrix representation of ∂i, (M(∂i)ci) · ci−1 = ci · (M(∂i)
T ci−1),M(∂1) = M(∂̄2)T .

6. Since ∂1 ◦ ∂2 = 0, M(∂̄2)TM(∂2) = 0, we have ∂̄c̄2 · ∂c2 = 0, which tells us that X(∂c2) and Z(∂̄c̄2)

always commute.

4 Surface Codes

Now that we have defined what is a surface, we could apply the qubits on the edges of the surface to

make a basic construction for a surface code. In other word, a group of qubits are defined on a 1-chain,

on which we can define the stabilizer generators and the logical operators.



4.1 Toric Code

Figure 1 shows the basic idea of the toric code: mapping the surface code on a torus. The black square

represents a square lattice G, while the gray one stands for the dual lattice. The stabilizer generators

are defined as,

Am = Z(∂fm), Bk = X(∂f̄k) (7)

They commute and are called plaquette and star operators. The eigenvalues of the corresponding code

states |Ψ〉 are +1, which means the states are protected.

Next, we want to find a way to define the logical operators, that could change the code state. As we

have learned from the notes, for two homologically equivalent 1-chains c1, c
′
1, the actions of Z(c1), Z(c′1)

on the code state are identical. This also holds for the actions of X on dual 1-chains.

Also, since the logical operators Z(c1), X(c̄1) have to commute with all stabilizer generators and also be

independent, we can derive that c1, c̄1 must be two non-trivial cycles belonging to different homology

classes, as is shown in Figure 1. Thus we can define two groups of logical Pauli operators,

{L(1)
Z = Z(c

(1)
1 ), L

(1)
X = X(c̄

(1)
1 )}, {L(2)

Z = Z(c
(2)
1 ), L

(2)
X = X(c̄

(2)
1 )} (8)

LiZ |ΨZ(s1, s2)〉 = (−1)si |ΨZ(s1, s2)〉, LiX |ΨX(s1, s2)〉 = (−1)si |ΨX(s1, s2)〉. (9)

The number of stabilizer generators of a n×n square lattice on such torus is |F |+|V |−2 = 2n2−2, while

the number of qubits |E| is 2n2. Thus we have a 22-dimensional stabilizer subspace, which can describe

the degrees of freedom in the code space. The relationship between the surface code and the Z2 chain

complex is included in Table 1 as follows:

stabilizer code chain complex
Z-type generator fm
X-type generator vk(f̄k)

Z- & X-type operators Boundaries of 2-chains
logical Z & X operators nontrivial cycles c1, c̄1

Z & X errors 1-chains c1, c̄1
Z & X error syndromes ∂c1, ∂c̄1

Table 1: The relationship between the surface code and the Z2 chain complex.

4.2 Planar Surface Code

Similar to the toric code, we can construct the codes on a planar n× (n− 1) square lattice with 3-qubit

star operators on the top and bottom boundaries while the plaquette operators on the left and right

boundaries. The X operators on dual 1-chain can determine the smooth boundaries (top and bottom),

while the Z operators for the rough boundaries (left and right). Beside the boundaries, the structure of

planar surface code is quite similar to the toric code, with the vertical and horizontal 1-chains representing

the new c1, c̄1 chains. The related numbers now become |E|= 2n2 − 2n + 1, |V |= n2 − n, |F |= n2 − n,

which means the stabilizer subspace is a subspace of dimension 2.



Figure 1: The surface code on a torus. Figure credit: [4]

In fact, the number of the logical qubits is closely related to the number of the rough boundaries and

smooth boundaries. If we have at least two boundaries of the same type, say two smooth boundaries, a

set of logical operators can be defined such that the logical Z operators is a 1-chain that is homologous

to the smooth boundary and the corresponding logical X operators is a dual 1-chain that connects the

two smooth boundaries. Discussion specialized on planar surface codes include such as [3].

