
CMSC 657 Final Report
Eric Kubischta & Ian Teixeira

erickub@math.umd.edu, ianteixeira1@gmail.com

Due: 11:59 PM, December 13, 2018

Part I

Topic. To recall, our topic is on toric codes, a type of topological quantum error correcting
code. We chose this topic due to its relationship with topological quantum computing, which
both of us find interesting especially due to our mathematical backgrounds.

Summary of relevant literature.

• Nielsen and Chuang’s Quantum Computation and Quantum Information offers a
very good introduction to Error Correcting codes and Stabilizer theory.
• Stabilizer Codes and Quantum Error Correction is the thesis of the well known

Daniel Gottesman. In this work he describes in very rich detail the formalism of
stabilizer codes, which we will use as our basis for understanding toric codes. In
particular, Chapter 3 is a well written introduction to stabilizer codes.
• Topological Quantum Computation by Zhenghan Wang, a mathematician working on

Topological Quantum computing at Microsoft Station Q, has a fully mathematically
rigorous definition of a Toric code given in section 8.1.1. He begins with a more
general definition of quantum doubles, but immediately gives the definition of toric
codes as an example.
• Introduction to Topological Quantum Computation by Jiannis K. Pachos is a detailed

resource on toric codes, specifically section 5.2.1. It is very clear, detailed, and
mathematical, addressing in depth the relation between the topology and quantum
error correction.
• A pedagogical overview about the 2D and 3D Toric Codes and the origin of their

topological orders by M. F. Araujo de Resende gives the clearest exposition on toric
codes of all the resources listed.

1 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

Part II

To understand the Toric code, we find it instructive to first understand the idea behind
error correcting codes and their generalization to stabilizer codes, since the Toric code is an
example of each of these objects.

Error Correcting Codes. Suppose we have in our possession some quantum information,
that is, we have some quantum state |ψ〉. We would like to preserve our information through
time or space. What we mean by this is that if we transport |ψ〉 across space or if we leave
|ψ〉 fixed in place but wait a long time, we would like |ψ〉 to be in the exact same state as
when we started. The reason |ψ〉 may not be in the exact same state is due to an effect
called “noise”. Noise is basically any physical perturbation affecting our state over the course
of time or space and can be classical or quantum (such as decoherence). To model it, we use
a quantum channel T applied to |ψ〉. In basic cases, we can think of T as a simple tensor
product of unitary operations applied independently to input qubits.

To protect our state, that is, to make sure that T |ψ〉 = |ψ〉, we employ the use of an error
correcting code. The idea behind such a code is to add enough redundancy to our state
so that when it passes through the channel, the output state is unequivocally close to the
original state. In more detail, we encode our original state |ψ〉 into some pre-channel state
|ψ′〉 using some unitary encoding operating E that makes |ψ′〉 significantly more redundant.
Then, |ψ′〉 passes through the channel T to make an output state T |ψ′〉 = |ψ′′〉. Lastly, we
decode |ψ′′〉 into an estimate |ψ′′′〉 of |ψ〉 by suitable measurements and unitary operations.
Assuming we added enough redundancy in the encoding step, |ψ′′′〉 will equal |ψ〉 and we
will have protected our information.

Stabilizer codes. The main idea of the stabilizer formalism can be illustrated with an
example. Consider the Bell basis state |ψ〉 = 1√

2 (|00〉+ |11〉). Then |ψ〉 is a +1 eigenvector
of both X⊗2 and Z⊗2. In other words, |ψ〉 remains unchanged after either of these two
unitary operators is applied to |ψ〉. Moreover, up to a global phase, |ψ〉 is the unique
simultaneous +1 eigenvector of X⊗2 and Z⊗2. Thus, there is a one-to-one correspondence
between |ψ〉 and these two operators. In general, we can always find a correspondence
between state vectors and the operators they are simultaneous +1 eigenvectors for. In this
sense, we can work with either the state vectors or the corresponding operators, whichever
is easy. What is perhaps surprising is that working with the operators can actually be easier
than working with the state vector and it is all because we employ group theory.

