
A Survey on Quantum Machine Learning

Turan Kaan Elgin - Yiming Huang - Venkatraman Narayanan

December 2018

1 Introduction

Machine learning and data analysis are emerging disciplines in modern technologies. They are used in various fields
as computer vision, computational biology, computer security and semiconductor industry. These techniques are
based on analyzing data using statistical techniques and giving computers learning abilities based on the analysis
of observed data.
Machine learning algorithms can be broadly classified, based on learning style, into supervised learning, unsuper-
vised learning and semi-supervised learning. Supervised learning has access to data categories, while unsupervised
learning does not know about those. Semi-supervised learning tries to have a balanced between the two.
The major drawbacks of using machine learning techniques are computation time and storage since in most cases,
they require large amounts of data. One example for that is computer vision applications. For example, in a classical
activity recognition task, there needs to be around 200 videos for training a classifier. Also by using modern deep
learning algorithms, the training time can become even longer. Because of that, researchers usually use Graphics
Processing Units (GPUs) in order to make computations feasible.
A next generation method for reducing the storage and computation time for those algorithms is utilizing quantum
computers. The purpose of this project is to make a survey on quantizing classical machine learning algorithms
and addressing some open questions.
Many machine learning problems utilize linear algebra as there are efficient ways to compute matrix operations by
representing the data in matrices. Quantum computing makes some linear algebra computations faster, so implicitly
improves classical machine learning tasks. An example for this is fast matrix inversion [10] which has been used in
generating the hyperplane for QSVM [17].
Optimization also plays an important role in classical machine learning, since most of the time learning training
rules is based on optimizing cost functions which arise from the interpretations that computers make. Numerical
methods for optimization is a popular research area because of that reason; which aims to improve the computa-
tion of those optimization procedures. Quantum optimization is a branch of quantum computing which tries to
improve these methods even further. Two popular examples for those methods are Quantum Gradient Descent [11]
and Quantum Approximate Optimization Algorithm (QAOA) [7] which is used in quantum neural networks like
Quantum Boltzman Machines [1].
In addition to those implicit methodologies used in Quantum Machine Learning, there are some certain quantum
versions of classical machine learning algorithms. Some examples are Quantum Support Vector Machines (QSVM)
[17] used for linear classification, Quantum Principle Component Analysis (QPCA) [14] used for dimensionality
reduction, and Quantum Guassian Mixture Models [16] used for clustering and density estimation.
Another emerging subdiscipline of Machine Learning is Deep Learning and quantum computers are being utilized
for deep learning applications as well which requires significant time and storage. Examples of these applications
are Quantum Generative Adversarial Networks [15], Quantum Boltzmann Machines [1], Quantum Variational Au-
toencoders [12], and Quantum Convolutional Neural Networks [4].
In addition to those, there is a more sophisticated field inside Machine Learning which is known as Reinforcement
Learning. It is based on learning as time goes on by exploring the environment. Quantum Reinforcement Learning
[5] is also covered in this survey report.

1

2 Common Techniques and Concepts

2.1 Quantum Random Access Memory (QRAM)

Similar to classical random access memory (RAM), quantum access memory uses n qubits to address any quantum
superposition of N = 2n memory cells. Suppose the data are x1, x2, ..., xm. Then we can access the data using
QRAM as the following: |i〉|0〉|0〉 → |i〉|xi〉||~xi|〉 where |~xi| is the magnitude and |xi〉 is the state representing the
data.

2.2 Hamiltonian Simulation

In quantum machine learning, there are some important techniques to implement unitary matrix U , which is used
as a subroutine in phase estimation. Hamiltonian simulation is a technique, in which given an initial wave function
|ϕ (0)〉 and Hamiltonian H; for any time t > 0, ε > 0, there is a quantum circuit U = e−iHt acting on this initial
quantum states such that

∥∥U − e−iHt∥∥ < ε.
There are quite a lot of techniques under different settings for Hamiltonian simulation [2][3][13][14]. The technique
proposed by Llyod et. al. gives us an efficient way to construct unitary U widely used in QML [14]. We can
implement any unitary e−iρt with given n copies of density matrix ρ by

trP
{
e−iS∆t (ρ⊗ σ) e−iS∆t

}
=
(
cos2∆t

)
σ +

(
sin2∆t

)
σ − isin2∆tcos2∆t [ρ, σ]

= σ − i∆t [ρ, σ] +O
(
∆t2

)
where ∆t→ 0 and S is a swap gate.

2.3 Amplitude Amplification

Amplitude amplification is the core part of Grover’s algorithm, which is used to amplify the states which one cares
about. There are basically two states as ’good’ and ’bad’ and by reflection techniques, the amplitude of the good
state is enhanced.