4.3 Defect Pair Qubits and CNOT Gate by Braiding

Since the number of the logical qubits on a planer surface code depends actually on the numbers of each

type of the boundaries, if we want to make the most use of the grid of the physical qubits, we should find

ways to introduce more ’boundaries’ on a plane. In the previous section, this is done by deleting physical

qubits from the grid, thus introducing a physically rigid boundary. However, it changes the structure of

the physical system, and is technically difficult to make further adjustments. So, it is more practical to

introduce the so-called ’defect qubit pairs’ by just making measurements on the original grid.

To simplify the discussion, we work on an infinite grid. Let the state stabilized by the all plaquette

and star operators be |v〉. So that for any face f and vertex v, Af |v〉 = Bv|v〉 = |v〉. This is the state

without defect. We can create a defect area D by measuring the X operators for all the qubits inside

D. By being inside we mean the boundaries of the region are not included. According to the outcome

of the result, we can apply Z operator to those physical qubits whose outcomes are |−〉 so that all the

measured states are |+〉. The posterior state with defect is

|D〉 =
∏
e∈D

(
1 +Xe√

2

)
|v〉 (10)

according to Equation 5.



Figure 2: The figure shows how to move a defect region on the grid by expanding and contracting a single
defect region. The operators are composed by local operators and measurements. Figure credit: [4]

Obviously the state |D〉 is no longer stabilized by the plaquette operators Bf whose boundaries

overlap with the interior of region D, since they do not commute with the projection opeartors
(

1+Xe√
2

)
.

However, the star operators Bv’s are still the stabilizers of |D〉, and so is the operator Z(∂D). The effect

of the measurement is to project the qubits inside D onto a certain state, which is equivalent to delete

this part of the degrees of the freedom from the full system. Also, the Af ’s and the Bv’s which contain

these qubits are removed from the set of stabilizer generators. The effect of the defect creating is shown

in the left panel of Figure 5. To make a logical qubit, we need to create two disconnected regions D and

D′. Now Z(∂D+ ∂D′) is a stabilizer, which can be composed of all the Bf operators whose f /∈ D∪D′.
But Z(∂D) would act nontrivially on the state |D,D′〉 so is chosen as the logical Z operator. Since

Z(∂D)Z(∂D + ∂D′) ∼ Z(∂D′), Z(∂D′) and Z(∂D) would act equivalently on the logical qubit. The

logical X operator is chosen to be a dual 1-chain connecting the boundaries of D and D′.

The measurement is equivalent to creating a physical hole on the grid, but it is recoverable. To see

how to recover the defect region, we can measure the state |D〉. Note that |D〉 in Equation 14 is a uniform

superposition of all the possible configurations of applying Xe operators inside the defect region D. By

measuring, it collapses to a certain configuration. We can then recover to state |v〉 just by applying Xe’s

on the corresponding positions. A defect region can be moved by expanding and recovering the defect

region as described in Figure 4.

By measuring Xe’s, we create a defect region on the primal lattice. We can create dual defect pairs

on the dual lattice by measuring Ze’s as well. If we have a dual defect pair, as shown in the right panel

of Figure 5, the boundary X(∂D̄) acts as a logical X operator while a 1-chain that connects the two

dual defect regions is the logical Z operator. The techniques of moving a dual defect is similar as above

discussion for the primal defects.

With the techniques of defect movement, we can implement the CNOT gate by braiding the primal

and dual defects with each other. The procedure is demonstrated in Figure 6. To implement the CNOT

gate, we need a primal and a dual defect pair. Denote the logical qubit they represent as 1 and 2

respectively. First, we wind one of the primal defect region around a dual defect region. As is shown

on the left part of Figure 6. The logical X operator for the primal pair, which is the dual 1-chain that



Figure 3: One can make defects on the grid by measurement rather than physical defects. A pair of the
defect regions together defines a logical qubit (left). We can have a logical qubit defined on the dual
defect regions as well (right). Figure credit: [4]