Let X,Y and Z be the familiar Pauli operators (matrices) and I be the identity operator
(matrix). Let Π = {I,X, Y, Z} and define the Pauli group as

Gn = {ei
π
2mM1 ⊗ · · · ⊗Mn |Mj ∈ Π, m = 0, 1, 2, 3}.

Basically the n-th Pauli group Gn is the n-fold tensor product of Pauli operators with
the addition of the factors ±1 and ±i so that it is indeed a group with respect to matrix
multiplication.

2 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

Given n, consider a composite system of n qubits represented by a state vector |ψ〉, and let
S be a subgroup of Gn. Define

VS = {|ψ〉 : g |ψ〉 = |ψ〉 , ∀g ∈ S},

that is, VS is the space of simultaneous +1 eigenvectors of S or more intuitively, if |ψ〉 is in
VS , then if we apply any operator from S to |ψ〉, the effect is as if nothing was applied to
|ψ〉.

It is clear that the zero vector is in VS and that VS is closed under linear combinations,
thus, VS is a vector subspace. We call VS the vector space stabilized by S and we call S
the stabilizer of VS . To ensure that VS is not a trivial vector space, it turns out that it is
necessary and sufficient that S is abelian (everything in S commutes with everything else in
S) and that −I 6∈ S.

To talk about S more succinctly, we can express S in terms of its generators. If g1, . . . , gm ∈ S
and any element g ∈ S can be written as a finite product of elements from g1, . . . , gm, then
we call g1, . . . , gm the generators of S; in this case we will write S = 〈g1, . . . , gm〉. We say
that generators g1, . . . , gm are independent if removing any of them makes the group they
generator smaller.

With the previous in mind we have the following important theorem. Let n be the number
of qubits in our composite system. If g1, . . . , gn−k are independent and commuting elements
of Gn such that S = 〈g1, . . . , gn−k〉 and −I 6∈ S, then VS has dimension 2k as a vector space.

Now we finally come to stabilizer codes. Fix n and consider a subgroup of Gn given as
S = 〈g1, . . . , gn−k〉 such that the generators are commuting and independent and −I 6∈ S.
Then an [n, k] stabilizer code is defined to be the vector space VS (that is, the vector space
stabilized by S). We denote such a code by C(S) since the code is completely determined
by the choice of S. Thus by the previous paragraph, the code C(S) is just a specific 2k
vector subspace of the 2n qubit vector space; it is noteworthy that this is a direct analog to
linear codes from classical error correction coding theory. Intuitively, a [n, k] stabilizer code
encodes k information qubits to n physical qubits.

3 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

Toric Code Motivation. Recall that elements of the Pauli group Gn take the form

ei
π
2mM1 ⊗ · · · ⊗Mn

for m = 1, 2, 3, 4 and all the Mi ∈ {I,X, Y, Z}. We say an element of Gn has length k if k of
the Mi are non-identity Pauli matrices and the rest of the Mi are the identity. For example,
the element

+iX ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I
of G8 has length 4. We call a subgroup S ⊂ Gn a k-local stabilizer code if S is generated by
operators of length k. This is worth defining because the Toric code turns out to be a 4-local
code. That is, the stabilizer group for the Toric code is generated by length 4 elements of
the Pauli Group Gn. To motivate the Toric code we can first consider three other natural
4-local codes on n qubits.

One 4-local code is the “A” code that has the stabilizer group S generated by all the

ei
π
2mM1 ⊗ · · · ⊗Mn

such that exactly 4 of the Mi are the Pauli X matrix, and the rest of the Mi are the identity.

Another obvious 4 local code is the “B” code, which has a stabilizer group S generated by
all the

ei
π
2mM1 ⊗ · · · ⊗Mn

such that exactly 4 of the Mi are the Pauli Z matrix, and the rest of the Mi are the identity.

We could try to form a third 4 local stabilizer code (“AB” code) with stabilizer group S

generated by all finite products of the elements of the A code with elements of the B code.
However such an S is not commutative, since XZ = −ZX so the codespace would be empty!
It turns out, fortunately, that this code can be salvaged, however. The toric code sits inside
the “AB” code as an abelian subgroup which has a natural topological interpretation.

