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Introduction

In this project, we conduct a survey on quantum attacks on symmetric key classical cryptographic sys-

tems. Motivated by the importance of cryptography and the works that break some classical cryptographic

constructs with quantum computers, we survey the security of classical symmetric key systems against

adversaries with quantum computing access.

Our survey can be broken into two parts: quantum key recovery of symmetric block ciphers, and quantum

attacks on symmetric cryptosystems. In the first part, we discuss the quantum speedup on brute-force key

finding with Grover’s algorithm proposed by Grassl et al. [1] and Zhong et al. [2]. We then present the

work of Martin et al. [3], which assumes some side channel knowledge, and uses Grover’s to accelerate a key

search with structural information. Lastly we introduce the related-key attack model and a quantum variant

proposed by Roetteler and Steinwandt [4].

In the second part, we summarize the works of Kaplan et al. [5] on how quantum period finding can

be applied to break CBC-MAC and other authentication modes of block cipher, as well as Alagic et al.

[6]’s discussion on a potential defense against these attacks based on the hidden shift problem. We also

discuss Zhangdry’s work [7] on post-quantum security of random-oracle based functions, especially quantum

indifferentiability of hash functions.

In the rest of this report, we describe our motivation, goals and findings in detail.

Motivation

Cryptography is one of the building blocks of the Internet that protects privacy and ensures security. Almost

all online activities today, from instant messaging to online shopping, relies on various cryptographic systems

to perform authentication, ensure data confidentiality and verify data integrity. These standard protocols

and algorithms often rely on mathematic constructs that are computationally difficult for an adversary to

break. Since most of them were developed when quantum computing was far from being practical, their

proofs of difficulty assume adversaries in a classical context. However, in recent years, the developments

in quantum computers and the researches to utilize the quantum computing model are imposing threats to

classical security. Famous examples include Shor’s algorithm [8] that breaks big number factoring, a difficult

problem on classical computers, and Grover’s algorithm [9] which accelerate brute-force searching by a square

root factor. Therefore, it is natural to ask whether the well-established cryptographic systems are capable

of resisting the attacks from adversaries with quantum computing power. Which of them are still safe, and

what needs to be redesigned? Questions like these give rise to our survey project.

We focused on symmetric key systems for two reasons. One is that due to the limited time, it is not

possible to cover every aspect of cryptography. The other is that, symmetric systems are significant because

they are the work horses in most data encryption standard, such as TLS and OpenPGP. Symmetric key block

ciphers are also widely used to create message authentication codes. Other parts of classical cryptography,

including the asymmetric systems, are left for the future.
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Goals

The goal of this project is to investigate the state-of-the-art quantum attacks on symmetric key classical

cryptographic systems, as well as possible defenses. Based on the difficulty and efficiency of the proposed

attacks, we will try to analyze and summarize the security of a variety of classical symmetric key systems

against quantum adversaries, and try to answer these questions:

1. How efficient can quantum computers break block ciphers, especially AES?

2. Which cryptosystems are broken by quantum adversaries, and what are their underlying assumptions?

3. Is it possible to fix the broken systems, i.e. are new designs necessary?

At the same time, we will find out what problems remain open in these works.

Findings

Our survey focuses on works that proposes or analyzes quantum attacks on classical symmetric-key systems.

Specifically, we considered two targets: the symmetric block ciphers, and the symmetric cryptosystems built

upon them.

For the block ciphers, we learned about the practical quantum complexity to recover the keys of two

popular standards, AES and 3-DES [1, 2], which shows that only AES-256 provides a good post-quantum

guarantee and that both AES-128 and 3-DES are no longer secure against brute-force attacks in a quan-

tum era. Considering the fact that brute-forcing is the slowest way to recover a key, we also studied [3]

which accelerates the process with side channel advices. Since real world cryptosystem implementations are

never perfect, their work shows a practical utilization of side channel knowledge with the structure-unaware

Grover’s algorithm. Lastly, we found a quantum version of the powerful related-key attack model proposed

in [4]. Despite its impractical assumptions, it can be informative to cryptosystem designers of what should

be avoided.