2.4 Phase Estimation

Phase estimation is an algorithm for finding the eigenvalues of a unitary matrix. It is the core part of HHL algorithm
[10] for solving linear systems which is the base of Quantum Machine Learning.

2.5 Swap Test

Swap test is a technique to measure the similarity between two states. The following is the representation of the
framework used for swap test:

|0〉 H • H

|φ〉

SWAP

|ψ〉

|0〉|φ〉|ψ〉 → |0〉 ⊗ 1

2
(|φ〉|ψ〉+ |ψ〉|φ〉) + |1〉 ⊗ 1

2
(|φ〉|ψ〉 − |ψ〉|φ〉)

The measurement of the first qubit has the following probability: Prob[|0〉] = 1
2 + 1

2 |〈ψ|θ〉|
2. So if the qubit is 0,

then it is likely for the two states to be equivalent.

2

2.6 Controlled Rotation

Controlled rotation gate is used for extracting eigenvalues from their state representations into amplitudes as the
following when inverting a matrix:

N∑
j=1

βj |λj〉|uj〉 →
N∑
j=1

βj |uj〉(

√
1− C2

λ2
j

|0〉+
C

λj
|1〉)

After that when the last qubit is measured the resulting state is the following:

1

Z

N∑
j=1

βj
C

λj
|uj〉 where Z is the normalization factor.

3 Algorithms

3.1 Solving Linear Systems

The most basic algorithm which lead to many QML achievements is the quantum algorithm for solving linear sys-
tems which has been published in 2009 [10]. The algorithm tries to determine x from Ax = b. The following is the
overall diagram of the algorithm.

|0〉 R

|0〉n H⊗n • FT † • FT • H⊗n |0〉⊗n

|b〉 U U† |x〉

At first, |b〉 is represented as
∑N
i=1 bi|i〉, and eiAt is generated using Hamiltonian simulation. Then in the first

phase of the circuit, eigenvalues of A are computed using phase estimation as eiAt|b〉 = e2πiλ|b〉 where |λ〉 is the

output of the circuit. So the output of the first phase estimation is
∑N
j=1 βj |uj〉|λj〉 where |b〉 =

∑N
j=1 βj |uj〉 is the

representation of |b〉 in the basis of eigenvectors of A.
After that a controlled rotation gate is applied to get the λj as the amplitude instead of state. After that reverse
phase estimation uncomputes the state |λj〉 and measuring the last qubit gives the desired result as the following:

N∑
j=1

βj |uj〉
(√

1− C2

λ2
j

|0〉+
C

λj
|1〉
)
→

N∑
j=1

βjλ
−1
j |uj〉

up to a normalization factor.
However in this algorithm, A should be Hermitian in order to use the Hamiltonian simulation. So the following

matrix can be used instead:

(
0 A
A† 0

)
.

3.2 Support Vector Machines

3.2.1 Classical Support Vector Machines

Support Vector Machines is a famous machine learning algorithm which has a quantum version as well. In the
classical algorithm, data is separated by a hyperplane and the margin between the two sides is maximized in order
to provide a safety margin. The equation of the hyperplane is the following: ~w. ~xj − b. The problem is solved by
the following optimization framework: min~w,b ‖~w‖ s.t. yi(~w.~xi − b) ≥ 1. The dual formulation is the following:

max
~α

L(~α) =

M∑
j=1

yjαj −
1

2

M∑
j,k=1

αjxj .xkαk s.t.

M∑
j=1

αj = 0, yjαj ≥ 0

3

For nonlinear classification, kernel functionKjk = k(xj , xk) is introduced and by Mercer’s theorem,
∑M
j,k=1 αjxj .xkαk

can be transformed into the form
∑M
j,k=1 αjKjkαk. At the end, the primal parameters are recovered as ~w =∑M

j=1 αj ~xj , and b = yj− ~w. ~xj . The decision for binary classification is the following: y(~x) = sign
(∑M

j=1 αjk(~xj , ~x)+

b
)
.

3.2.2 Quantum Support Vector Machines

Quantum SVM has been published in 2014 [17] for solving least-squares SVM. In QSVM, at first the training

data is represented as a state by utilizing QRAM. The state | ~xj〉 = 1
| ~xj |

∑N
k=1(~xj)k|k〉 represents the training data.

Training data oracle gives the following state as it maps indices to data:

1√
M

M∑
i=1

|i〉 → |χ〉 =
1√
Nχ

M∑
i=1

|~xi||i〉|~xi〉 where Nχ is the normalization factor.

By using Hamiltonian simulation, e−iK̂∆t is obtained where K̂ = K
trK .

