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Simulation by quantum computers [1] is a promising method to investigate quantum systems which

are intractable to classical computers. However, it is not explicit how quantum computers outper-

form classical ones in practice. In this project, we will answer this question as follows: in the

first and the second section, we mainly discuss the motivation of quantum simulation and differ-

ent models of quantum simulation; in the third and fourth section, we survey the recent research

on the simulation of Hamiltonian dynamics; on the other hand, we illustrate how to simulate the

equilibrium properties of quantum systems by implementing quantum metropolis algorithm. For

simplicity, We will focus on the spin models and will not touch the detail of the physical realization.

1 Why Quantum Simulation

Firstly, quantum simulation problems are to find the state of a quantum system described by the

wave function |ψ〉 at some time t and computing the value of some physical quantity of interest,

e.g. energy levels of an atom, the critical point of phase transition. Focusing for simplicity on

time-independent Hamiltonians (denoted Ĥ), the solution of the Schrödinger equation:

i~
d

dt
|Ψ(r, t)〉 = Ĥ|Ψ(r, t)〉 (1)

is given by |Ψ(t)〉 = exp
(
−i~Ĥt

)
|Ψ(0)〉. We can write the operator of total energy, Hamiltonian

Ĥ explicitly,

Ĥ|Ψ(r)〉 =
[
− ~2

2m
∇2 + V (r)

]
|Ψ(r)〉 = E|Ψ(r)〉 (2)

The first term in the Hamiltonian is the kinetic energy and the second term is potential energy. E

on the right hand side is the eigenvalue of the Hamiltonian Ĥ, namely, the value of system’s total

energy. In many cases, we are interested in the energy levels of a system, i.e., all eigenvalues of the

Hamiltonian. For example, the energy levels of atoms are of great importance because they carry

almost all important information of elements and materials.

Example 1 (Two-level system). A two-level system is a quantum system that can exist in any

quantum superposition of two independent (physically distinguishable) quantum states.

|ψ〉 = c0|0〉+ c1|1〉, c0, c1 ∈ C (3)

It may be the simplest nontrivial quantum system. A well-known example is the spin of a spin-1/2

particle such as an electron, whose spin can have values ~/2 or −~/2. Its energy in a magnetic field

B (assume the direction of B is parallel to the direction of spin) is given by

Ĥspin = −B · σz =

(
−B 0

0 B

)
. (4)
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Then, its time evolution is easily to get

|ψ(t)〉 = e−i~Ĥspint|ψ(0)〉 = ei~Btc0|0〉+ c1e
−i~Bt|1〉. (5)

Note that any two-level systems are inherent candidates of qubits that serve as registers in quantum

computer.

Unluckily, two-level system is one of the very limited number of quantum systems that can solved

analytically, such as one particle in a harmonic potential and Hydrogen (an electron interacting

with the coulomb potential of a proton) [2]. These systems are solvable because their potential

have ideal forms and only two-body interaction is considered. Many approximation methods, such

as perturbation theory, were proposed to solve more specific Hamiltonians. For instance, when

we include the spin-orbit coupling, relativistic correction and spin-spin coupling in the Hydrogen’s

total Hamiltonian instead of only considering the coulomb potential, the energy levels of Hydrogen

cannot be solved analytically. The approximation methods are effective to tackle this kind of

problem, but more serious problem occurs when we deal with the many body systems. In many

body systems, a large number of particles interact with each other so that the Hamiltonian is

too complicated to be solved analytically or numerically with brute force. However, many body

systems are of great practical interests because we live in the macroscopic world. For instance,

we are curious about the critical temperature of a bulk of superconductor instead of how single

electron moves in it. This requires that we deal with the systems at thermodynamic limit, namely,

the number of particles in a system is almost infinite (∼ 1023). It is impossible to cope with these

systems by solving eq. (2) and eq. (1). This is the reason why we need statistical mechanics. With

statistical mechanics, we do statistics over all possible configurations of many body systems instead

of tracking all particles’ movement to obtain some useful information of the whole system. The

computational problem in statistical mechanics becomes the calculation of partition function Z,

with which we are able to calculate all thermodynamic quantities

P (c) =
e−βE(c)

Z
, Z =

∑
c∈Ω

e−βE(c), 〈A〉 =
∑
c∈Ω

A(c)P (c) (6)

P (c) is the probability of the system in certain configuration c. Z is the partition function, the

sum of the weight e−βE(c) over configuration space Ω. This weight is also called Boltzmann factor.