For symmetric cryptosystems, our findings are related to message authentication codes (MACs) and

random oracles. We have learned how quantum period finding can be applied to break common constructs

of message authentication codes that are based on symmetric key block ciphers, such as CBC-MAC and

PMAC [5]. The authors showed how Simon’s algorithm can solve real world problems. Based on their

work, [6] has proposed modifications to the CBC-MAC and other similar systems. This work also explains

how hidden subgroup and hidden shift problems can be connected to resistance to quantum attacks. We

have also studied [7], which shows how it is possible to record quantum queries and build hash functions

that are indifferentiable from random oracles.

Applying Grover search to AES and 3-DES

We start by discussing attacks to symmetric block ciphers with quantum computers. In common attack

models, the adversary has some blocks of plaintext and their corresponding ciphertext. Their goal is to

uncover the secret key used in encryption. A more powerful attacker is able to choose the plaintext to be

encrypted, thus performing a chosen plaintext attack (CPA). However, for modern encryption, CPA does not

give more advantage than knowing some pairs in terms of key recovery. Classically, there isn’t any algorithm

that breaks the advanced encryption standard (AES) much faster than brute-force search does. Quantumly,

it is straightforward to accelerate the key searching problem with Grover’s algorithm.

Theoretically, Grover’s algorithm can be used to find the secret key of symmetric algorithms, provided

the quantum oracles for encryption. It is then natural to ask whether these oracles are feasible to build. In
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depth #qubits Grover depth Grover #qubits

AES-128 216.8 984 281 2953

AES-192 216.6 1112 2113 4449

AES-256 217.0 1336 2145 6681

Table 1: AES depth and qubit estimation

this survey, we learn the circuit complexity of the oracle for two ciphers, and also the precise complexity to

break them with Grover’s algorithm. Our choices of ciphers are AES and 3-DES for their wide application.

AES is the most common cipher choice for HTTPS. Its key size can be one of 128-bit, 192-bit and 256-bit.

Classically, brute forcing an AES key of k bits would require about O(2k) operations1. Grassl, et al.’s work in

2015 [1] was the first to discuss the quantum implementation of AES in detail. They built a reversible circuit

for AES of different key sizes with the T and Clifford gates. The circuit was constructed by implementing

the four basic AES operations, and using them to achieve key expansion and encryption rounds. During

the process, the authors favored optimizing the number of qubits than gate complexity. For example, they

proposed two designs for SubBytes, and chose the 9-qubit, 9695 T -gates and 12631 Clifford gates version

instead of the 40-qubit, 3584 T -gates and 4569 Clifford gates one. They then gave a detailed estimation of

the number and depth of gates, as well as the number of qubits required. We summarize their results in Table

1. As the authors argued, to characterize the secret key uniquely, r = 3, 4 and 5 known plaintext-ciphertext

pairs are required for 128, 192 and 256-bit AES respectively. Thus, the total number of required qubits is

multiplied by r for Grover’s algorithm. One extra qubit is added to indicate the comparison result. Since

AES key length only affects the key expansion stage, the circuit depth for the three variants are similar. It

worth noting that the depth of 192-bit AES is actually smaller than the 128-bit one because of the additional

available space. The depth of running Grover’s algorithm is simply the depth of one cipher computation

multiplied by bπ4 2
key length

2 c.
It can be seen from the results that with quantum computers, AES-128 barely meets the legacy 80-bit

security strength requirement. However, it fails to achieve today’s standard [10] which is 112 bits. AES-

192, while providing 112-bit security at the first glance, may not be ideal if circuits with less depth and

more qubits are designed. Fortunately, AES-256 still provide good security against brute-force attack in the

post-quantum era.

3-DES is a common but retiring cipher. It is also part of the MSCHAPv2 protocol, which is used by the

WPA2-Enterprise authentication process. 3-DES has three keys, each of which are 56 bits long, resulting in

a 2168 key space. However, due to the meet-in-the-middle attack, the cipher only provides 112-bit security in

a classical context. Zhang and Bao [2] presented an analysis of applying the meet-in-the-middle attack in a

quantum setting. Their work showed that the keys of a three-key 3-DES cipher can be recovered with O(256)

calls to an oracle. Although we have not been able to find a circuit construction for DES, we conjecture that

the depth of such a circuit is smaller than that of AES, due to the reduction in complexity. As such, 3-DES

provides no more than (56 + 17) = 73-bit security in a post-quantum setting, and should be considered

insecure.