The algorithm solves the least-squares SVM problem defined as the following:

min
w,b,e

J(w, b, e) =
1

2
wTw +

γ

2

N∑
k=1

e2
k s.t. yk(wTφ(xk) + b) = 1− ek

When the dual problem is solved, one gets the following result:

F

(
b
~α

)
=

(
0 ~1T

~1T K + γ−1I

)(
b
~α

)
=

(
0
~y

)
Then by using Hamiltonian technique, e−iF̂ δt can be constructed and the system is solved by HHL algorithm
explained above [10]. Then the state for the variables is defined in the computational basis as the following:

|b, ~α〉 =
1

C
(b|0〉+

M∑
k=1

αk|k〉)

where C is the normalizing state.
In the classification part, the aim is to classify the query state defined as the following:

|x̃〉 =
1

Nx̃
(|0〉|0〉+

M∑
i=1

|~x||k〉| ~xk〉)

Training data is constructed by using oracle in the following way:

|b, ~α〉 → 1√
Nũ

(b|0〉|0〉+

M∑
i=1

αk| ~xk||k〉| ~xk〉)

At the end the likelihood of the two states is measured using swap test.
By this algorithm a very famous machine learning algorithm called SVM is represented on a quantum computer
with a logarithmic complexity.

3.3 Principle Component Analysis

PCA is a commonly used machine learning algorithm for reducing the dimensionality of data. Quantum version of
PCA, which has been published in 2014 [14], utilizes common techniques such as Hamiltonian simulation and phase
estimation.
By using phase estimation algorithm, one can decompose a density matrix into its eigenvalues and eigenvectors
where the density matrix represents the data. Suppose the following is the representation of an arbitrary vector |ψ〉
in the eigenbasis of ρ.

|ψ〉|0〉 →
∑
i

ψi|χi〉|r̃i〉

4

Then one can decompose ρ in its own eigenbasis as the following:

ρ|0〉 →
∑
i

ri|χi〉〈χi| ⊗ |r̃i〉〈r̃i|

Then using some sampling techniques, the most relevant eigenvectors can be taken from this state in logarithmic
time which provides an exponential speedup.
QPCA is used for state discrimination and assignment which are the quantum versions of supervised learning and
clustering. Suppose there are two sets as {|φi〉} and {|ψi〉} characterized by density matrices ρ = 1

m

∑
i |φi〉〈φi|

and σ = 1
m

∑
i |ψi〉〈ψi|. If we want to classify a state |χ〉, we can represent it in the eigenbasis of ρ − σ. If the

eigenvalues are positive, it should be assigned to the first set; otherwise, to the second set.

3.4 Singular Value Decomposition

3.4.1 Classical Singular Value Decomposition

SVD algorithm is used for computing eigenvalues and eigenvectors of matrices in an efficient way. Singular Value
Decomposition, known as SVD, is a widely used technique in linear algebra used for factorizing and revealing the
eigenvalues and eigenvectors of given matrix M [9]. Given a matrix M ∈ Cm×n, the goal is to factorize M into
a form UΣV †, where U ∈ Cm×m and V ∈ Cn×n are matrices with columns which are orthonormal eigenvectors
of MM∗ and M∗M , respectively. Σ ∈ Cm×n is a rectangular diagonal matrix with non-negative singular values
on the diagonal. As the Σ stores singular values in descending order, the larger singular value corresponding to
more important components, which are eigenvectors of matrix M which represent the data more effectively. So
it provides a way to extract most important components of given data. Recently, Rebentrost et.al. proposed a
quantum version of singular decomposition method for non-sparse low-rank matrices [19], which is based on the
techniques of Quantum Principle Component Analysis [14] and not restricted to deal with positive semi-definite
matrices.

3.4.2 Quantum Singular Value Decomposition

Since it is used in some machine learning algorithms, QSVD algorithm, which has been published in 2016 [19],
has a significant place in the development of QML field. In order to reveal eigenvalues and eigenvectors of a given
matrix, the most intuitive way is to apply framework of phase estimation. So the question can be converted into
two problems:

• How can matrix A be formed?

• How can control unitary e−i
A
N t be constructed?

After solving these problems, one is able to use the general phase estimation framework to find eigenvalues and
eigenvectors.
QSVD uses modified swap gate instead of normal one. The modified swap matrix S ∈ CN2×N2

between single copy
ρ and σ is

S =

N∑
j,k=1

Ajk |j〉 〈k| ⊗ |k〉 〈j|.