Toric Code Definition. We create the toric code as follows. We embed a square lattice
as an n edge graph Γ on a torus T2 as in Figure 1. We then assign a qubit to each of the n
edges of the graph so that we have a 2n dimensional Hilbert space L = ⊗edgesC

2.

Figure 1

Consider Figure 2. For each vertex v of the graph Γ (i.e. a point on the original square
lattice) define an operator Av on L = ⊗edgesC

2 as a tensor product of Pauli X matrices and
identities such that Av acts as X on the each of the four qubits corresponding to the four
edges adjacent to v and otherwise Av acts as the identity. Similarly, define a face operator
Bf for each face f as an operator acting on L as a tensor product of Pauli Z and identities

4 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

such that Bf acts as Z on each of the 4 qubits corresponding to the edges enclosing the face
f , and otherwise acts as the identity.

Figure 2

Now let S be generated by every vertex operator, Av, and every face operator, Bf , that is,

S = 〈Av1 , Av2 , · · · , Bf1 , Bf2 , · · · 〉.

Then S is definitely a subgroup of Gn. Furthermore, note that for any v, v′ we have
AvAv′ = Av′Av and for any f, f ′ we have BfBf ′ = Bf ′Bf since X and Z operators each
commute with themselves respectively. But also note that if v is not a vertex adjacent to
the face f then Bf and Av act on completely different qubits, so they naturally commute.
Otherwise, if v is a vertex adjacent to the face f , the operators overlap on exactly two
edges. But since X and Z anti-commute, we have (−1)2 = 1 so we still have that Av and
Bf commute. Hence, S is a subgroup generated by commuting generators.

The toric code places qubits at every edge on our lattice, hence n = |edges|. But for the
torus, it is easy to check using the Euler characteristic that |faces| = |vertices| = n/2 so that
there is actually n/2 Av operators and n/2 Bf operators. Hence, S is a subgroup generated
by n/2 + n/2 = n commuting generators. However, they are not independent generators
since we clearly have the relations∏

v∈{vertices}
Av =

∏
f∈{faces}

Bf = I.

But two relations means we lose two degrees of freedom from the previous n commuting
generators and we are left with some n− 2 commuting independent generators.

Furthermore, it is clear that −I 6∈ S. Thus by the above result about stabilizer codes, the
Toric code must have a code space VS of size

2n−(n−k) = 2n−(n−2) = 22 = 4

and so we can conclude that the toric code is a [n, 2] stabilizer code. Hence, we can encode
2 information qubits using the Toric code using n physical qubits placed on each of the n
edges of the lattice embedded on the torus.

5 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

Essential Equations of the Toric Code. The Hamiltonian (the operator roughly corre-
sponding to the total energy in the system) for the toric code is given by

H = −
∑

v∈{vertices}
Av −

∑
f∈{faces}

Bf .

The ground state of the Hamiltonian is the eigenstate of H corresponding to the smallest
eigenvalue. Since there are −1 factors in front of each sum in the Hamiltonian and the
eigenvalues of each Av and Bf are ±1, the ground state is simply the state that is the
simultaneous +1 eigenstate of each Av and Bf . In fact, the eigenvalue of the ground state,
that is, the ground energy, is given by

E0 = −(# of vertex operators)− (# of face operators)
= −(# of edges)
= −(# of qubits)
= −n.

A ground state of the Hamiltonian is given by

|ζ〉 =
∏
v

1√
2

(I +Av)|00 · · · 0〉.

We note that the ground state |ζ〉 lies in the code space since again it is a simultaneous +1
eigenvector for all the A(v) and all the B(p). For this reason, it is only natural to let |ζ〉 be
one of the four basis states of our Toric code vector space as the “resting” state of our n
physical qubits is |ζ〉. What is surprising now is that this actually isn’t the only ground
state!