β is a parameter related with temperature β = 1/kBT . 〈A〉 is the expectation value of certain

observable. Note that the above defintion of partition function is for classical discrete system. The

quantum version is

Z = tr
(
e−βĤ

)
, 〈A〉 =

1

Z
tr
(
Ae−βĤ

)
. (7)

the second equation is the thermal average of an observable A. No matter quantum or classical,

the size of configuration space increases exponentially with the size of the system.

Example 2 (Ising model). The simplest model of many body system may be one-dimensional

Ising model : the spins are arranged in a lattice, allowing each spin to interact with its neighbors.

A spin configuration σ is an assignment of spin value to each lattice site. The classical Hamiltonian
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of such a spin configuration is

Hn(σ) = −
∑
〈i,j〉

Jijσiσj −B
∑
i

σi, σ ∈ {1,−1} (8)

The lower index n of Hamiltonian is to denote it is a n-body Hamiltonian. The first term in it is

the interaction between adjacent spins and Jij can be considered as a constant. The second term

is the interaction between external magnetic field B and each spin. It should be noted that the

interaction between spins is called ferromagnetic if Jij > 0; it is called antiferromagnetic if Jij < 0.

Though they only differ by a sign, it makes big difference in computational complexity when we do

simulation. The antiferromagnetic one is also called frustrated spins, which favoring rather simple,

but different structures lead to qubit complex structures. The quantum version of Ising model is

Ĥn(σ) = −
∑
〈i,j〉

Jijσ
x
i σ

x
j −B

∑
i

σxi (9)

where σxi are Pauli matrices. Navielly, representing the configuration space Ω of n spin Ising model

requires 2n bits classically.

Although the partition function of one-dimensional and two-dimensional Ising models have exact

solutions, higher dimensional Ising models or more complicated spin models need more advanced

techniques to tackle with, such as mean-field theory and quantum field theory. With the devel-

opment of computer science, an efficient and generic way to calculate partition function is Monte

Carlo algorithm with Metropolis method[3], which samples the important configuration with high

probability. Its main advantage is that it allows phase space integrals of partition function to

be evaluated in a time that scales only polynomially with the size of system. It means that the

thermal average of an observable is approximated by the sample mean within a statistical error in

polynomial time.

〈A〉 ≈ Ā =
1

M

M∑
i=1

A(ci) (10)

The same technique can be applied to reduce the exponential scaling of the problem in quantum

case, but only after mapping the quantum model to a classical one. One approach to this mapping

is a Taylor expansion:

Z = tr
(
e−βĤ

)
=
∞∑
n=0

(−β)n

n!
tr Ĥn

=

∞∑
n=0

∑
i1,...,in

(−β)n

n!
〈i1|H|i2〉〈i2|H|i3〉 . . . 〈in|H|i1〉

≡
∞∑
n=0

∑
i1,...,in

p(i1, · · · , in) ≡
∑
c

p(c)

(11)

The weight p(c) here is the corresponding product of matrix elements of Ĥ and the term (−β)n/n!

instead of normal Boltzman factor e−βE(c). If all the weights p(c) are positive, standard Monte
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Carlo methods can be applied, as it is the non-frustrated quantum magnets and bosonic systems.

The problem comes with fermonic systems or frustrated systems. Negative weights p(c) < 0 arise

from the Pauli exclusion principle. The standard way of dealing with the negative weights of the

fermionic system is to sample with respect to the bosonic system by using the absolute values of the

weights |p(c)| and to assign the sign to the quantity being sampled. While this allows Monte Carlo

simulations to be performed, the errors increase exponentially with the system size and the inverse

temperature β. It is called sign problem. It has been proved that sign problem is NP-hard[4].