The authors provided a swap gate on bigger space with reasonable resource to implement. Firstly, they assume one
has an oracle to access the element of matrix A by QRAM [8], as

|j〉 |k〉 |0, ..., 0〉 → |j〉 |k〉 |Ajk〉

using O(N2) storage space and O(log2N) operations. Similarly, S can be constructed by the same oracle,

|(j, k)〉 |0, ..., 0〉 → |(j, k)〉
∣∣(k, j) , S(k,j)(j,k)

〉
The unitary e−i

A
N t can be used to reveal the eigenvalues and eigenvectors of matrix A based on the Hamiltonian

simulation techniques proposed in QPCA [14]. As this modified swap matrix extends usual swap matrix to higher
dimension, it makes this matrix one-sparse. By using a similar Hamiltonian simulation method, one has

tr1

{
e−iS∆tρ⊗ σeiS∆t

}
= σ − itr1 {Sρ⊗ σ}∆t+ itr1

{
ρ⊗ σS†

}
∆t+O

(
∆t2

)
5

where

tr1 {Sρ⊗ σ} = tr1

N∑

j,k=1

Sjk |j〉 〈k| ⊗ |k〉 〈j| (ρ⊗ σ)

 .

Assume ρ = 1
N

N∑
l=1

|l〉 〈l| is composed of pure states, one has tr1 {Sρ⊗ σ} = A
N σ.

Similarly, one has tr1

{
ρ⊗ σS†

}
= σ AN . For evolving with this modified swap gates in each small timestep on

system ρ, one has

lim
∆t→0

tr1

{
e−iS∆tρ⊗ σeiS∆t

}
= lim

∆t→0

(
σ − i∆t

N
[S, σ] +O

(
∆t2

))
= e−i

S
N ∆tσei

S
N ∆t

After constructing e−i
S
N t, controlled-e−i

S
N t can easily be constructed using controlled-modified swap gate, like

e−i(|1〉〈1|⊗S∆t).

3.5 Gradient Descent

Gradient descent [11] is one of the most basic iterative optimization algorithms which optimizes a function by
updating parameters in multiple iterations. It has a wide usage in machine learning algorithms, so quantizing it
lead to many developments in QML. The original paper has been published in 2016 [18] for polynomial optimization.
Later on an updated version for linear systems and least squares has been published in 2017 [11].
In the classical case, suppose the update rule is the following: θt+1 = θt + αrt where θ is the parameter to be

optimized. Also assume rt+1 = S(rt). Then one has θτ = r0 + α
∑T
t=1 S

t−1(L(r0)). Suppose one has the following
unitaries:

V : |0〉|r0〉|0〉 → |1〉(α‖L̃(r0)‖
∣∣∣L̃(r0)

〉
|0〉+ |G1〉|1〉)

: |t〉‖rt‖|rt〉|0〉 → |t+ 1〉(‖S̃(rt)‖
∣∣∣S̃(rt)

〉
|0〉+ |Gt+1〉|1〉)

(1)

U : |0〉|0〉|0〉|r0〉|0〉 → |0〉|0〉|0〉|r0〉|0〉

: |t〉|0〉|0〉|r0〉|0〉 → |t〉|0〉(α‖ ˜St−1(L̃(r0))‖|t〉
∣∣∣S̃t−1(L̃(r0))

〉
|0〉+ |G′t〉|1〉)

(2)

where ‖St−1(L(r0))− S̃t−1(L̃(r0))‖ ≤ tε and |G〉 is a garbage state. So S̃t−1(L̃(r0)) provides a reasonable approxi-
mation for St−1(L(r0)) and having a garbage state means the mapping is done up to some probability which should
be enhanced further.
Then the algorithm does the following: It starts from the state 1√

τ+1

∑τ
t=0 |t〉|0〉|0〉|r0〉|0〉 and applies the unitaries

to get the final state: 1
T

∣∣∣θ̃τ〉|0〉+ |G〉∣∣0⊥〉. After that by using amplitude amplification technique, one discards the

garbage state and reaches to the update rule.
Development of the gradient descent algorithm lead to the development of more sophisticated algorithms like
Newton’s method.

3.6 Generative Adversarial Networks

Neural networks are one of the most widely used techniques in today’s machine learning technologies. They usually
require significant amount of time to train and used with GPUs. Quantum computing can make them more efficient
and lots of research has been done in the recent past.
One example of quantum neural networks is generative adversarial networks (GANs) published in 2018 [15]. It
has the following structure: There are two components called discriminator and generator. Generator’s duty is to
generate fake data to fool the discriminator and discriminator tries to discriminate among the real and fake data.
In the quantum case, the discriminator makes a positive operator valued measurement. Suppose the associated
measurement operators are T for true outcome and F for false outcome where T + F = I. Further suppose, the
real and fake data are represented by density matrices called σ and ρ. Then

P (T |real data) = tr(Tσ), P (T |fake data) = tr(Tρ)

Discriminator tries to maximize the first probability, while the generator tries to maximize the second one. Since
‖T‖, ‖F‖ ≤ 1, the optimization problem is convex. Some optimization techniques as quantum gradient descent

6

can be used in that problem. The discriminator’s objective is to find an optimal measurement operator T ,
while generator’s objective is to find a good ensemble ρ representing the fake data. The equilibrium is where
P (T |real data) = P (T |fake data) = 1

2 . Since quantum systems are intrinsically probabilistic, the model is more
intuitive than the classical case.