Classically, the security of symmetric key ciphers rely on obscurity rather than computationally difficult

mathematical constructs. Unlike many asymmetric constructs such as RSA, there is no rigid mathematical

proof of their security. They are considered safe because despite decades of work, there has been no practical

and efficient attacks that recover the keys of AES and 3-DES better than brute-force search. Unfortunately,

the situation has not been changed by the availability of quantum computation model. To our best knowledge,

no work has been proposed to attack a specific cipher with quantum computers by leveraging some properties

1Although more efficient attacks exists, they only improve k by a constant less than 2, which does not make a big difference

for our analysis. Existing related-key attacks are impractical and thus not considered here.
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Value k1 k2
00 0 1

01 1 1

10 2 0

11 1 2

Table 2: Side channel advice example, m = 2, l = 2

of its construct. It appears that brute-force searching, albeit being possible to accelerate as we will discuss

in the next section, is still the only known attack up to today. It remains unknown whether an efficient

quantum attack exists, or whether it is not possible for quantum computers to do better than classical ones

in this scenario.

Quantum key search with side channel advice

As the previous section shows, Grover’s algorithm undermines the security of AES-128 with brute-force key

search. In reality, it is often the case that due to implementation limitations, some information about the

key can be obtained by an adversary by, for example, measuring the time and power it takes to encrypt or

decrypt the data. These attacks, that do not directly target the algorithms but their implementations, are

referred to as side channel attacks. The information about the key is therefore called side channel advice.

Martin et al. [3] proposed their key search algorithm with this knowledge which is accelerated with Grover’s.

Mathematically, a side channel advice can be formulated as a probability distribution of the keys. This

is structural information about the key space. In order to utilize this information with Grover’s algorithm,

which is unstructured search, [3] breaks down the key search problem in smaller key spaces. The high level

idea is to search first in a subspace of most likely keys, and move to less likely ones if no key is found.

[3] models the side channel information and key search in the following way. First, break the secret key

into m chunks k = (k1, ..., km), each of length l. The goal is to find one key t = (t1, ..., tm) that is used in

encryption. The side channel advice can be interpreted as the probability values p[ki = x], x ∈ {0, 1}l. A

likelihood number (weight) can then be assigned for each chunk/value pair, which forms an 2l by m matrix

w = (w1, ..., wm), where each column wi contains the weights of the i-th chunk taking every possible value.

The higher the probability p[ki = x], the smaller its corresponding weight in wi. An example is illustrated

in 2, where we consider a 4-bit key broke into m = 2 chunks. The most likely key in this case is 0010 with

weight 0, followed by 0000 with weight 1. The weight of a key is simply the sum of all of its chunks’ weights.

They proposed a graph-based key enumeration algorithm which generates keys whose weights are within

a given range [W1,W2]. The key searching algorithm takes in the matrix w, the number of keys to search e,

a size parameter a, and a testing function T . It starts by finding an We such that there are approximately

e keys in the range [0,We]. The minimum and maximum weights of these keys are denoted Wmin and

Wmax. Then, it initializes W1 ←Wmin,W2 ←W1 + 1 and begin to iteratively search in the subspace of keys

within [W1,W2]. At the end of the i-th iteration, if no key has been found, it finds W such that there are

approximately ai keys in the range [W2,W ] and updates W1 ←W2 and W2 ←W .

Classically, given the collection of keys K to test in an iteration, it takes O(|K|) calls to the testing

function T . This is where Grover’s search can be used to accelerate the algorithm and reduce the number

of calls to O(
√
|K|). The analysis in [3] shows that the overall time complexity to perform a key search is

O(m2 · n · log n(Wmax +
√
e + We · log e)). Since m and n are small for a given algorithm, it is essentially

O(Wmax +
√
e + We log e). It is clear that the better the side channel advice is, the smaller e will be and

the faster this algorithm runs. However, while it is practical to obtain side channel information, it remains

unclear how good these information can be. Since it relies on specific implementations, this question may

be difficult to answer in theoretical researches.
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It worth mentioning that [3] is largely a classical algorithm; its main contribution is better key enumeration

based on key ranking. Yet, it is this construct that allows it to create key subspaces and be accelerated

by Grover search. We find this work inspiring as it shows the potential of applying Grover’s to structured

search by partitioning the set in clever ways.