Although this problem is intractable to classical computer, a quantum algorithm allows for direct

sampling from the eigenstates of the Hamiltonian, overcoming sign problem[5]. This is a good

example illustrating the supremacy of quantum simulation.

2 Quantum Simulation Models

There are mainly three types of quantum simulation: (1) digital quantum simulation; (2) analog

quantum simulation; (3) quantum-information-inspired algorithms for the classical simulation of

quantum systems. In this project, we will focus on digital quantum simulation that is more widely

analyzed.

We denote the state of the simulated system by |ϕ〉. The system evolves from the initial state

|ϕ(0)〉 to |ϕ(t)〉 via the unitary transformation U = exp{−i~Hsyst}, where Hsys is the Hamiltonian

of the system. The quantum simulator is a controllable system: the initial state |ψ(0)〉 can be

prepared, the desired unitary evolution U ′ = exp{−i~Hsimt} with Hsiim being the controllable

Hamiltonian of the simulator can be engineered, and the final state |ψ(t)〉 can be measured. If a

mapping between the system and the simulator exists, then the system can be simulated.[6]

2.1 Digital Quantum Simulation (DQS)

Most quantum algorithms we learned in the textbook [7] are based on circuit model. The wave

function |ϕ〉 has to be encoded using the computational basis, i.e., as a superposition of binary

bit strings. The simple example is the simulation of spin-1/2 particles. The three-spin state

|ϕ〉 = | ↑↓↓〉 is represented in the simulator by |ψ〉 = |100〉. To obtain |ψ(t)〉 = exp{−i~Ht}|ψ(0)〉,
the complicated many qubit-unitary transformation U is implemented through the application of

a sequence of universal gates, such as {T,CNOT,H}. Although any unitary operation can be

written in terms of universal quantum gates, it should be noted that not all unitary operation can

be simulated efficiently. The advantage of digital quantum simulation is that rich experience and

results in classical digital computation can be used for reference.

2.2 Analog Quantum Simulation (AQS)

Another method is analog quantum simulation, in which one quantum system emulates the other

one. The Hamiltonian of the system to be simulated Hsys is directly mapped onto the Hamiltonian

of the simulator Hsim, which can be controlled at least to some extent. The choice of the mapping

depends on what needs to be simulated and on the capabilities of the simulator. In AQS, one is

usually emulating an effective many-body model of the simulated system. It should be noted that
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the simulator may only partly reproduce the dynamics of the system. A controllable toy model of

the system is used to reproduce the certain property of interest. An important advantage of AQS is

that it could be useful even in the presence of errors, up to a certain tolerance level. For example,

one is sometimes interested in knowing whether a certain set of physical conditions leads to a given

quantum phase transition. Even without having the full quantitative details, a qualitative answer

can be quite valuable in this context.

3 Hamiltonian Simulation with Product Formula Algorithm

In this section we give a brief review on a spcific digital simulation algorithm, namely the product

formula algorithm. Given a quantum algorithm for Hamiltonian simulation, people investigate its

performance algorithmically [8, 9] and empirically [10]. Algorithmically, query complexity measures

the frequency a blackbox oracle being invoked through execution.In particular, the blackbox is an

oracle that spits out the entries of the simulated Hamiltonian. Empirically, software packages were

used to synthesize circuit with a set of universal quantum gates. The number of quantum gates

used by the synthesized circuits indicates the complexity of the algorithm. In this section we delve

into a most basic quantum algorithm, namely the product formula algorithm.

The generic Hamiltonian for spin models isH =
∑

i αiHi, hence the evolution operator is e−it
∑
i αiHi .

