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1. Intro 

Most public-key encryption algorithms used today can be easily broken by quantum 

computers [Shor]. For symmetric-key algorithms, the extent to which quantum 

computers can reduce their security is not fully understood [BL]. Any n-bit key can be 

recovered in O(2n/2
) time using Grover’s algorithm (as opposed to O(2n) time required 

for classical brute-force searches) [Grover]. Hence, a naive approach would suggest that 

doubling the key length would give a cryptosystem comparable security against 

quantum attacks as it previously had against classical attacks. There exist known 

quantum attacks against various symmetric-key cryptosystems with time complexity 

better than Grover’s algorithm, where doubling the key size is insufficient to regaining 

the same standard of security [HS1]. 

Many quantum cryptanalysis against these symmetric-key cryptosystems have 

been ad-hoc. A more general methodology would make it easier to understand the 

capability of quantum attacks on symmetric key schemes. One common strategy is to 

look at a classical attack against a given cryptosystem, and then apply quantum 

improvements to applicable steps of that attack [KLLN]. 

2. Research Question 

In this survey, we will review the existing literature on quantum attacks derived from 

classical cryptanalytic techniques. We will analyze the general techniques used in this 

category of attack and describe common approaches which could be applied towards 

new algorithms. 

3. Methodology 

We begin by exploring which attacks on symmetric key algorithms have been sped up 

with quantum, and how much the time complexity was improved. We categorize the 

attacks and encryption schemes by the quantum techniques used and the time 

complexity. We look specifically at whether the quantum attacks are within the quantum 

or query model, and whether the complexity is polynomial or exponential. 

We then look at attacks on other symmetric key encryption schemes that have not 

been explored from the quantum perspective. We see if any of the quantum attacks can 

improve the brute force attacks on those schemes. We look specifically at whether the 

attacks can be improved to polynomial time complexity in the quantum query model or 

exponential time complexity in the classical query model. 
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We also look at if there are any symmetric key algorithms that have been 

conjectured to be quantum resistant, and see if we can extend that conjecture to other 

symmetric key algorithms. 

4. Framing Cryptography 

Symmetric key cryptography relies on two parties having a shared secret. This shared 

secret can be used to generate encryption and decryption keys. This scheme can be used 

as the building block for MACs and hash functions. Because this encryption is relied 

upon and built upon, we need clear guarantees of the security that this encryption 

provides. 

Symmetric key cryptography is really the problem of a one way function, with a 

plaintext as input, and a ciphertext as the output. The goal is that the function ,(p)f = c  

where  denotes the application of key , reveals no (or very little) information about f k p  

from . Another way of saying this is that it is very difficult to compute the inverse of c f  

-- that  is computationally close to a one-way function.f  

4.1 Information theoretically secure cryptography [Aaronson] 

An encryption scheme that is theoretically secure cannot be broken no matter how 

much time the attacker has. This is guaranteed by ensuring that any string is just as 

likely to be the plaintext as any other string.  
1

The first such scheme was first realized with the one-time pad in 1882. The one 

time pad takes a plaintext as a binary string and a random binary key of at least the 

length of the plaintext. The sender and receiver both have copies of this string. 

1. Both the sender and the receiver have copies of key .k  

2. The sender encrypts a message  with key  and sends it: p k p ⊕ k = c  

3. The receiver decrypts the message with key : k c ⊕ k = p ⊕ k ⊕ k = p  

The operation  will flip each bit of the original message with independentp ⊕ k  

probability . This will result in a new string, , which is completely random. This2
1 c  

scheme requires a truly random string of at least the length of the message. The 

encrypted message has only the randomness of the message, so if the key is 

distinguishable from random, the message will also be distinguishable from random. In 

addition, that random string can only be used once. If it is used twice, then information 

will be revealed about the key, differentiating it from random. 

1
 Any valid scheme will reveal the maximum possible length of the plaintext. 
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Consider if the sender sends two messages to the receiver, encrypted with the 

same key . This can reveal  -- information which is not necessarily useful, but isk p1 ⊕ p2  

no longer theoretically secure. 