Suppose the qubits on the lattice embedded on the torus are in the ground state |ζ〉. Then
suppose we apply a Z operator to the qubit on edge α. This raises the energy of the system
to E0 + 4 and thus is referred to as an excitation. Measuring the two Av operators on the
two vertices adjacent to α yields a −1 measurement each. When this happens we say an
e-anyon has been created at each of these two vertices. Note that the e-anyons’ must come
in pairs. Now suppose we apply a Z operator to consecutive qubits on the lattice in the form
of a path such that the path is non-closed. This again raises the energy of the system to
E0 + 4 and creates an e-anyon pair at the boundary of such a path. However, if we consider
a closed path, it turns out that the energy of the system is not raised and no e-anyon pairs
are created. For this reason, we would suspect that such a scenario corresponds to a new
ground state, however, careful analysis reveals that this is not able to change the ground
state since Z operators are not able to flip |0〉’s and |1〉’s.

Now what if we do the exact same analysis except with the X operator in place of the Z
operator on the lattice? Since some X loops fail to commute with some Bf , this will take
|ζ〉 out of the code space entirely. However, we can define a dual-lattice Γ∗. We define the
dual lattice as a new lattice that has lattice vertices as faces and lattice faces as vertices.
Here, if we apply the X operator on a path as before we really will get a new ground state!
In fact, we get a new ground state whenever we the paths are distinct.

6 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

Path and Loop Operators: Storing Information In The Toric Code. What is
perhaps surprising is that each of the basis vectors of VS corresponds to a certain distinct
loop of the torus. In this way, the loops are what are storing the logical information. Since we
have designed the toric code in such a fashion, the basis vectors are actually the degenerate
ground states of the quantum system so these basis states are incredibly stable. Hence, each
loop corresponds to a ground state.

The Toric code can store 4 different logical quantum states:

|00〉, |01〉, |10〉, |11〉.

Starting from a Torus with a spin lattice in the state

|00 . . . 0〉

we can apply the operator ∏
v∈vertices

1√
2

(I +Av)

to store the state |00〉. Let γ be a set of qubits that a closed loop around the Torus on the
dual lattice. That is the dual edges that intersect the edges on which the qubits are placed
actually are connected and form a closed loop around the dual lattice. Then let Oxγ be the
element of the Pauli group that acts as the X operator on every qubit in γ and acts as the
identity on every other qubit. We call such an operator a path operator. It turns out that
for any paths γ, γ′ that wrap around the Torus vertically we have

Oxγ |ζ〉 = Oxγ′ |ζ〉

Similarly, if β and β′ are any two paths that wrap around the torus horizontally we have

Oxβ|ζ〉 = Oxβ′ |ζ〉

In the Toric code we store logical qubits by

|00〉 ≡ |ζ〉
|01〉 ≡ Oxγ |ζ〉
|10〉 ≡ Oxβ|ζ〉
|11〉 ≡ OxβOxγ |ζ〉

where on the left hand side the kets represent logical quantum states and on the right hand
side the states are of the noisy, physical, quantum spin lattice. To summarize, the four
logical states are precisely the four elements of VS .

Broken Loops and Anyons: Detecting and Correcting Errors in the Toric Code.
Suppose we are using the Toric code as a quantum memory for example to store the state

|01〉 ≡ Oxγ |ζ〉.

What happens if some qubit on the vertical loop γ experiences a bit flip error? Can we
detect such an error? Yes we can! Imagine a bit flip error as deleting a edge in the loop γ.
Now what remains is actually a path with two endpoints and the Toric code system is still

7 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

in an eigenstate. We can measure every Av and Bf in S and read out their eigenvalues. For
any face f that is adjacent to the flipped qubit we will read out the eigenvalue

(1)(1)(1)(−1) = −1 6= 1.

All four states in the code space have eigenvalue 1 for all Bf , so we know something is
wrong! Similarly, for any face adjacent to k edges that have experienced a bit flip error we
will read out an eigenvalue of

(−1)k

so whenever k is even we detect nothing, but when k is odd we see an error. And we call
this error an “anyon” as previously mentioned. One bit flip produces two anyons, and two
errors on consecutive (dual) edges produce a path (on the dual lattice), the endpoints of
which show up as eigenvalues of −1.