Instead of simulating the whole operator for time t, it is natural to break the operator into prod-

uct of operators, and simulate each one piece at a time. If we know the total number of pieces

n and number of oracle calls m to get matrix entries for each e−itHi , then the query complexity

would exactly be O(mn). However, by Baker-Campbell-Hausdorff formula it does not hold true

that e−it
∑
i αiHi =

∏
i e
−itHi , unless [Hi, Hj ] = 0, ∀i, j. The remedy for it is to apply Suzuki’s for-

mula [11], such that the matrix norm between e−iHt and higher order product of exponentials with

infinitesimal time increment is sufficiently small. [10] rephrased [8]’s result in a cleaner way:∥∥∥∥e−it∑L
i αjHj − [S2k(−

it

r
)]r
∥∥∥∥ = O(

(LΓt)2k+1

r2k
) , (12)

where Γ is a constant, S2k is the recursive definition of Suzuki’s formula for product of exponentials

and k is an integer that specifies the order of Suzuki’s formula. The asymptotic behavior tells that

good approximation can be achieved either by applying higher order Suzuki’s formula or making

infinitesimal time evolution for each piece of exponential operator. So for a fixed matrix norm error,

there is a trade off between k and r to result in best query complexity.

3.1 Algorithm query complexity analysis

For each piece of exponential operator e−iHjt, with the assumption that Hj is sparse, [8] showed

that each query to Hj can be simulated by making logN queries to H. To investigate the total

number Nexp of exponential operators for approximating e−iHt within matrix norm ε, [8] stated

that

Nexp ≤ 52kL2‖Ht‖(L‖Ht‖
ε

)1/2k ,with ε ≤ 1 ≤ 2L5k−1‖Ht‖ . (13)

5



It is interesting to observe that for large k, the number of exponential operators is linear in terms of

time t. Hence the total query complexity is O(Nexp logN), which is also linear in time. Later work

by [12] has been focusing on optimizing query complexity with respect to the lattice size L, they

brought down the L2 logN factor in Nexp to L(
√
L+ log(N)) using star decomposition technique.

3.2 Circuit size analysis

[10] synthesized digital circuit with a set of universal quantum gates, and counted the optimized

number of gates in the end as algorithm’s gate complexity. Firstly a theoretical gate estimation

was made. In contrast to the calculation of algorithm query complexity, where the total query

complexity is the multiple between number of exponentials and number of queries to H for each

exponential. The gate complexity is calculated by the multiple between the number of slices on

evolution time and the number of gates used to simulate all exponentials under infinitesimal time

increment. The hard part is to make the number of slices as small as possible while maintaining

matrix norm under target error.

Up to k = 8th order of Suzuki’s formula was applied to approximate e−iHt. For given target matrix

norm error ε, the number of time slice r for each exponential operator could be determined in terms

of lattice size L, targeted error ε, simulation time t and order k. However, the requirement on r

can be relaxed if there are terms in H that are weakly correlated, i.e. [Hi, Hj ] ∼ 0. This comes

straight from the Baker-Campbell-Hausdorff formula, where the first order approximation becomes

exact if all Hamiltonian components commute. With that in mind, [10] exploited commutation

relations in Heisenberg Hamiltonian which can be written as sum of Pauli matrices. They managed

to bring down the matrix norm between e−iHt and product of exponentials, and concluded that

with simulation error ε = O(1) and simulation time t = L, the number of slices r = O(L2+2/(2k+1)).

Hence in total the theoretical gate complexity is O(L3+2/(2k+1)), because each slice S2k(− it
r ) takes

lattice size O(L) number of gates to simulate.

To empirically estimate the gate complexity, [10] first fix the order k, and target error ε = 0.001.

They numerically determined number of slices r for lattice size varying from 5 to 12, and did an

exponential fit between r and lattice size L, i.e. r = αLβ. Therefore, the empirical complexity is

O(Lβ+1). It turns out that the empirical estimation yields a better upper bound, hence there can

be improvement on the theoretical analysis.

4 Lattice Hamiltonian simulation

For real physical spin systems, generally the problems are categorized by the strength of interactions

between atoms sitting on lattice sites.