1. p1 ⊕ k = c1  

2. p2 ⊕ k = c2  

3. c1 ⊕ c2 = p1 ⊕ k ⊕ p2 ⊕ k = p1 ⊕ p2  

In 1945, Claude Shannon showed that any theoretically secure encryption 

scheme requires a truly random string of at least the length of the original message. 

Proof: Every message must be equally likely to be the original message. This 

means that every message must be a possible plaintext for a given ciphertext. For a 

binary ciphertext of length n, there are  possible input plaintexts. There cannot be2n  

more plaintexts than keys so, there must be  possible keys, meaning that the length of2n  

the key must be at least the length of the plaintext. As mentioned above, the ciphertext is 

only as random as the plaintext, so this key must be truly random. And this key cannot 

be used more than once, because then the inputs together will be longer than ,n  

necessitating the use of a longer key [Shannon]. 

4.2 Computationally secure cryptography 

The key requirements for theoretically secure cryptography are infeasible, so 

cryptographers have settled for a lower standard. The goal of computationally secure 

cryptography is that the attacker cannot distinguish the ciphertext from a random string 

in polynomial time.  To do this, we use pseudo-random keys rather than random keys. A 
2

short pseudo random seed can be used to generate a longer random string of the same 

randomness (proof outside the scope of this paper), so a symmetric key encryption 

scheme based on this string can be just as safe as the problem of distinguishing the 

pseudo-random string from random. 

It has been proven that the problem of one-way functions is of equivalent 

complexity to that of a random generator. The one way function itself should be 

vulnerable to a Grover-type attack which will give quadratic speed up, but not to a more 

effective attack. Modern symmetric key cryptography relies on -- and in the most 

fundamental case, is equivalent to -- these pseudo-random generators and one way 

functions. To bring this back to quantum, this is the reason why symmetric key 

cryptography seem safe: it is assumed (although not proven) that pseudo-random 

generators are hard to break. The symmetric key encryption schemes are based on this 

2
 Related to the length of the string, with "distinguish" meaning distinguishing with non negligible bias. 
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problem, and the steps of the encryption that use this are resistant to the known 

categories of quantum attacks.  
3

5. Threat Models 

Fundamental to any discussion on security is the threat model, a rigorous definition of 

what an adversary is capable of [KL]. For example, “known-plaintext” is a threat model 

where the adversary has access to some limited number of plaintexts along with their 

associated ciphertexts. Once the threat model is chosen, one can make claims about the 

security of the system against various types of attacks, e.g. “the best known 

chosen-ciphertext distinguishing attack against this cipher has a time complexity of 

O(2n)”. In accordance with Kerchoff’s principle, the adversary is considered to have 

prior knowledge of every aspect of the cryptosystem (e.g. the encryption/decryption 

algorithms, and the probability distribution over possible plaintexts sent). Beyond that, 

there are many variations. Some commonly-discussed threat models include: 

● Ciphertext-Only: The adversary has access to some limited number of 

ciphertexts, and nothing else 

● Known-Plaintext: The adversary has access to some limited number of 

ciphertexts, as well as the corresponding plaintext for each ciphertext 

● Chosen-Plaintext: The adversary has access to an encryption oracle, i.e. a 

black-box function which encrypts any plaintext queries provided by the 

adversary 

● Chosen-Ciphertext: As in chosen-plaintext, but the adversary also has access to a 

decryption oracle 

In the quantum setting, the only modification required for the ciphertext-only 

and known-plaintext threat models is the time complexity required for the adversary to 

locally solve certain computational problems (e.g. the quantum adversary is capable of 

factoring large numbers in poly-time, while a classical adversary is currently believed to 

be unable to do so). 

There is no clear analogous threat models when an oracle is involved.[ Zhandry] 

is credited with formalizing two popular threat models for quantum oracles, which are 

commonly referred to as Q1 and Q2. 