Toric Code 2 × 2 Example.

4 8

6

2

84

2

6

3 7

1

5

m

n

l

k

N K

LM

For this figure, the ground state is (up to a suitable normalization):

|ζ〉 = (I +Ak)(I +A`)(I +Am)(I +An)|00000000〉.

A naive binomial expansion of this operator product is

I +Ak +A` +Am +An +AkA` +AkAm +AkAn +AmAn +A`An +A`Am

+A`AmAn +AkAmAn +AkA`An +AkA`Am +AkA`AmAn.

However the product over all vertices of the A operators will hit each qubit with X exactly
twice, thus since X2 = I, we have that the product of the A’s over all the vertices is just
the identity. In our 2× 2 example this relation is written explicitly as

AkA`AmAn = I.

8 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

Since A2 = I, this implies many other relations; namely the four of the form,

A`AmAn = AkAkA`AmAn = Ak,

and the three relations of the form

AmAn = AkA`AkA`AmAn = AkA`.

Thus we can simplify our initial expansion of the operator product to

2(1 +Ak +A` +Am +An +AkA` +AkAm +AkAn).

The expression is in fact fixed by any multiplication Ai (the constant and singe Ai term in
the sum will be switched and then the three remaining single terms will switch with the last
three terms). So |ζ〉 is clearly fixed by any Ai. The fact that it is fixed by any B is exactly
the the logic from our original midterm report; the B commutes with all the I and A in the
original product and so when it hits the all 0s ket it just dos nothing because Z does nothing
to 0 state. So this particular ground state in our 2× 2 example is proportional to

|ζ〉 = |00000000〉+ |01010101〉+ |10011001〉+ |01100110〉
+ |10101010〉+ |11001100〉+ |0011001100〉+ |11111111〉.

However, it is crucial to note that there are other ground states as previously mentioned. In
fact there are precisely 3 other ground states. Recall that a ground state is a state that is
fixed by every vertex and every face operator. Furthermore recall that we denote the group
generated by these operators as S. Define the normalizer of S in Gn to be

NGn(S) = {n ∈ Gn : n−1Sn = S}

then for any n ∈ NGn(S) consider the state

n|ζ〉

then for any s ∈ S we have

sn|ζ〉 = nn−1sn|ζ〉
= ns′|ζ〉
= n|ζ〉

where s′ is just some other element of S by definition of n as an element of the normalizer
of S. So in fact

n|ζ〉
is a simultaneous +1 eigenvector for all of S. That is we have found another element of the
code space! Thus is very exciting. Let’s apply this insight to our 2× 2 example. What are
some plausible elements of the Pauli group that could normalize S. It is in fact the case
that the normalizer of a stabilizer code is actually equal to its centralizer. So we are really
looking for elements that commute with S. If we take an operator composed solely of X and
I that is a good start, because it will immediately commute with all the Av. However, to
ensure that an X type operator commutes with every Bf we must somehow guarantee that

9 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

our operator acts on an even number of qubits around every face. So certainly an element
of the pauli group with a single X, like

XIIIIIII

will not work. In fact if we pick any path of edges on the lattice and just act X on the
qubits sitting on those edges then we encounter this same problem. For example

X2X6, X1X5, X4X2X3X5X4

all have this issue. It is essentially a problem of tangency. If there exists a face such that the
path of edges touches the boundary of the face exactly once then we get out a factor of −1
and the path operator will not commute with that face operator (touching a face three times
will also bring out a factor of −1 but that can just be seen as a straight path that touches
once and then is deformed by the action of a face operator). Since the Z type operators Bf
live on vertices of the dual lattice, and a path on the dual lattice always enters and exits
the vertex, thus touching eexactly twice to get (−1)2 = 1, we should instead consider paths
on the dual lattice when looking to find elements of the normalizer. More than that, we
must have loops! Why loops? Because only loops on the dual lattice (closed paths) are
guarenteed to touch an even number of adjacent edges to each vertex on the dual lattice.
Some examples of loops on the dual lattice, for our 2× 2 example, are