3.7 Boltzmann Machines

The Boltzmann machine (BM) is a classical machine learning technique, and serves as the basis of powerful deep
learning models such as deep belief networks and deep Boltzmann machines. The Quantum Boltzmann Machine
(QBM) is a probabilistic model based on Boltzmann distribution of a quantum Hamiltonian. The model has been
published in 2018 [1].

3.7.1 Classical Boltzmann Machines

Classical Boltzmann machines comprises a probabilistic network of binary units with a quadratic energy function.
A BM consists of hidden and visible units. The training setup is as follows:
The energy function is defined as,

Ez = −
∑
a

baza −
∑
a,b

wabzazb

where za is the binary value associated to unit a. The parameters ba and wab are optimized in training phase which
are bias parameter of unit a and weight parameter between different units. The objective is to determine those
parameters, θ ∈ {ba, wab}, such that the Boltzmann marginal probability Pv is close to the probability of data,
Pv

data. The Boltzmann marginal probability is the probability of visible units after marginalization over hidden
units. The formulation is the following:

Pv = Z−1
∑
h

e−Ez , Z =
∑
z

e−Ez

The optimization is carried out with minimization of negative average log likelihood function defined by,

L = −
∑
v

Pv
data logPv

which measures the similarity between two probability distributions. A gradient descent approach is used to achieve
minimization of the loss function.

δθ = −η∂θL

where η is the learning rate parameter.

3.7.2 Quantum Boltzmann Machines

The mentioned classical Boltzmann machine is converted to a quantum variant by replacing classical bits za by
qubits, thereby making the energy function to a Hamiltonian,

H = −
∑
a

baσa
z −

∑
a,b

wabσa
zσb

z

where σa
z = I⊗(a−1) ⊗ σZ ⊗ I⊗(N−a) and N is the total number of units in the network. The diagonal elements of

the density matrix ρ gives the Boltzmann probabilities of all 2N states where

ρ = Z−1e−H , Z = Tr
[
e−H

]
In the classical setting, marginalization is accomplished by summing over hidden variables; while in the quantum
setting, it is accomplished by projection on visible variables as

Pv = Tr [Λvρ]

where Λv provides projection over visible variables. Hence,

Λv = |v〉〈v| ⊗ Ih

7

and Ih is a identity matrix acting on hidden variables.
Finally, to train QBM, one optimises the parameters θ such that the probability distribution Pv is close to Pv

data

by minimising the negative log-likelihood function,

L = −
∑
v

Pv
data log

Tr
[
Λve

−H]
Tr [e−H]

3.8 Variational Autoencoders

Variational autoencoders are used for generating data which look like the input data but not exactly the same. At
first, a network called encoder encodes the data into a hidden space, then decoder network reconstructs the data.

3.8.1 Classical Variational Autoencoders [12]

Let X = {xi}ni=1 denote the training data and θ be the model parameters. Furthermore, let pdata represent the
data distribution and pθ(x) represent the model distribution which are supposed to be close enough for a good
representation. According to maximum likelihood estimation, one needs to maximize Ex∼pdata [log pθ(x)]. Let z

denote the latent variables. In that case, pθ(x) =
∑
z pθ(x, z). By Bayes rule, pθ(x) = pθ(x,z)

pθ(z|x) . Therefore the

following derivation holds:

E
x∼pdata

[log pθ(x)] = E
x∼pdata

[
E

z∼pθ(z|x)

[
log

pθ(x, z)

pθ(z|x)

]]
= E
x∼pdata

[
E

z∼pθ(z|x)
[log pθ(x|z)]− E

z∼pθ(z|x)

[
log

pθ(z|x)

pθ(z)

]] (3)

The second term inside the outer expectation is known as KL divergence which measures the distance between two
distributions. Variational autoencoder approximates the posterior distribution since it is intractable to compute:
pθ(z|x) ≈ qφ(z|x). In this case qφ(z|x) is known as variational distribution and φ as variational parameters. Since
KL divergence is always greater than or equal to zero, equation (3) provides a tractable lower bound. First the
following objective function is defined:

