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1. Motivation

Quantum computers help to solve hard problems in computer science by substan-
tially speeding up the algorithms (As we have seen exponential speed up in Shor’s
algorithm , polynomial speed up in Grover’s algorithm). Some of the most interesting
classical algorithms that have lots of applications nowadays are the machine learning
algorithms. Can quantum computers provide speed-up to these algorithms? To tackle
this question we have found it really interesting to study the quantum optimization
algorithms which are the core building blocks of the machine learning algorithms.

2. Literature Review

One common class of optimization problems are finding the minimum (convex
optimization) of a linear or quadratic function with convex constraints. These prob-
lems are found to be efficiently solved by classical semidefinite programming in poly-
nomial time [1][5]. Recently it is also found that quantum computers can pro-
vide a speed up over classical computers to this type of problems. Brandao and
Svore [2] and Aberdoorn et. al.[3] proved that a quantum SDP solver can have
complexity of O(

√
mns2/ε8) compared to a classical SDP solver’s complexity of

O(m(m2 + nω + mns)polylog(m,n, 1/ε)) [1] or O(mns/ε4 + ns/ε7) [5], with n and
s to be the size and sparsity of the input matrix, m is the size of the constraints
and ε is the additive error of the solution. Brandao et. al. [4] recently show that
the complexity can be further improved to O(

√
m + poly(r))poly(logm, log n, 1/ε))

by using a fully quantum input model (r is the rank of the input matrix). This new
quantum algorithms can be applied to find a description for an unknown l-qubit quan-
tum state ρ subject to a set of measurements m in time

√
mpoly(logm, log n, r, 1/ε).

This method requires much less resource than quantum state tomography (using only
poly(logm, log n, r, 1/ε) copies of the state instead of n2) hence are more practical [4].
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3. Goal

The quantum devices are able to speed-up the classical optimization algorithm
with the advantage of Gibbs sampling. In this project, we would like to study how
quantum SDP algorithm can help analyze classical and quantum data. It would be
intersting to explore the applications of quantum SDP solvers as described in the
references. Also we are interested to study how the quantum algorithm can solve
more general convex optimization problems. Going through this topic would enable
us to better understand the use of SDP solvers in different problems including those
related to machine learning.

4. Introduction to SDP

Let us first look at semidefinite programming. We would like to optimize a linear
function with linear constarints over a set of positive semidefinite (PSD) matrices.
The primal problem is to maximize the trace of CX where C is n×n s-sparse matrix,
with m constraints as defined below.

max tr(CX)
tr(AjX) ≤ bj ∀j ∈ [m]

X ≥ 0

Our goal is to find what is X which optimizes the above linear function with inputs
C,A1, ..., Am which are n×n s-sparse matrices and b1, ..., bm which are just numbers.

An equivalent dual problem is to to minimise b · y given m linear constrains.

min(b · y)∑m
j=1 yjAj ≥ C
y ≥ 0

Here our goal is to find the vector y which optimizes the above scenario. Under
mild conditions the optimal solution of the primal problem is similar to the optimal
solution of the dual problem. So, we can choose which problem to be solved.
The parameters R and r are defined in terms of the size of the solutions to the optimal
or dual problem [tr(Xopt) ≤ R] or [

∑
i yi ≤ r].

4.1. SDP Lower Bounds

If we want to write down the solutions X or y it would take O(n2) or O(m) to
write down the solutions for primal and dual problems respectively. So, instead of
writing down the whole solutions we would like to output the optimal value which
would make the algorithm faster. From an easy reduction to search problem, the
lower bound for the classical scenario is O(n + m) whereas the quantum algorithm
can have O(

√
n+
√
m) where r, R, s, δ are constants (s is the sparsity of matrix and

δ is the error).
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4.2. Input Output Model

We assume that there exists an oracle which can perform the following task.

|j, k, l, z〉 → |j, k, l, z ⊕ (Aj)kfjkl〉

So the oracle outputs a chosen nonzero element of C,A1, ...., Am at unit cost. Here j
is the choice of Aj with kth row with lth nonzero element.

The outputs are samples from the distribution y
||y||2 and the value ||y||2 or samples

from the distribution X
trX

and the value trX. The quantum algorithm given in Brandao
et . al. [2] for solving SDP runs in time

√
n
√
ms2 poly(log(n,m)R, r, δ). Though this

algorithm has a very bad scaling with respect to R and r, this gives an unconditional
quadratic speed-up over classical algorithm. The details of the quantum algorithm is
given below.