Quantum related-key attacks

Related-key attack is a powerful tool in classical cryptoanalysis. However, these attacks often base on very

strong, if not impractical, assumptions. For example, in [11], to recover an 256-bit AES key in O(299.5)

time, the adversary need to be able to persuade the target to encrypt not only with their secret key k, but

also three other keys f(k) such that f is deterministic and known by both parties. Nonetheless, related-key

attacks are sometimes argued to have practical meanings and have some popularity in the cryptography

community. Therefore, we tried to find out what related-key attack is capable of in a quantum setting.

Roetteler and Steinwandt presented a related-key attack on block ciphers in 2015 [4]. Their attack

leverages Simon’s algorithm by reducing the key search problem to a function that can be computed in

polynomial time and satisfies the formation of Simon’s problem. To recover a k-bit secret key K for an

encryption EK , their method requires an oracle that:

1. Given L ∈ {0, 1}k,m ∈ {0, 1}n, computes EK⊕L(m).

2. Can be queried in superposition.

Then, for a fixed secret key s and some known messages m that can distinguish secret keys2, they defined

the function

fs(x) = {Ex(m), Es⊕x(m)}

which can be shown to meet the conditions of Simon’s problem: given two key strings x 6= x′ such that

fs(x) = fs(x
′), it is impossible that Ex(m) = Ex′(m) because of the choice of messages. Then, it must be

the case that Ex(m) = Es⊕x(m), that is, x = s ⊕ x′. Therefore, fs(x) = fs(x
′) → x = s ⊕ x′. Applying

Simon’s algorithm, s can be found with high probability using k queries to the oracle. Their paper includes

a circuit design for the function fs given the oracle.

This attack is very powerful that it recovers the secret key of a k-bit cipher with O(k) queries, which is

much faster than the classical related-key attack mentioned above. Although, as the authors admitted, it

is very unlikely that the scenario can happen in a real world setting, it provides an interesting insight of

improvement one can gain when a type of attack is considered in post-quantum settings. It is also possible

that, due to poor designs or implementations, some related-key properties will appear in certain systems3.

Related studies will be helpful in informing cryptographic system designers of what to avoid.

To our best knowledge, up to today [4] is the only work addressing quantum related-key attacks on block

ciphers. It remains unknown whether more practical setups are possible to impose a threat to symmetric

key systems.

Attack on symmetric cryptosystems using Simons algorithm

We now turn our interest to symmetric cryptosystems. Surprisingly, several classical attacks based on

finding collisions can be dramatically speedup in a quantum setting using Simons algorithm in polynomial

2For simplicity, we use m to denote several n-bit message blocks (m1, ...,mr), and E(m) to denote the encryption result

(E(m1), ..., E(mr)) of these blocks. Blocks m distinguish secret keys means that given two different keys K1,K2, EK1
(m) 6=

EK2
(m) holds with (1−2−rn) probability. For a block cipher with k-bit keys and n-bit blocks, it can be shown that r = d2k/ne

messages are needed. For AES-128, r = 3.
3A famous example is the WEP security protocol.
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Figure 1: Interface model of classical and quantum setting

Figure 2: Encrypt-last-block CBC-MAC [5]

time O(n). While breaking symmetric cryptosystems, quantum attack based on Simons algorithm depends

on security model of the Simons algorithm, i.e. the quantum adversary has a quantum access to our classical

cryptosystems, as shown in 1.

Breaking message authentication codes

In the work of Kuwakado et al [12], it has been shown that Even-Mansour Cipher (block cipher) can be broken

using superposition queries. The quantum queries are sent to the quantum oracle to get a superposition of

encrypted outputs. The function of the oracle is:∑
x

ψx|x〉7→
∑
x

ψx|Ex〉

Although this model was very strong, it was not a concept that could be used in real life as there was no

practical implementation.

Kaplan et al. [5] have given a real-world quantum attack against Even-Mansour Cipher using the weak

form of Simon’s algorithm or Quantum Period Finding. The weak form of Simon’s algorithm says that given

f : {0, 1}n 7→{0, 1}n, there exists s ∈ {0, 1}n with f(x) = f(x⊕ s) where x⊕ x′ ∈ {0n, s}. That is, we want

to find s while there can be some random unstructured collisions and not just s. This concept is used to

build quantization of classical attack against Even-Mansour cipher. The quantum attack builds the same

function as a classical attack:

f : {0, 1}n 7→{0, 1}n

x 7→Ek1,k2 ⊕ P (x) = P (x⊕ k1)⊕ P (x)⊕ k2

When f(x) = f(x⊕ k) is achieved, we can recover the key k1.