L(θ, φ, x) = E
z∼qφ(z|x)

[
log pθ(x|z)− log

qφ(z|x)

pθ(z)

]
Then one has the following:

E
x∼pdata

[L(θ, φ, x)] ≤ E
x∼pdata

[log pθ(x)]

Next thing is how to represent the latent space. One way to do that is using Boltzmann Machines. The following
is the formulation:

pθ(z) ≡ e−Eθ(z)/Zθ, Zθ =
∑
z

e−Eθ(z)

where Eθ is the energy function computed by the network. The cross entropy between the data distribution and
the variational distribution is defined as

H(qφ, pθ) = − E
z∼qφ

[log pθ]

This terms gives the log-likelihood of latent variable z under the model pθ. However computing this term is not
tractable, so one needs an approximation called reparametrization trick: Define ρ as a random variable sampled
from uniform distribution. Then

H(qφ, pθ) = − E
ρ∼U

[log pθ(z(ρ, φ))] = E
ρ∼U

[E
θ
(z)] + logZθ

3.8.2 Quantum Variational Autoencoders

Quantum Variational Autoencoders has been published in 2018 [12]. In the quantum case, the formulation of
Boltzmann machines needs to be utilized. Define Hθ as the energy function of a quantum Boltzmann machine
defined as in section 3.7. Then after reparametrization, one has the following:

H(qφ, pθ) = − E
ρ∼U

[log(Tr[Λze
−Hθ])] + logZθ

8

where Λz is the projection on the latent variables. The problem with this formulation is the gradient of the first
term which is intractable. One needs to use Golden-Thompson inequality defined as below to overcome this issue:

Tr[eAeB] ≥ Tr[eA+B]

So the above expression becomes the following which gives a tractable lower bound as in the classical case:

H(qφ, pθ) ≥ − E
z∼qφ

[log(Tr[e−Hθ+ln Λz])] + logZθ = E
ρ∼U

[Hθ(z(ρ, φ))] + logZθ.

3.9 Gaussian Mixture Models

3.9.1 Classical Gaussian Mixture Models [16]

Gaussian Mixture Models is an algorithm used for clustering and density estimation. This technique is known as soft
clustering because the cluster assignments are probabilistic. Each cluster is associated with a Gaussian distribution
and the probability of a point pi assigned to cluster k is the following:

P (pi|k, µk,Σk) =
1

Zk
e−

1
2 (pi−µk)Σ−1

k (pi−µk)

where µk and Σk are the mean and covariance matrix for the particular cluster and Zk is the normalization factor.
In that case, one can estimate the probability density of each point as

P (pi|{θk}) =

K∑
k=1

P (pi, k|{θk})P (pi|k, {θk})

=

K∑
k=1

[
P (k|{θk})

1√
(2π)d|Σk|

e−(pi−µk)Σ−1
k (pi−µk)

] (4)

So, a multimodal distribution is estimated by using mixture of Gaussian probabilities.

3.9.2 Quantum Gaussian Mixture Models

Quantum Gaussian Mixture Models, published in 2016 [16], uses quantum techniques to represent mixture of
probability distributions. Since quantum systems are intrinsically probabilistic, one can generate a wave function
and use it as a probability distribution. The following wave function helps in this particular case:

ψk(pi|θk) =
1√
Zk
e−

1
4 (pi−µk)Σ−1

k (pi−µk)e−iφk

The square of this wave function is associated with the Gaussian probability:

P (pi|k, θk) = |ψk(pi|θk)|2 =
1

Zk
e−

1
2 (pi−µk)Σk(pi−µk)

The phase factor e−iφk does not have an affect on the probability itself, but when it comes to mixture of probabilities,
the interference of the wave function becomes important. In the overall formulation, there is a mixture coefficient
for each wave function which are called αk. Then the mixture formulation becomes the following:

ψ(pi|{αk, θk}) =

K∑
k=1

αkψk(pi|θk) =

K∑
k=1

[αk√
Zk
e−

1
4 (pi−µk)Σ−1(pi−µk)e−iφk

]

=⇒ P (pi) = |ψ(pi|{αk, θk})|2 =

K∑
k=1

[αk√
Zk
e−

1
4 (pi−µk)Σk(pi−µk)

K∑
k=1

αl∗√
Zk

cos(φl,k(pi))e
− 1

4 (pi−µl)Σl(pi−µl)
]

where φl,k = φk − φl. One can define a Gaussian wave as

Gi,k =
1√
Zk
e−

1
4 (pi−µk)Σ−1

k (pi−µk)

9

Then the final model can be defined as the following:

P (pi, k|{αk, θk}) = αkGi,k(

K∑
l=1

αl ∗ cosφl,kGi,l) subject to
∑
i

∑
k

P (pi, k|{αk, θk}) = 1.