5. The Arora-Kale Algorithm

The quantum algorithm is built on a classical algorithm of Arora and Kale for
solving SDPs. In this algorithm for given density matrix ρ the algorithm searches for
Dα = {y ∈ Rm : y ≥ 0, b · y ≤ α} such that

∑m
j=1 yitr(Ajρ) ≥ tr(Cρ) or output fails

if no such vector exist. The algorithm description is as following:

. Set ρ(1) = I/n. Put ε = δα
2R2 and ε′ = ln(1 − ε). Then for T ≥ 16R4 ln(n)

α2δ2
run the

algorithm for t = 1, · · · , T

• Run Oracle(ρ(t)) if it fails, stop and output ρ(t).

• Else, let y(t) be vector generated by oracle.

Then let

M (t) =

∑m
j=1Ajy

(t)
j

2ω

where ω is defined as max||
∑

j yjAj − C||. Then compute

W (t+1) = e−ε
′(
∑t
τ=1)Mτ

Then set

ρ(t+1) =
W (t+1)

tr(W (t+1))

and the output of the algorithm is

ȳ =
δα

R
e1 +

1

T

T∑
t=1

yt, e1 = (1, 0, · · · , 0)
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5.1. Why Arora-Kale works?

Since yt ∈ Dα := {y : y ≥ 0, b ·y ≤ α}, we realize that ȳ ·b ≤ δα
R
b1 + 1

T

∑T
t=1 y

t ·b ≤
(1 + δ)α. Then we need to check that ȳ is feasible. To see that, at first we need to
know that from oracle for all t we have:

tr((
m∑
j=1

ytjAj − C)ρt) ≥ 0

Then we need to get help from the Matrix Multiplicative Weight(MMW) lemmas
(Arora,Kale’07) which states that for given n× n matrices M t and ε < 0.5 we have:

1

T

T∑
t=1

tr(M tρt) ≤ (
1 + ε

T
)λn(

T∑
t=1

M t) +
ln(n)

Tε

with ρt proportional to exp(−ε′(
∑t−1

τ=1 M
τ )) with ε′ = − ln(1 − ε) and λn as min

eigenvalue. So by using the this lemma we can easily show that

λmin((
m∑
j=1

(
1

T

T∑
t=1

ytj)Aj − C)) ≥ 0

5.2. Quantizing Arora-Kale Algorithm

We can enhance the classical SDP solver with the following three aspects via quan-
tum mechanics. First, we can improve the multiplication weight method simply by
preparing the quantum thermal Gibbs states of Hamiltonian given by linear combina-
tion of the input matrices A1, · · · , Am, C. Therefore with quantum computer we can
efficiently speed up in time polynomial in log(n). The second and third enhancement
comes from the amplitude amplification and speed up in number of constrain m by
using the Jayenes’ principle of maximum entropy. So in the first part, we implement
the oracle by Gibbs sampling to produce yt and apply amplitude amplification to
solve it in time O(s2n1/2m1/2). Then we sparsify M t to be a sum of O(log(m)) terms:

M̄ t = (||yt||1Q−1

Q∑
j=1

Aij − c+RI)
1

2R
, Q = O(log(m))

Then we use from quantum Gibbs sampling and amplitude amplification to prepare

ρ̄t ∼ e−ε
′∑t

τ=1 M̄
τ

)

in time O(s2n1/2).
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Algorithm 1: Quantum Arora-Kale [2]

Let ρ1 = I/n, ε = δα
2ωR

, ε′ = − ln(1− ε), 8ω2R2 ln(n)
δ2α2 ;

for t = 1, 2, · · · , T do
1. Prepare yt by Gibbs sampling: yt ← oracle(ρt)
2. M t =

∑m
j=1(ytjAj − C + ωI) 1

2ω

3. Sparsify M t to (M ′)t

4.ρt+1 = exp(−ε(
∑

(
∑t

τ=1(M ′)τ ))/tr(· · · )
end
;

Output: ȳ = δα
R
e1 + 1

T

∑T
t=1 y

t;

6. Quantum SDPs solver with better dependence on n and m

6.1. SDP feasibility problem

The SDP optimization problem can be reduced to a feasibility by using a binary
search: one can guess a candidate X0 and convert it to a constraint.

max tr(CX)⇒ tr(−CX) ≤ tr(−CX0)

Hence the problem becomes finding a convex region Sε of all X such that

tr(AjX) ≤ bj∀j ∈ [m] (1)

X ≥ 0 (2)

tr(X) = 1 (3)

If Sε is not empty, we can do a binary search in Sε to find X.