Figure 4: A logical CNOT operation by braiding a primal defect around a dual defect, and then braiding
a dual one around a primal one. Figure credit: [4]

connects the two primal pairs, would now be homologous to a dual 1-chain, plus an extra part that

winds around the dual defect region. It’s written as X(1)→ X(1)X(2), and Z(1) is unchanged. Now we

wind a dual defect region around a primal defect region. The 1-chain that connects the two dual defect

regions would change similarly. This reflects the change in the logical operators: Z(2)→ Z(1)Z(2) and

X(2) is left invariant. By recalling the effect of the CNOT gate on the control and target qubit:

CNOT ZcIt CNOT† = ZcIt, CNOT IcZt CNOT† = ZcZt,

CNOT XcIt CNOT† = XcXt,CNOT IcXt CNOT† = IcXt,
(11)

we see that the above procedure indeed implements the CNOT gates on the logical qubits where the

primal and dual defect qubit acts as the control and target qubit respectively. This braiding procedure

gives an example of fault-tolerant quantum computation on the planer surface code.



5 Topological Error Correction

In order to describe how topological error correction can be made, consider the toric code defined by

the n × n square lattice on the torus again. There are 22n2−2 orthogonal eigenspaces of the stabilizer

generators. These eigenspaces are called the syndrome subspaces, which are important to perform the

error correction. Consider two kinds of errors, the X(c̄e1) and Z(ce1) errors which are defined by 1-chains

on the lattice. Using the anticommutivity of X(c̄e1) and Am = Z(∂c̄e1), the error syndromes can be

defined as ∂c̄e1 ≡ cs2. Similarly, the anticommutivity of Z(ce1) and Bk = X(∂ce1) gives ∂c̄e1 ≡ cs2. Since

the stabilizer generators Am and Bk are on the face fm and vertex vk, respectively, the error syndromes

found above can be written as cs2 =
∑
m z

s
mfm and cs0 =

∑
k z

s
kvk. Then, it follow that the eigenvalues

of the stabilizer generators Am and Bk associated with cs2 and cs0 are (−1)z
s
m and (−1)v

s
k respectively.

Here is the important point. The error correction for these error 1-chains is construction of the

corresponding ’recovery’ 1-chains c̄r1 and cr1, which satisfy ∂(c̄r1 + c̄e1) = 0 and ∂(cr1 + ce1) = 0. Suppose

each Z error is made with an independent and identical probability p. (X error analysis can be done in

the similar way.)The posterior probability of an error Z(c1) with c1 =
∑
l zlel conditioned on the error

syndrome cs0 is given by

P (c1|cs0) = N
∏
l

(
p

1− p

)zl ∣∣∣∣
cs0

(12)

A good recovery chain can make the posterior probability maximum, that is, cr1 maximizes
∑
l zlel under

the condition of the error syndrome. Equivalently, the overlap between the error and the recovery chains

must be minimized. In this sense, it is called minimum distance decoding. Also, the triviality of the

cycle cr1 + ce1 is important. As stated before, ∂(cr1 + ce1) = 0 means that the cycle cr1 + ce1 is trivial, then

the error would be corrected. If it is non-trivial, then there is a logical operation Z(cr1 + ce1) which can

cause a logical error. This is shown in Figure 2.

Note that the homologically equivalent 1-chains result in the same actions on the code state. This

can cause degeneracy problem of the surface code. That is, if each error syndrome is not uniquely

determined, the combinatorics from those syndromes should also be considered. Let cr1 + cr
′

1 ∈ hi where

hi be the homology class. Then cr
′

1 gives the same result, so the sum of the posterior probabilities

represented below should be maximized:

pi =
∑
cr

′
1

P (cr
′

1 |cs0) with the condition cr1 + cr
′

1 ∈ hi (13)

The posterior probability can be calculated with the stabilizer and logical operators. Note that the

recovery operator Z(cr1) can be determined if an error syndrome cs0 is given. Then, an error operator can

be decomposed as Z(ce1) = Z(cr1)GLi. Here, G and Li are a stabilizer and logical operator, respectively.