This algorithm also has an improvement on the performance as well as time and storage as seen in the experiments
performed [16].

3.10 Reinforcement Learning

Another field of machine learning is reinforcement learning where learning process happen as time progresses instead
of training the model in advance. Quantum computing can be utilized for this field as well.

3.10.1 Classical Reinforcement Learning [5]

Reinforcement learning setting contains an agent and an environment. The agent tries to learn a policy by getting
some information from the environment. A typical reinforcement learning setting is based on Markov decision
processes. A Markov decision process is defined with the following set: {S,A(i), pij(a), r(i,a), V, i, j ∈ S, a ∈ A(i)}. S
denotes the set of the states, A(i) denotes the set of actions corresponding to state i, pij(a) denotes the probability
of transitioning from state i to j when action a is executed, r(i,a) denotes the reward of executing action a in state
i, V is the value function that the agent tries to maximize. Reward function is defined from Γ to (−∞,+∞) where
Γ = {(i, a) : i ∈ S, a ∈ A(i)}. π denotes the policy that the agent tries to learn and it is defined from S ×

⋃
i∈S A(i)

to [0, 1]. The value function is defined as the following:

V πs = E[rt+1 + γrt+2 + ...|st = s, π] = E[rt+1 + γV πst+1
|st = s, π] =

∑
a∈As

π(s, a)[ras + γ
∑
s′

pass′V
π
s′]

where t denotes a timestep and γ is the discount factor in the range [0, 1]. It decreases the significance of the
past actions as time progresses. The notations are defined as the following: pass′ = P [st+1 = s′|st = s, at = a],
ras = E[rt+1|st = s, at = a]. The update rule for the value function is based on gradient descent technique and
defined as

V (s)← V (s) + α(r + γV (s′)− V (s))

Then the optimal value is selected as V ∗s = maxa∈As [r
a
s + γ

∑
s′ p

a
ss′V

∗
s′] and the optimal policy is selected as

π∗ = argmaxπV
π
s .

3.10.2 Quantum Reinforcement Learning

In the quantum setting, published in 2008 [5], there are two Hilbert spaces HS and HA containing states and actions.
There is a set of states {|s1〉, |s2〉, ..., |sn〉} which is an orthonormal basis for HS and they are called eigenstates.
Similarly the set of actions {|a1〉, |a2〉, ..., |an〉} is an orthonormal basis for HA and known as eigenactions. The
number of states and actions are denoted as Ns and Na respectively. The states are defined as superpositions
of eigenstates as

∣∣sNs〉 =
∑Ns
i=1 Ci|si〉 where Ci are the probability amplitudes. Similarly actions are defined as∣∣aNa〉 =

∑Na
j=1 Cj |aj〉. This setting also utilizes the fact that quantum systems are probabilistic. An important

concept of reinforcement learning is the trade-off between exploration and exploitation which means exploring
new states vs. exploiting the optimal action up to that point. That concept can be intrinsically provided by the
probabilistic setting in quantum systems.
In reinforcement learning algorithms, there is a policy for selecting actions by considering exploration-exploitation
trade-off. In the classical setting, exploration and exploitation are selected with some probabilities which can
change over time. In the quantum setting, when an action, defined as superpositions of eigenactions, is measured,
a particular eigenaction aj is observed with the probability |Cj |2. In that way, it provides a natural probabilistic
selection of actions. This strategy is called action collapse where the superposition state collapses into a single
eigenaction.
The next step is to amplify the probability of the selected action by using amplitude amplification technique.
However there is key difference of this step with the Grover’s algorithm: The probability of the particular action
should be proportional to the value of that action instead of 1. In that way, actions having high values can be
more likely selected compared to others. So L = int(k(r + V (s′))) where k is the proportion constant, r is the
reward received from the action, s′ is the next state and L is the number of iterations. According to this setting,
the environment is represented by the reflections in the amplitude amplification since agent gets the information
about those reflections when it measures the action state.