6.2. Zero sum game approach and fast quantum OR lemma

Instead of follow the primal-dual approach, we can use zero sum game approach to
solve the feasibility problem. The zero sum game approach is basically a competition
to find a counter example to the feasibility problem. There is some benefits of using
this simpler and more intuitive approach. First, the dependence on the dual solution
is eliminated. Secondly, this intuitively leads to an improved version of quantum OR
lemma, which speeds up the process of generating a new copy of X.

Oracle 6.1. Input a density matrix X, output an i ∈ [m] so that Eq. (1) is violated.
If no such i exists, output ”FEASIBLE”.

In the following algorithm, Brandao et. al. use the Gibbs sampler to generate
potential candidates for the zero sum game and use Oracle 6.1 to determine whether
it is a feasible solution [4].
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Algorithm 2: Matrix multiplicative weights for testing feasibility [4]

Initialize the weight matrix W (1) = In, and T = 16lnn
δ2

;
for t = 1, 2, · · · , T do

1. Prepare the Gibbs state ρ(t) = W (t)

Tr[W (t)]

2. Find a j(t) ∈ {1, 2, · · · ,m} such that Tr(Aj(t)ρ
(t)) > aj(t) + δ.

if j(t) is found then
Take M (t) = 1

2
(In − Aj(t))

else
Claim Sδ 6= ∅ and output ρ(t) ;

end

3. Define a new weight matrix: W (t+1) = exp[− δ
2

∑t
τ=1 M

(τ)]

end
;
Claim that S0 = ∅ and terminate;

The improvement from previous quantum SDP solvers comes from the fast am-
plification algorithm used to implement the Oracle 6.1 in step 2. Using the fast
amplification algorithm , Brandao et. al. prove a fast quantum OR lemma, which
allows the reduction of gate complexity from

√
m
√
n to

√
m+

√
n.

6.3. Quantum SDP solver with quantum inputs

If we further restrict the form of Aj to be Aj = A+
j − A−j (where A+

j , A
−
j are

positive semi-definite), we can implement the following oracles to find Tr[Aj], prepare
Aj and the constraints aj efficiently. Theses oracles allow the Gibbs state of the

form exp(−K)
Tr(exp(−K))

(where K = K+ − K−, K± =
∑

j∈S cjA
±
j , S is a set of violated

constraints) to be prepared efficiently. The gate complexity for preparing this Gibbs
state is poly(logm, log n) compared to

√
n as in the plain input model[4].

Oracle 6.2. OTr |j〉 |0〉 |0〉 = |j〉Tr[A+
j ]Tr[A−j ]

Oracle 6.3. O |j〉 〈j| ⊗ |0〉 〈0| ⊗ |0〉 〈0|O† = |j〉 〈j| ⊗ |ψ+
j 〉 〈ψ+

j | ⊗ |ψ−j 〉 〈ψ−j | ,

where |ψ+
j 〉 , |ψ−j 〉 are some purifications of

A+
j

Tr[A+
j ]
,

A−j
Tr[A−j ]

.

Oracle 6.4. Oa |j〉 〈j| ⊗ |0〉 〈0|O†a = |j〉 〈j| ⊗ |aj〉 〈aj|

7. Application : Learnability of Quantum States

An important task in quantum mechanics is to learn the state of the system
i.e. to compute the density matrix ρ given many realizations of an experiment. We
can achieve that by state tomography. For such full quantum state tomography
we need n2 copies for a n = 2k dimensional qubit state, which is a lot even for a
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lower dimensional qubit state. Instead, we can try to learn the statistics about the
quantum states like their expectation values with respect to a set of measurements.
Basically, we are looking for Tr(ρEi) upto an error ε for a set of POVM E1, ....Em
where I ≥ Ei ≥ 0 ∈ Cn×n ∀i ∈ m.

Question 7.1. Given a set of measurements Ei and having access to copies of un-
known state ρ, we want to find a description of the state σ such that the following
constraint is satisfied .

|Tr(σEi)− Tr(ρEi)| ≤ ε,∀i ∈ m

7.1. Reduction to Feasibility Problem

Our job is now reduced to the SDP feasibility problem as described in the previous
section in the following way.

|Tr(σEi) ≤ Tr(ρEi)|+ ε

|Tr(σEi) ≥ Tr(ρEi)| − ε
Tr(σ) = 1

σ ≥ 0

Here our task is to search for the state σ which follows the same statistics as
of ρ upto an error ε. Comparing with the primal SDP problem, we find that the
constraints here can be expressed as following,

bi = ±Tr(ρEi) + ε

We can learn the constraints bi by implementing an oracle which measures Ei
on ρ and we assume that there is an efficient quantum circuit for performing these
measurements in poly(log(n)) time (as shown in next section).