3
 Public key cryptography attempts to rely on one-way functions, but requires that these function have a 

backdoor. Because of this, most of these functions are fundamentally different from those used by 

symmetric key cryptography, and are not as "hard" to reverse as is it to identify pseudo-randomness. 
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● Q1: The adversary has access to local quantum computation, but oracles 

provided to the adversary accept only classical queries 

● Q2: The adversary has access to arbitrary local quantum computations and 

oracles provided to the adversary accepts arbitrary quantum states as queries 

Q2 is a strictly stronger threat model than Q1, so the security of a cryptosystem 

under Q1 is at least as strong as its security under Q2. It may seem sensible to demand 

security under the stronger model. However, while there exist examples of real-world 

scenarios in which an adversary’s capabilities closely resemble each of the earlier 

discussed threat models, some have argued that the Q2 model may be unrealistically 

strong [HS1][KLLN]. In both classical and post-quantum cryptography, encryption 

schemes are concerned with with obfuscating classical, not quantum data. Furthermore, 

it is often assumed that the user is running classical computation rather than quantum, 

and the computation will be happening on a classical computer. It is likely that most 

real-world encryption oracles will be purely classical, preventing Q2 adversaries 

altogether. Because of this, both the Q1 and Q2 threat models are of interest to 

post-quantum cryptography. 

6. Main Classes of Quantum Attacks 

Current popular cryptographic algorithms rely on several “hard” classes of problems; 

common ones include: integer factorization, discrete logarithm, and elliptic-curve 

discrete log problem. All three of these problems become easier using Shor’s algorithm. 

Symmetric key algorithms and hash functions are thought to be more secure. Grover’s 

algorithm provides a quadratic speedup against both symmetric key encryption and 

hash functions, but this speedup can be mitigated by doubling the key size. More 

concerningly, there are several attacks which translate a scheme into Simon’s problem, 

allowing for exponential speedup which no key length is long enough to make secure. 

Many symmetric cryptanalysis techniques are based on a small set of problems 

that are assumed to be hard. Two of these problems are searching for collisions and 

multi-target preimages [CPS]. Quantum solutions to these two problems have 

significant performance increases against these assumptions. 

7. Basis of Symmetric Key Cryptography 

Classical symmetric cryptography assumes the following difficulty for a few 

problems. 
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● Collision resistance: Find two messages such that .=m1 / m2 (m ) (m )H 1 = H 2  

Analysis of the known classical algorithm relies on the birthday paradox, which 

says that this should be solvable in .(2 )O 2
n

 

● Second preimage resistance: Given , find  such that .m1 m2 (m ) (m )H 1 = H 2  

Exhaustive search solves this in .(2 )O n
 

● Preimage resistance: Given , find  such that . Exhaustive searchh m (m)H = h  

solves this in .(2 )O n
 

Each of these problems have exponential speedup with quantum. These problems 

are the building blocks of symmetric key cryptography, and attacks also provide a 

speedup on more involved algorithms that are based on these problems. 

8. Defining “Broken” 

After deciding on a threat model, it’s important to define what sorts of attacks count as 

“breaking” a cryptosystem. Typically, the security of a cryptosystem is presented in 

game-theoretic terms, showing that an adversary gains negligible advantage from a 

bounded number of queries [KL]. In these analyses, the strength of the adversary’s 

advantage is measured in terms of a security parameter, which in practice is interpreted 

as the key length of the cryptosystem. More concretely, one can use these analyses to 

compute the expected time required for an adversary to perform a certain malicious 

action, e.g. “for a cryptosystem with key length n, a known-plaintext classical 

brute-force search can learn the key in  time. Some attacks we will talk about are:(2 )O n
 

● Key Recovery: The adversary learns the target’s secret key 

● Message Recovery: Given a ciphertext, the adversary learns the associated 

plaintext 

● Distinguishing: Given either an encryption oracle or an oracle for a random 

oracle, the attacker determines with high probability which type of oracle it is 

● Forgery: Under an authenticated cryptosystem, the adversary creates a valid 

ciphertext-tag pair 

The standards for how strongly a cryptosystem must resist each type of attack is 

often dependent on the threat model. Notably, we will speak about the different 

standards often applied to Q1 and Q2 models in order for a system to be described as 

broken. Because of the relative strength of Q2, a “successful” attack under Q2 has a 

much higher standard than is required for an attack to be considered successful under 
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Q1. Because of this, there are cryptosystems for which there is a known successful attack 

under just Q1, just Q2, or both [HS1]. 

9. Sample Attacks 

We present several classical attacks for which a stronger version has been shown under 

quantum threat models. 