One is system of short range interactions where only the nearest neighbor interactions are con-

sidered. For short range interactions, the most famous classical simulation technique is Density

Functional Theory. There are large number of software packages utilizing this theory to sim-

ulate the properties of spin systems with high accuracy. In the following subsection, we will

present a quantum algorithm [13] that simulates short range spin system with gate complexity

O(nT polylog(nT/ε)), and this is an optimal solution as a matching lower bound was found.
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Spin systems become more complicated to analyze when long range interactions are taken into

account, since there are very few terms that can be dropped or simplified in the Hamiltonian. In

this case the number of terms in Hamiltonian is proportional to exponential of number of sites,

hence the Hamiltonian is intractable by any classical calculations. The most successful method to

tackle strong coupling is Dynamic Mean Field Theory that maps lattice model to a impurity model

which is solvable by classical means.

4.1 Short range interaction

[13] has the most optimal gate approximation for simulating Hamiltonian with short range inter-

actions. The result states that evolution of Hamiltonian for time T on n qubits (lattice sites)

up to error ε uses O(nT polylog(nT/ε)) quantum gates. The overall idea is quite similar to the

product formula method, where e−iHt can be broken up into product of pieces of unitary operators

e−iHjt. The difference is the method used to provide the error guarantee. Product formula utilizes

recursive definition of Suzuki’s formula, or fundamentally the Baker-Campbell-Hausdorff commu-

tation relation, to bound the error as we discussed earlier. [13] applies the implication of another

commutation relation, Lieb-Robinson bound, to bound the error of product of pieces of unitaries.

Another key difference between them is the product of unitaries by [13] contains both forward and

backward evolution, i.e. e−iHjt and eiHjt, whereas product formula method contains only forward

evolution unitaries. In the following paragraphs we briefly and informally describe the implication

of Lieb-Robinson bound to error guarantee.

Lieb-Robinson bound compares the matrix norm of difference of a local Hermitian operator evolved

by a full Hamiltonian and a spatially restricted Hamiltonian. Let UHt be e−iHt, it states as∥∥∥(UHt )†OXU
H
t − (UHΩ

t )†OXU
HΩ
t

∥∥∥ ≤ |X| ∥∥OX∥∥ e−µl (14)

where l = dist(X,Λ \ Ω). Analogues to Baker-Campbell-Hausdorff relation implying Suzuki’s for-

mula, the above relation implies a more useful result that can be applied to product decomposition:∥∥∥UHA∪B
t (UHBt )†UHB∪C

t − UHA∪B∪C
t

∥∥∥ ≤ O(evt−µdist(A,C))
∑
X

∥∥hX∥∥ (15)

where X ⊆ A ∪ B ∪ C and X 6⊆ A ∪ B and X 6⊆ C. With the above formula to bound the error,

any e−iHt can be brought into product of three pieces. The mean result [13] iteratively applies such

formula to break e−iHt into O(n log(nT/ε)) pieces for evolution time O(1), each piece is spatially

supported by size O(log(nT/ε)).

4.2 Long range interaction

[14] showed a new Lieb-Robinson bound and used it for unitary decomposition. However, they

argue that the gate complexity from their unitary decomposition is still not tight, indicated by the

result from numerical estimation. Therefore the gate complexity of long range interaction system

still remains open.

A brief idea for the unitary decomposition is as follow. Suppose A, B and C are neighboring

regions without any intersection. An evolution of operator OX is U †ABCOXUABC . This can be
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approximated by U †ABUBU
†
BCOXUBCU

†
BUAB. If we assume that X has no overlap with B and C,

then OX commutes with UB, UBC , hence U †ABCOXUABC ∼ U
†
ABOXUAB. It is intuitively true that

the error of such approximate comes from two sources. First the interaction between A and C are

ignored, therefore to estimate this type error it is sufficient to sum over all interactions on sites A

and C. Second error comes from the fact that unitaries of subsystems on AB, B and BC may not

commute.

With the above error bounded unitary decomposition, [14] obtained a Lieb-Robinson bound for

long range interaction in one dimension:

∥∥[OX(T ), OY ]
∥∥ = O(

Tα−1

Rα−2
) (16)

Therefore a upper bound of gate complexity of such system can be inferred. However, a technique

for finding a matching lower bound remains an open problem.