[5] showed how using quantization of several classical attacks, several block cipher modes of operation

such as CBC-MAC, PMAC, GMAC etc can also be broken.

For quantum attack on a CBC-MAC, illustrated in 2, the adversary sends a superposition of messages

and receives a corresponding superposition of k + 1 MAC values or tags:∑
x

ψx|x〉|0〉7→
∑
x

ψx|x〉|MAC(x)〉
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Figure 3: Representation of a slid-pair used in a slide attack [5]

In the paper, they have given a function for CBC-MAC:

f : {0, 1}nx{0, 1}n 7→{0, 1}n

b, x7→MAC(b||x) = Ek′(Ek(x⊕ Ek(b)))

f(0, x) = Ek′(Ek(x⊕ Ek(b)))

f(1, x) = Ek′(Ek(x⊕ Ek(1)))

so f(b, x) = f(b⊕ 1, x⊕ δ) where δ = Ek(0)⊕ Ek(1).

The hidden period here is that the bit b can be changed like the above equation to get a collision. Thus

the value 1||δ can be recovered. This value can be used to make forgeries as:

MAC(0||m||m′) = MAC(1||m⊕ δ||m′)

So, with a quantum attack, a key can be recovered in CBC-MAC. In a similar way, using Simon’s algorithm

a quantum attack was implemented and a key k was recovered from PMAC, GMAC and Authenticated

Encryption with Associated Data cryptosystems using superposition queries. The authors also broke eight

Caesar candidates: AEZ, CLOC, COPA, Minalpher, OCB,OMD, OTR, POET. The paper also described a

way to quantize a slide attack, shown in 3, in linear time.

Therefore, by executing the classical functions in a quantum computer using Simon’s algorithm in linear

time O(n), [5] managed to break several symmetric cryptosystems.

In [6], the authors proposed a defense to [5,12]. It is based on a pair of shifted functions: f(x) = g(x⊕k).

The shifted function is the target in the hidden shift problem. In the Hidden Shift problem, two functions

are given with the promise that one is the hidden shift. The objective of the hidden shift problem is to

identify this shift.

The authors established the security of symmetric cryptographic functions using the difficulty assumption

of Hidden-Shift problem. This problem is random self-reducible and can amplify the hardness of symmetric

key constructions. The enhancement is done by replacing bitwise XOR operation with operations over

alternative finite groups (such as Z/2n). This small adaptation results in retaining the same level of security

the symmetric cryptosystems had as in the classical case.

For a hidden shift CBC-MAC, a bitwise XOR operation in the original construction is replaced by com-

position in some exponentially-large family of finite-groups G. Each message was then identified with an

element of G, and the pseudorandom permutaion Ek was taken as a permutation of the group elements of

G such that:

CBC-MACk,k′
G : G∗ → G(m1, . . . ,ml)→ Ek′(Ek(ml · EK(. . . Ek(m2 · Ek(m1)) . . . )))

where · denotes the group operation in G

The authors also showed that the decision and search version of the hidden shift problem are equivalent.

With this proof, the authors have shown that it is more difficult for quantum attackers to break the hidden
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shift version of the block cipher algorithms. The adversary will need a subroutine that solved the hidden

shift problem first. So, with the assumption that there doesn’t exist a polynomial-time quantum algorithm

for the Hidden Shift problem, the authors have shown that CBC-MAC can be modified to remain secure

against quantum attacks.

Post-quantum security of random-oracle based functions

In a classical setting, classical random oracle model (ROM) proofs ensure security of cryptosystems by

recording information about the queries made by an adversary. However, in a quantum setting, this was

not possible owing to the quantum no-cloning theorem and the fact that doing any kind of measurement

on the adversary query state would be easily detected by an adversary. As any measurement will disturb

the quantum system, such measurement may be detectable to the adversary. When an adversary would

detect such recording of its queries, it could then refuse to continue. [7] gave an insight on post-quantum

cryptography with the help of a quantum random oracle model (QROM). This paper solved the problem of

recording information about the adversarys queries in a quantum setting with the adversary detecting. This

observation is done by viewing both the adversarys query and the oracle itself in the Fourier domain.