9.1 Brute Force Search [Grover] 

The simplest “attack” against a cryptosystem is to exhaust the search space. Given a 

small number of known plaintext-ciphertext pairs, key recover can be rephrased in 

terms of solving preimages. With a key of length , a plaintext p, and a ciphertext c, we2n  

fix p and interpret the encryption scheme as a function of the key, and try to solve for k 

in the equation E
k(p)=c.  Although brute force attacks are only viable against 

cryptosystems with small keyspaces, they serve as a benchmark against which to 

compare more complex attacks. 

Classically: By trying out out all  possible keys, we are guaranteed to find a2n  

valid k, thus recovering the key. If there are multiple valid k’s for a given 

plaintext-ciphertext pair, in a well-designed cipher the number will be small. To find the 

correct key, we can test the candidate keys against another plaintext-ciphertext pair, 

continuing to iterate this process until only one valid key remains. Each iteration 

accepts negligibly many keys, and has negligible probability of failure, so this algorithm 

performs key recovery in  time.(2 )O n
 

Q1: Given p and c as in the classical case, we create an oracle for the function 

, satisfying the formulation for Grover’s problem.(k) {1 if  E (p) ; 0 otherwise}f =  k = c   

Thus, we can then apply Grover’s algorithm to f, and the result will likely be a key. Given 

the search space of  possible keys, Grover’s algorithm recovers the key in  time.2n (2 )O n
 

As in the classical case, further plaintext-ciphertext pairs can guarantee success while 

adding negligible extra time to the algorithm. 

9.2 Grover Attack for Collision Finding [MVZJ] 

Without any modifications, Grover’s algorithm can be used to find a collision in a hash 

function in , where n is the length of the original string. Grover’s algorithm can be(  )O √n  

combined with the birthday paradox to improve this to . This is done by creating(  )O √3 n  

a table of size cube root n, and searching for a collision in that table, which will take 

. If there is no collision, then each value in the table has a collision with a value(  )O √3 n  
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not in the table. We are searching for cube root n elements over  elements, which1 − √3 n  

is solvable using Grover’s in  [MVZJ].(  )O √3 n  

9.3 Fixed Point Grover’s [GLRS] 

Grover’s algorithm provides quadratic speedup, doing an unstructured database search 

of n elements in O(sqrt n). Grover’s algorithm find one element from n elements in 

O(sqrt n), a search that would classically take O(n). A variation of this problem involves 

searching for one of m elements from n elements. Classically, this takes O(n/m). With 

quantum, this problem can be solved when m is known in O(sqrt (n/m)) by doing sqrt 

(n/m) iterations. 

If m is unknown, there are a number of possible solutions. One can first count the 

number of solutions, and then do the usual algorithm. One could also apply an adaptive 

schedule where the Grover operator, instead of operating by the same amount with each 

iteration, is replaced by an operator that rotates a different amount based on the 

iteration index. This causes the quantum state to converge to a bounded region, which 

can then be measured. This bounded region is called the fixed point, leading to the 

algorithm name of Fixed Point Grover’s [GLRS]. 

9.4 Linear Cryptanalysis [KLLN] 

Consider an equation of the form m
1+...+m

n+...+c 
i+...+k

i+...+k
n =0, where m  is a plaintext 

input, k is the key, and c is the corresponding ciphertext output. If such an equation 

were known to be an invariant of the cryptosystem, then knowledge about 

plaintext-ciphertext pairs can be used to gain information about the bits of the key. For 

an ideal cryptosystem, any such linear equation would hold true for exactly half of all 

possible inputs, thus granting no information. A more practical goal is to find several 

equations which hold true for significantly more than half (or significantly less than 

half) of all possible inputs. For an equation which is holds with probability (1+e)/2, it 
can be shown that the sign of e can be determined with high probability from O(1/e2) 

plaintext-ciphertext pairs 

Classical distinguisher: It can be shown that, with high probability, a linear 

equation which holds w/ probability (1+e)/2 is expected to hold for >e/2 of randomly 

sampled inputs to the encryption oracle, and <e/2 of randomly sampled inputs to a 

random oracle. This likelihood reaches statistically significant levels after O(1/e2) 

samples, so a known-plaintext distinguisher can be built which runs in time O(1/e2) 

Q1 distinguisher: Due to the nature of the distinguishing problem, Q1 is rarely 

known to have any advantage against classical distinguisher attacks. Statistical tests for 
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differentiating distributions tend not to be computationally intensive, and the 

bottleneck for most distinguishing attacks is the number of samples. Hence, Q1’s 

sampling situation is no different than in the classical case, and the adversary does not 

benefit much from local quantum computation, so Q1 is not known to provide speedup 

in distinguisher attacks. 