5 Quantum Simulation of Equilibrium Properties

So far, we have discussed how to simulate the evolution of different Hamiltonians and their com-

plexities. However, the equilibrium properties of physical systems are also of great importance so

that it is expected to speedup its calculation with quantum computers.

5.1 Measuring an operator

It is possible to view a Hermitian operator, not as the generator of dynamics, but as a quantity to

be measured. For example, we might want to measure the energy of a system, i.e., the eigenvalues

of the Hamiltonian. It turns out that any Hermitian operator that can be efficiently simulated

(viewing it as the Hamiltonian of a quantum system) can also be efficiently measured using a

formulation of the quantum measurement process given by von Neumann. We can find that von

Neumann’s procedure is exactly the same as quantum phase estimation.

In von Neumann’s description of the measurement process, a measurement is performed by coupling

the system of interest to an ancillary system, which we call the pointer. Suppose that the pointer

is a one-dimensional free particle and that the system-pointer interaction Hamiltonian is H ⊗ p,
where p is the momentum of the particle. Furthermore, suppose that the mass of the particle is

sufficiently large that we can neglect the kinectic term. Then the resulting evolution is

e−itH⊗p =
∑
a

|Ea〉〈Ea| ⊗ e−itEap, (17)

where |Ea〉 are the eigenstates of H with eigenvalues Ea. Suppose we prepare the pointer in the

state |x = 0〉, a narrow wave packet centered at x = 0. Since the momentum operator generates

translations in position, the above evolution perform the transform

|Ea〉 ⊗ |x = 0〉 → |Ea〉 ⊗ |x = tEa〉. (18)

Now, the energy Ea can be measured by measuring the position of the pointer.
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Note that the discretized von Neumann measurement procedure is equivalent to quantum phase

estimation algorithm. Recall that in the phase estimation problem, we are given an eigenvector

|ψ〉 of a unitary operator U and asked to determine its eigenvalue eiφ. If we let U = e−iHt, this

can be viewed as the transformation induced by e−i(H⊗p)t. Thus we see that the quantum phase

estimation algorithm for a unitary operator U is exactly von Neumann’s prescription for measuring

i lnU [15].

5.2 Quantum Metropolis Algorithm

Classically, Monte Carlo Metropolis algorithm is an effective solution to simulation of equilibrium

properties for many physical systems. The key idea is sampling the more important configurations

with higher probabilities. Its procedure is as following

1. Firstly, initialize an arbitrary configuration.

2. Randomly change the configuration by a little.

3. Compare the total energies of these two configurations.

4. If the new energy is lower than the previous one, we always accept this new configuration as

the input to the next iteration. Otherwise, we accept it with some probability.

5. By repeating 2,3,4 steps, this algorithm will find the ground state (i.e., the lowest energy)

and sample the whole configuration space.

For many realistic physical systems, this algorithm is efficient, but this algorithm fails in the anti-

ferromagnetic systems, which is known as sign problem. A quantum version of the Metropolis

algorithm[5] has been proposed to solve the sign problem. It permits sampling directly from the

eigenstates of the Hamiltonian, and evades the sign problem.

In analogous to the classical one, we firstly prepare a random initial state |ψ0〉 of the simulated

system and the other three registers are initialized as |0〉. Then, we can utilize the our familiar

quantum phase estimation algorithm to transform the initial state into a superposition of energy

eigenstates and the eigenvalules Ei are encoded in the second register

|ψ0〉S |0〉r1|0〉r2|0〉M
QPE7−→

∑
i

|ψi〉S |Ei〉r1|0〉r2|0〉M . (19)

By measuring the second register in the basis of eigenvalues, this state collapses to one of the

eigenstates. The second step is to randomly transform the state by a little, which can be realized

by a random local unitary transformation

C|ψi〉S =
∑
k

xik|ψk〉S (20)