Jaynes’ principle states that there is always a Gibbs state of the following form
with real numbers λi , which has the same expectation values on the Eis as the
original state ρ where λi s are real numbers.

exp(
∑

i λiEi)

Tr(exp(
∑

i λiEi))

We have to find out these λi s and our solution would then take a form of

σ = exp(
∑
i

λiEi)

.
For low rank matrices, there is a huge speed up.
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7.2. Quantum Input Model

The quantum input model is relevant for low rank measurements.

Oracle 7.1. for traces of Ei : A unitary OTr such that for any i ∈ [m], OTr |i〉 |0〉 =
|i〉 |Tr[Ei]〉

Oracle 7.2. for preparing Ei : A unitary O such that for any i ∈ [m], O |i〉 〈i| ⊗
|0〉 〈0|O† = |i〉 〈i| ⊗ |ψi〉 〈ψi| where |ψi〉 〈ψi| is any purification of Ei/Tr(Ei)

If the measurement operators are of the form, Ei = ViPiV
†
i and Pi =

∑ri
i=1 |i〉 〈i|,

then the following purification of Ei/Tr(Ei) can be done by preparing the state
1√
ri

∑ri
i=1 |i〉 |i〉 in ri time and then applying Vi ⊗ I in time poly(log(n)).

|ψi〉 =
1
√
ri

ri∑
i=1

(Vi ⊗ I) |i〉 |i〉

7.3. Algorithm

The MMW algorithm to address this specific question can be briefly outlined in
the following way for a particular case of Tr(ρEi) ≤ bi.

Algorithm 3: Algorithm for Learnability of quantum States [4] [7]

Start with ρ0 = In, and iterate the following loop for T = 16log(n)
ε2

times ;
for t = 1, 2, · · · , T do

1. Gibbs Sampling : Prepare O(m
1
2 ) copies of ρt

2. Search for a violated constraint i such that Tr(ρtEi) > bi + ε/2.
if i(t) is found then

Follow step 3
else

Claim no violation and output ρt
end
3. Define ρ(t+1) = exp[log(ρt)− ε2Ei(t)]/Tr(...)

end
;
Claim that S0 = ∅ and terminate;

So, starting with a maximally mixed state, we are basically searching for a vi-
olation of those constraints mentioned earlier. If no such violation is found at tth

iteration then ρt is our answer, the state with thhe same statistics as ρ (upto an er-
ror). If not, then in the (t+1)th step we add that violated constraint in the definition
of the Hamiltonian as a penalty. This algorithm converges within the iterations T for
the following reason which we describe in the next section.
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7.4. Why it works ?

There are many ways to look at this question of why this algorithm converges
within the mentioned steps. We will approach the answer in terms of the relative
entropy. From, Peierls-Bogoliubov inequality, we obtain the following in each step of
the iteration of the algorithm,

S(ρ||ρt)− S(ρ||ρt−1) ≤ − ε
8

Tr((ρ− ρt)Ei(t))

If the Grover search in our algorithm never fails i.e. if at every step a violated
constraint is found, then at each iteration we have,

Tr((ρ− ρt)Ei(t)) ≤ −
ε

2

But as we started with a maximally mixed state, the maximum relative entropy in
our case can be

S(ρ||ρ0) ≤ log(n)

If the algorithm does not converge within T = 16log(n)
ε2

, then after T th iteration, the
relative entropy becomes negative which is not physically possible. So, the Grover
search must fail at some t < T implying ρt is our feasible solution.

7.5. Complexity

The Gibbs sampling in this case is done in O(n
1
2 ) time with phase estimation and

amplitude amplification [8] (and O(m
1
2 ) copies of ρ), giving the worst case complexity

as O(m
1
2n

1
2 ) . This can be further improved upon use of faster quantum OR bound

to O((m+ n)
1
2 ).

In conclusion to the algorithm considered here, we can find λis using at most
poly(log m, log n,r, ε−1) copies of ρ and at most

√
m poly(log m, log n,r, ε−1) quantum

gates and queries to Oracle 7.1 and Oracle 7.2.