Hash functions (for ROM or QROM), in general, are built from smaller building blocks called compression

functions. For these compression functions to be secure like monolithic object, they should be indifferentiable

to an adversary. To illustrate what this means, consider an adversary who has access to two oracles h and

H. In case (1), h is a random function and H is built from h according to the hash function construction.

That is, H(x) = B(h(x)) where B is the hash function. In Case (2), H is a random function, and h is

simulated so as to be consistent with H. A hash function B is indifferentiable from a random oracle if

no efficient adversary can distinguish the two cases. For such indifferentiability to hold, recording of the

quantum adversary queries need to be possible.

A way to do this is explained in paper [7] using compressed oracle technique, which allows for recording

the adversarys queries in a way that the adversary can never detect. It is based on the fact that when an

adversary interacts with a random oracle, it will be entangled with a uniform superposition of oracles. Owing

to the symmetric property of entanglement, if the adversary every has any information about the oracle,

the oracle must also have information about the adversary. So, in this way, a simulator may get away with

recording the information about the adversary.

The compressed oracle technique allows simulation of a compressed Fourier oracle with independent

applications. Such a compressed oracle gives a way to record information from queries that the adversary

makes. This information is whether a particular value has been queried by the adversary and what the value

of the query at that point is. Compressed oracle also have the power of forgetting such that it can also forget

some of the oracle points simulated previously. Implementing a compressed oracle, the adversary can never

detect that it is interacting with a simulated oracle.

In a compressed Fourier oracle, a state vector D is set to 0n2
m

. After q queries, D will be the sum of q

point functions such that the output will be zero in all but q locations, i.e. after a query q, D will be set to:

0n0n . . . q . . . 0n0n. Therefore, we can actually compress D in an unordered list of at most q pairs (x, z) with

distinct x such that z 6= 0.

We can instead describe how the map behaves directly on the compressed encoding. This gives us the

compressed Fourier oracle. It starts with an empty database, and on each query it performs the map:

|x, z〉 ⊗ |D〉 7→ |x, z〉 ⊗ |D ⊕ (x, z)〉

where D ⊕ (x, z) is the procedure that does the following:

1. If z = 0 it outputs D.

2. If there is a pair (x, z) ∈ D for some z , it does the following:
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• If z = z , it removes (x, z) from D, and outputs the new D

• if z 6= z , it replaces (x, z) with (x, z ⊕ z) and outputs the new D

3. Finally, if there is no such pair (x, z) ∈ D , it adds the pair (x, z) to D and outputs the new D

Using a compressed oracle in this way, a simulator can record information on the exact location of a

particular value that was queried by the adversary and what the value of the query at that point is. For

example,

(H ⊗ CNOT ⊗H)⊗ |x〉 ⊗ |y〉 ⊗ 0n2
m

7→ |x〉 ⊗ |y〉 ⊗ |0 . . . 0Y 0 . . .〉

The index of y is given by x.

Post-quantum random oracle model is an important tool that gives efficient quantum resistant cryptosys-

tems. Using compressed Fourier Oracle to show indifferentiability, the QROM records information regarding

the queries of the adversary in the Fourier domain, which can be used to find exactly what the adversary

was looking for.

Conclusion

In our survey, we have studied quantum key recovery of symmetric block ciphers. We have found no attack

that fundamentally breaks the standard AES and 3-DES. However, a straightforward brute-force search

accelerated by Grover’s is able to put AES-128, AES-192 and 3-DES below today’s security recommendations.

It is also possible to further increase key recovery if some side channel advice is collected by the adversary.

With some impractical assumptions, classical related-key attacks can achieve quadratic speed up, whereas

its quantum version dramatically reduces the required time. However, few has been done to analyze whether

the inner design of any specific cipher, like the AES, can be abused with quantum computation.

While block ciphers remain their obscurity-based security, message authentication codes have less luck. In

a quantum-query setting, many MACs can be broken with Simon’s algorithm. Luckily, it is possible to make

MACs secure again by incorporating hidden shift constructs. Lastly, we have also explored the possibility to

build quantum random oracles with hash functions. The open problem that interests us the most is whether

the hidden shift construct can be extended to other systems beyond MACs.
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