It follows that the posterior probability of the logical operator Li is

pi = P (Li|cs0) =
1

N
∑
G∈G

P [Z(ce1) = Z(cr1)GLi] where G is the stabilizer operator group (14)

Let Li∗ is the most probable logical operator that makes pi maximum, then the error correction can be



Figure 5: Schematic diagram of the topological error correction. Figure credit: [4]

done with an application of Li∗Z(cr1). In this case, the logical error probability is 1− pi∗.

6 Decoding Methods

Considering physical realization of the fault-tolerant computation, there must be decoherence of quantum

information systems. Therefore, efficient decoding algorithm is one of the most critical part for the

realization of the fault-tolerant quantum computation. According to the several papers, it is known that

the minimum distance decoding is NP-hard problem in general. However, with the condition that 1-chain

that connects pairs of two vertices with a minimum Manhattan length, there is a classical algorithm, so-

called Edmond’s minimum-weight perfect matching (MWPM) algorithm, with the complexity of O(n6)

can implement this minimum distance decoding. There is an important point for the minimum distance

decoding. That is, if the error probability p is sufficiently smaller than some threshold, then the logical

error probability decreases as the lattice size increases. If specific weights imposed on each pairs of

vertices having −1 eigenvalues, then the number of edges is greatly reduced from O(n4) to O(n2) and

the searching space of the pairs of vertices is also reduced.

Another type of decoding method can be implemented with a renormalization technique by intro-

ducing a hierarchal structure on the surface code. In this method, there are l-levels of those hierarchal

structure and each level can be defined by recurrence. The level-1 logical qubits, which is constructed

by using 12 qubits on the surface code, consist of 2 pairs of logical operators L(1), 6 stabilizer generators

G(1), 6 pure errors Ḡ(1) (each of which anticommutes with G(1)), and 4 edge operators E(1) (generate the

Pauli group of the 12 qubits). They are described in Figure 3. By the similar argument of the above

error 1-chain, Ḡ(1) is uniquely matched with the error syndrome S(1). Then the posterior probability of



Figure 6: The Pauli operator basis in the renormalized algorithm. The level-1 logical qubits (left): The
first and the second rows: the stabilizer generators and the pure errors; The third row: the logical
operators; The last row: the edge operators. The level-2 logical qubits (right). Figure credit: [5]

the level-1 logical operator is given by

P (L(1)|S(1)) =
∑

G(1)∈G(1),E∈E(1)
P (A = L(1)G(1)Ḡ(1)E(1)|S(1)), (15)

where A is the decomposed Pauli operator in terms of the level-1 logical qubits. Then, a level-k unit cell

can be constructed similarly with 8 level-(k− 1) unit cells and the 12 pairs of the level-(k− 1) operators

on it. It follows that associated level-k logical qubits L(k), G(k), Ḡ(k), E(k) and level-k error syndromes

S(k). At the end of construction, the posterior probability P (L(l)|S(l)) can be obtained under all imposed

conditions imposed on the sub levels, and thus the most probable logical operator L∗. Therefore, it is

called the renormalization decoding.

7 Faulty Syndrome Measurement

The fault-tolerant quantum computation must be able to deal with any source of noise, so the quantum

error correction method must also be expanded by taking all these accounts. Consider the all possible

sources of error including faulty syndrome measurements, which can happen in measuring the code state.

Similar to the errors in the code space, the faulty syndrome measurement can result in an incorrect

eigenvalue for the syndrome.

Since any Kraus operator of noise can be written as a superposition of Pauli operators, the error

can be assumed as Pauli errors for modeling the faulty syndrome measurement. In addition to that,

the Pauli Z and X operators are used to describe the errors for consistency. Just like the previous

case, consider that there are Z errors in the topological code for simplicity. However, in this case, time



Figure 7: A schematic relation between the chain complex in 2D and 3D with time evolution.

dependence of each element of the chain complex is introduced. So, the error 1-chain is now defined as

ce1(t) =
∑
l z
e
l (t)el. Similarly, the Z operators at time t can be defined by Z[c1(t)] = Z[

∑
l zl(t)]. Then,

the time evolution of the Z operator is given as following equation of motion:

Z[c1(t+ 1)] = Z[c1(t) + ce1(t+ 1)]. (16)