10

4 Open Problems

As further open problems in the area of QML, in PCA algorithm; Gaussian kernels can be used for nonlinear
representations since existing approaches are based on simpler kernels as polynomials. Also sparse approximation
problem based on l0 norm is NP-hard and quantum computing can be used in order to make it more efficient. Similar
to this problem, there is a concept called Lasso regression based on l1 norm which is not currently represented in
quantum setting and algorithms like quantum gradient descent and qauntum SVM are based on least-squares
regularization. Also there is still ongoing research about noisy methods in quantum machine learning since in some
cases, noise might make the optimization procedure get away from local minima.
In classical machine learning there are some methods which require less amount of data. One example for these is
one-shot learning which tries to learn from one or few training samples. One of the techniques used in this context
is data augmentation which is producing new data by modifying existing ones such cropping images from some
position. However data augmentation would be more challenging in the case of quantum representation of the data.
Simple operations like rotations can be simulated by unitaries, however more complex operations as cropping or
pooling might require more sophisticated techniques. In the recent published paper on Quantum Convolutional
Networks in 2018 [4], there is such a technique used for pooling the data: Some fraction of qubits are measured, and
based on the measurement outcomes, nearby data are altered by relevant unitary operations. This also provides
nonlinearity transformation to the network by reducing the degrees of freedom; however it might not be as strong
as max pooling in the classical case or rectified linear unit used for introducing nonlinearity.
A stronger concept in classical machine learning is zero-shot learning in which the algorithm is able to detect a
category which has no training data at all. The general way to do this is defining semantic relationships between
seen and unseen labels and using those semantics to train the algorithm. However in quantum setting, it would
be very challenging to define semantics which relate multiple data. The data might be related to each other by
probabilities of measurement outcomes or even using entanglements as relationships between the data. Feasibility
of these approaches might be considered for further improvements.
Another open problem is related to the environment setting in quantum reinforcement learning. As described
in Section 3.10, the environment is defined as the reflections in the amplitude amplification algorithm since the
agent amplifies the probabilities of the optimal actions by that algorithm. Another way to define the concept of
environment might be oraculization which means using the environment as an oracle which gives the optimal actions
[6]. There is still ongoing research about the feasibility of this approach.

References

[1] Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., and Melko, R. Quantum boltzmann
machine. Physical review letters, 8 (2018), 021050.

[2] Childs, A. M., Maslov, D., Nam, Y., Ross, N. J., and Su, Y. Toward the first quantum simulation
with quantum speedup. Proceedings of the National Academy of Sciences 115, 38 (2018), 9456–9461.

[3] Childs, A. M., Ostrander, A., and Su, Y. Faster quantum simulation by randomization. arXiv preprint
arXiv:1805.08385 (2018).

[4] Cong, I., Choi, S., and Lukin, M. D. Quantum convolutional neural networks. arXiv:1810.03787v1
[quant-ph] (Oct. 2018).

[5] Dong, D., Chen, C., Li, H., and Tarn, T.-J. Quantum reinforcement learning. IEEE Transactions on
Systems Man and Cybernetics Part B: Cybernetics 38, 5 (2008), 1207–1220.

[6] Dunjko, V. A route towards quantum-enhanced artificial intelligence. 2018.

[7] Farhi, E., Goldstone, J., and Gutmann, S. A quantum approximate optimization algorithm.

[8] Giovannetti, V., Lloyd, S., and Maccone, L. Quantum random access memory. Physical review letters
100, 16 (2008), 160501.

[9] Golub, G. H., and Reinsch, C. Singular value decomposition and least squares solutions. Numerische
mathematik 14, 5 (1970), 403–420.

[10] Harrow, A. W., Hassidim, A., and Lloyd, S. Quantum algorithm for solving linear systems of equations.
Physical review letters 15, 103 (2009), 150502.

11

[11] Kerenidis, I., and Prakash, A. Quantum gradient descent for linear systems and least squares.

[12] Khoshaman, A., Vinci, W., Denis, B., Andriyash, E., and Amin, M. H. Quantum variational autoen-
coder. arXiv:1802.05779v1 [quant-ph] (2018).

[13] Lloyd, S. Universal quantum simulators. Science (1996), 1073–1078.

[14] Lloyd, S., Mohseni, M., and Rebentrost, P. Quantum principal component analysis. Nature Physics
10, 9 (2014), 631.

[15] Lloyd, S., and Weedbrook, C. Quantum generative adversarial learning. Physical review letters (2018),
040502.

[16] Rahman, M., and Geiger, D. Quantum clustering and gaussian mixtures. arXiv:1612.09199v1 [stat.ML]
(2016).

[17] Rebentrost, P., Mohseni, M., and Lloyd, S. Quantum support vector machine for big data classification.
Physical review letters 113, 13 (2014), 130503.

[18] Rebentrost, P., Schuld, M., Wossnig, L., Petruccione, F., and Lloyd, S. Quantum gradient descent
and newton’s method for constrained polynomial optimization. arXiv:1612.01789 [quant-ph] (Dec. 2016).

[19] Rebentrost, P., Steffens, A., Marvian, I., and Lloyd, S. Quantum singular-value decomposition of
nonsparse low-rank matrices. Physical review A 97, 1 (2018), 012327.

12