8. Quantum SDP in the small scale Quantum computer

In the previous sections, we realized the essential part of the quantum SDP algo-
rithms are the for loop that should calculate the expectation value of Ai operators in

the specific way: ci,t = tr(Aie
∑
i λi,tAi

Z
). This loop should be executed with quantum

computer and then the Lagrange multiplier needs to be calculated and fed to the next
iteration of the loop. But this calculation can be done by classical computer. so we
can divide the task to one quantum computer and one classical computer. Unfortu-
nately we don’t have access to full quantum computers as of today, but what if we
can test the quantum algorithm on the Noisy Intermediate-Scale Quantum (NISQ)
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chips? For example, we consider the Google processor with 72 qubits and a model
Hamiltonian like the following:

Ai = δi

72∑
j=1

nj + Ui

72∑
j=1

nj(nj − 1) + gi
∑
l∼k

(a†lak + a†kal) + fi

72∑
j=1

(aje
iφi + a†je

−iφi) (4)

where δ and f are parameters which can be varied in the range of [−30, 30]MHZ
and U is a constant in the range of 200MHZ [9]. The idea is that if we consider the
superposition of the operators as a new Hamiltonian:

H =
∑
i

λiAi (5)

then the ergodic evolution provides the following approximation:

〈ψt|Ai|ψt〉 ∼ tr(
Aie

−βH

Z
) (6)

which is exactly what we need to calculate in the SDP operations. The simulations
show that the results of quantum algorithm can be ready after 0.5µs which can beat
the time complexity of classical algorithm. The following graph shows the real part
of correlations to neighbors 〈a†i+1ai〉 as a function of time for different values of U. As
we see, the result becomes stable after the certain time scale [10]

9. Beyond SDP and Convex optimization

SDP problems are a subclass of a more general problem which is called convex
optimization. The problem can be defined as follows:

min
x∈K

f(x), s.t.K ∈ Rn, be a convex set and f : K → R is a convex function (7)
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and the convex function based on the definition follows from the following rule: f(αx+
(1 − α)x2) ≤ αf(x1) + (1 − α)f(x2). It is easy to show that the above problem is
equivalent to the following problem:

minx′ ∈ R, x ∈ Kx′s.t.f(x) ≤ x′ ≤M (8)

Therefore the task of optimizing the linear function minx∈K ~c · ~x is equivalent to find-
ing the answer of the general convex optimization problem. As we can see that the
target function of convex optimization and SDP are the same. The only difference
lies on the extra bound for domain of feasibility. A natural question that can arise
is that how quantum computer can speed up the general convex optimizations prob-
lems? The recent paper [5] explored this question and has shown that there exist at
least one quantum algorithm that speeds up the oracle performance. In general, for
convex optimization problem we can define two oracles: A membership oracle, OK

which checks if a selected point x is inside the feasible set and also the evaluation
oracle, Of which calculates the value of f(x) for a given point x. Simple calculation
shows that the computational complexity of these oracles is order of O(n). Simi-
larly we can define these two oracles in the quantum version of the algorithms by:
OK |x, 0〉 = [x, δ[x ∈ K]〉 where δ is the Dirac function and Of |x, 0〉 = |x, f(x)〉.

The theorem in [5] proves that: There exists a convex body K ∈ Rn , a convex
function f on K, and a precision ε > 0, such that a quantum algorithm needs at least
Ω(
√
n) queries to a membership oracle for K and Ω(

√
n

logn
) queries to an evaluation

oracle for f to output a point x satisfying

f(x) ≤ min
x∈K

f(x) + ε (9)

with high success probability. This research direction is new and we hope we can see
faster quantum algorithm proposals in near future that enhance the performance of
convex optimization problems.

10. Conclusion

In this project-work, we have studied the SDP solver algorithms in deltail and
understood the technicalities and importance of moving to the quantum regime in
order to have a speed up over their classical counterparts. We have explored in detail
one application of this optimization algorithm in efiiciently learning the state of a
given quantum system. It was interesting to see the recent efforts towards physically
implementing these models. We started looking beyond the SDP algorithms to a
more general class of convex optimization. But due to shortage of time, we could not
delve into detailed discussion of this topic. Meanwhile, we found the following open
problems in SDP solvers to be quite interesting and would be happy to explore those
in future.
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11. Open Problems

Following are the open problems from the papers which we found to be really
important and interesting.

• The initial quantum SDP algorithm [2] had a strong functionality with respect
to error parameters. The main concern can be whether can we improve the
parameters (in terms of R, r, δ).

Bad: Many interesting SDP problems( e.g Goesman-Williamson) Rr/δ = O(n)
Good: Machine Learning and Compressed Sensing problems:Rr/δ = O(1)

• Is it possible to find more efficient algorithm and move towards the theoretical
lower limit on the complexity of algorithms in terms of n,m and s?

• Is it possible to find an algorithm with superpoly speed-ups?

• How robust are the algorithms to error and noises?

• In these algorithms quantum computers are only used for the preparation of
Gibbs states. Is it possible to implement the algorithm by some small sized
quantum computer with no error correction ?
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