The measurement outcome at time step t is obtained by applying the star operator Bk(t) (the plaquette

operator Am(t) for the X errors):

mk(t) =

( ⊕
el∈δvk

zl(t)

)
⊕ zek(t), (17)

where zek(t) ∈ {0, 1} is the error on the measurement error from the syndrome measurement. A relation

with only in term of the contribution of measurement error from the faulty syndrome measurement can

be calculated by the parity of the measurement outcomes at time steps t and t− 1:

sk(t) = mk(t)⊕mk(t− 1) =

( ⊕
el∈δvk

zel (t)

)
⊕ zek(t)⊕ zek(t− 1). (18)

This indicates that the errors arising from the faulty syndrome measurement can be detected by the

parity sk(t). So, it is natural to define {sk(t)} as an error syndrome of the space-time errors.

The space-time error syndrome {sk(t)} can be defined efficiently if a 3-dimensional chain complex is

introduced as shown in Figure 7. The 3-dimensional chain complex {c0, c1, c2, c3} can be embedded in a

cubic lattice. A primal cube is defined as the 3-chain c3 and 2-chain, 1-chain and 0-chain are defined as

face, edge and vertex of the cubic lattice, respectively. Also, the dual 3-chain complex {c̄0, c̄1, c̄2, c̄3} can

be similarly defined. Then the error in the 2-dimensional chain complex at time t corresponds to the

vertical face of 3-dimensional chain complex. The measurement errors at time t and t+ 1 correspond to

the horizontal faces of 3-dimensional chain complex. Then, the space-time error is now described by a



2-chain (equivalently dual 1-chain) of the 3-dimensional chain complex:

ce2 =
∑
m

zemfm (error 2-chain) ←→ c̄e1 =
∑
m

zemēm (dual error 1-chain) (19)

The associated syndrome sk(t) is defined by each 3-chain (equivalently dual 0-chain) so it can be denoted

by sr. The MWPM algorithm can be applied to this 3-dimensional structure to perform topological

quantum error correction including the faulty syndrome measurement.

8 Noise Threshold and Noise Models

The noise threshold is a limit that can be tolerated by error correction code with no logical error. The

noise threshold depends on specific noise models. Here, two basic noise models are introduced.

First, consider the simplest noise model, which is called the phenomenological noise model. This

is a naturally expanded version of the previous noise model discussed in the 2-dimensional case. In

this model, each error is located at dual 1-chain with an identical probability p. Moreover, the errors

are independent of each other at each time step t. Furthermore, the probability of flipping the measure

syndrome is also given by the same value p, since the 3-dimensional case also includes the faulty syndrome

measurement. By the MWPM algorithm, the noise threshold of the phenomenological noise model is

about 2.93%.

The circuit-based noise model is a more realistic model which also take into account of errors from

the gate operations during the syndrome measurement. In this model, there are four kinds of error

probabilities from different sources. First, the single-qubit depolarizing noise that influences single-qubit

gates with probability p1:

(1− p1)ρ+
∑

A∈{X,Y,Z}

p1

3
AρA. (20)

Second, the two-qubit depolarizing noise that influences two-qubit gates with probability p2:

(1− p2)ρ+
∑

A,B∈{I,X,Y,Z}/I⊗I

p2

15
(A⊗B)ρ(A⊗B). (21)

Third, the error in preparation of the Pauli-basis state with probability pp:

(1− pp)
I +A

2
+ pp

I −A
2

, A ∈ {X,Y, Z}. (22)

Lastly, the error in measurement in the Pauli-basis with probability pm:

{(1− pm)
I +A

2
+ pm

I −A
2

, (1− pm)
I −A

2
+ pm

I +A

2
}, A ∈ {X,Y, Z}. (23)

The noise threshold of the circuit-based model calculated by the MWPM algorithm is p2 = 0.75% and

the probabilities are related with p1 = p2 = (3/2)pp = (3/2)pm. It is known that more accurate threshold

values can be obtained if noise propagation and correlation are considered in noise models. The related



numerical simulations in [6] shows this statement.
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