Then, estimate the energy of new state and store it in the third register.∑
k

xik|ψk〉S |Ei〉r1|0〉r2|0〉M
QPE7−→

∑
k

xik|ψk〉S |Ei〉r1|Ek〉r2|0〉M (21)
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Next step is to accept or reject the new state following the Metropolis rule. Classically, we can

reject the state by keeping a copy of original state in computer memory and restore it. However,

measurement is irreversible and cloning a state is impossible in the quantum mechanics. The

solution is to make a measurement that reveals as little information as possible. So, this algorithm

only use the last one qubit to represent acceptance or rejection. By rotating the last qubit, we can

prepare a coherent superposition of accepting the new state and rejecting it.∑
k

xik|ψk〉S |Ei〉1|Ek〉r2|0〉M
W (Ek,Ei)7−→

∑
k

xik

√
f ik|ψk〉S |Ei〉

r
1|Ek〉r2|1〉M+

∑
k

xik

√
1− f ik|ψk〉S |Ei〉

r
1|Ek〉r2|0〉M

(22)

where fik = min(1, exp(−β(Ek − Ei))) are exactly transition probabilities. Now, the measurement

is completed by measuring the last qubit in the computational basis. The outcome 1 will project

the superposition to the new state and we use this state as the input to the next Metropolis step,

If the outcome is 0, it means we have to reject the new state and recover it to the original one. By

repeating the Metropolis step, this algorithm is expected to find the ground state of the system.

5.3 Implementation of a toy model with a quantum language(Qiskit)

The simplest but non-trivial example is to simulate the Gibbs states of two Heisenberg ferromagnetic

1/2-spins, i.e.

H2 = −1

2
(σx1 ⊗ σx2 + σy1 ⊗ σ

y
2 + σz1 ⊗ σz2) (23)

With the appropriate energy offset, this Hamiltonian has the spectrum 0,2, where the eigenvalue 0

is threefold degenerate. This means that an exact phase estimation algorithm can be set up with

just a single qubit of accuracy. Such a phase estimation requires simulating the Hamiltonian for a

time t = π/2. One sees that this unitary corresponds exactly to the SWAP gate.

U(
π

2
) = e−i

π
2
H2 = SWAP (24)

In the quantum Metropolis algorithm, we need to implement the controlled version of this SWAP,

which is exactly the Fredkin gate. The second gate to be implemented is the controlled Metropolis

unitary W . The Metropolis unitary can be implemented with two controlled Ry rotations:

W (θβ) = Ry(−θβ)C X Ry(θβ)C

=

(
cos θ2 sin θ

2

− sin θ
2 cos θ2

)(
0 1

1 0

)(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
=

(
sin θ cos θ

cos θ − sin θ

) (25)

where cos(θβ) = e−β. If the last register collapses to |1〉, we accept the new state and use it as the

input of next iteration. Otherwise, we reject the new state and recover it to the original state.

It is worthwhile to note that like the classical Metropolis algorithm, the quantum Metropolis algo-

rithm is not expected to reach the ground state of an arbitrary Hamiltonian in polynomial time.

The ability to prepare the ground state of a general Hamiltonian in polynomial time would allow the
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Figure 1: The circuit of quantum metropolis algorithm for two Heisenberg ferromagnetic 1/2-spins

solution to quantum Merlin Arthur (QMA)-complete problems, which is highly unlikely. However,

for realistic physical systems, the convergence rate of the classical Metropolis algorithm is often

very good, and it is conceivable that the same is also true for the quantum Metropolis algorithm.

6 Conclusions

In this project, we discussed two broad types of quantum simulations, namely simulation of evolu-

tion of Hamiltonian, and simulation of equilibrium properties. Hamiltonian simulation was achieved

by unitary decomposition that recursively breaks a single evolution operator into multiple unitary

operators. Lieb-Robinson bound was applied to achieve the tight bound for gate complexity of short

range interactions. Meantime, a tight upper bound of gate complexity for long range interaction

remains an open problem. The speedup of simulation of equilibrium properties is illustrated by

introducing quantum version of Monte Carlo Metropolis algorithm. At last we implement a simple

example of quantum Metropolis algorithm with a IBM’s quantum programming language.

We appreciate professor Wu’s insightful suggestions for our project.
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