X3X4, X7X8, X4X1X7X5

are all X type operators that just act on the qubits sitting on the edges corresponding to a
path on the dual lattice. They are in fact all vertical paths. And moreover

X3X4|ζ〉 = X7X8|ζ〉 = X4X1X7X5|ζ〉

This a particular case of the general fact that for any X type vertical path operator on the
dual lattice we get the same element of code space. Namely

|ζ1〉 := |00110000〉+ |01100101〉+ |10101001〉+ |01010110〉
+ |10011010〉+ |11111100〉+ |0000001100〉+ |11001111〉.

By a similar logic, the path operator for a closed horizontal loop of Xs also commutes with
all the Av and Bp. This operator can be acted on |ζ〉 to obtain a new element of the code
space

|ζ2〉 = |11000000〉+ |10010101〉+ |01011001〉+ |10100110〉
+ |01101010〉+ |00001100〉+ |1111001100〉+ |00111111〉.

The fourth and final element of the code space in our example can be obtained by acting
with both the the X path operator for both a horizontal loop and a vertical loop, yielding

|ζ3〉 := |11110000〉+ |10100101〉+ |01101001〉+ |10010110〉
+ |01011010〉+ |00111100〉+ |1100001100〉+ |00001111〉.

The bottom line is that open paths create anyons. That is, acting with an open path operator
will take |ζ〉 out of the code space, so that is useless. So we want to act with closed path
(loop) operators. It turns out:

10 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

(1) The path operator for any Z loop on the lattice just maps |ζ〉 to itself– it does not
create a new element of codespace.

(2) The path operator for any Z loop on the dual lattice will fail to commute with some
Av– thus the operator take |ζ〉 out of the codespace.

(3) The path operator for any X loop on the lattice will fail to commute with some Bf–
thus the operator takes |ζ〉 out of the codespace.

(4) The path operator for any X loop on the dual lattice is just right and will give us
the three other states in the code space that we are looking for.

Looking Forward. The Toric code is usually called a “toy model” and it is not particularly
hard to see why. We usually define the rate of an [n, k] stabilizer code by k/n, i.e. logical
qubits per physical qubits. For the toric code on n physical qubits, the rate is given by 2/n.
But what we haven’t said is that the percentage of errors the toric code can correct is only
close to 1 when n is large. In particular, the percent of errors the toric code can correct goes
to 1 in the limit as n → ∞. But in this case, the rate goes to the limit of 2/n as n → ∞
which is 0. Thus, the toric code is somewhat impractical. However, the toric code sheds
insight into the fact that we can exploit the topological nature of surfaces to build error
correcting codes where the number of distinct loops corresponds to the number of logical
qubits that can be encoded onto the surface.

With this idea in mind it should not be too hard to believe that if we added another “handle”
to the torus to make a double-torus, we could store 3 logical qubits and in fact for a general
genus g surface (that is, a generalized torus with g holes), we could store g+ 1 logical qubits.
Clearly, this shows that the studying the toric code is not in vein as other surfaces with
large enough genus could actually have a reasonable coding rate!

11 of 12

CMSC 657 Eric Kubischta & Ian Teixeira

References

[1] M. F. Araujo de Resende. A pedagogical overview about the 2D and 3D Toric Codes and the origin of
their topological orders. arXiv e-prints, page arXiv:1712.01258, December 2017.

[2] Daniel Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California Institute of
Technology, January 1997.

[3] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. American Mathematical
Society, Boston, MA, USA, 2002.

[4] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010.

[5] Jiannis K. Pachos. Introduction to Topological Quantum Computation. 2012.
[6] Barbara Terhal. Topological order. https://topocondmat.org/w12_manybody/topoorder.html, Aug

2018.
[7] Z. Wang. Topological Quantum Computation. Conference Board of the Mathematical Sciences. CBMS

regional conference series in mathematics. Conference Board of the Mathematical Sciences, 2010.

*Note that we would like this article not to be published.

12 of 12