Q2 distinguisher: Like the classical distinguisher, except we determine the 

distribution using the “quantum counting” variant of the amplitude amplification 

algorithm. In this case, the distinguisher is able to distinguish the encryption oracle 

from the random oracle using only time O(1/e) 

Classical key recovery: With L independent linear equations, a chosen-plaintext 

adversary can, from O(L/e2) plaintext-ciphertext pairs, determine L bits of information 

about the key by performing L iterations of the distinguisher routine and observing the 

sign of the bias, cutting down the search space by a factor of 2L. Thus, an n -bit key can 

be recovered in O(L/e2 + 2n-L
) time. 

Q1 key recovery: Similar to the classical case, the adversary makes O(L/e2) 

queries to learn bits of the key. However, the rest of the key can be learned locally with 

Grover’s algorithm, cutting the time complexity down to O(L/e2 + 2(n-L)/2
). 

Q2 key recovery: Similar to Q1, except the adversary uses the Q2 distinguisher 

subroutine to learn the bias of the linear equations, taking O(L/e) time, thus performing 

full key recover in time O(L/e + 2(n-L)/2
). 

9.5 Differential Cryptanalysis [KLLN] 

Suppose we have an invariant of the form E
k(x+p)=E 

k(x)+q. For any fixed p,q , in an 

ideal cipher this invariant would hold for half of all possible x’s. The goal is to find p,q 

such that the equation holds for either much greater than or much less than half of all 

possible x’s. 

Classical Distinguisher: Given p,q s.t. our differential invariant holds/does not 

hold w/ probability at least 2-k
, then we expect to find an x satisfying the invariant once 

every 2k samples, or twice in 2k+1
 samples. However, for a random oracle, we expect the 

invariant to hold w/ probability 2-n
. Thus, is k is significantly less than n, there is 

extremely low probability of more than one x in 2k+1
 samples satisfying the invariant 

under the random oracle. Hence, a known-plaintext classical adversary can execute a 

distinguishing attack against the cryptosystem with time complexity O(2k+1
). 

Q2 Distinguisher:  Given p, q as above, we create a wrapper oracle which takes an 

input x, the outputs 1 if the invariant holds (which, we note, requires 2 queries to the 
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encryption oracle), or 0 otherwise. Then, we can apply Grover’s algorithm to the 

wrapper oracle in order to find an input following the invariant with just O(2k/2+1
) 

queries to the encryption oracle. However, if the oracle is a random oracle, then after 

only O(2k/2+1
) queries the resulting state will still have most of its probability in the “0” 

subspace, making the output likely to not be an input which follows the invariant. Thus, 

a known-plaintext Q2 adversary can execute a distinguishing attack against the 

cryptosystem with time complexity O(2k/2+1
). 

Key Recovery: Differential key recovery attacks are similar to linear key recovery 

attacks. Using L differential invariants, we perform L rounds of the appropriate 

distinguisher routine, followed by a local brute force search over the remaining 

keyspace.  

9.6 Slide Attack [BNS] 

While increasing the number of rounds can increase the security of a cipher, the slide 

attack is a demonstration that certain weaknesses do not disappear with any number of 

additional rounds. The typical example of one such weakness is when a single round is 

vulnerable to a small known-plaintext attack, for example in a sequence of keyed 

permutation. Throughout, a single round will be denoted as R(x) = P(x + k), where P is 

the permutation and k is the round key. 

Classical: With O(2n/2
) plaintext-ciphertext pairs (p,c), we expect at least one pair 

p1 and p2 such that p2=R(p1). Consequently, c2=R(c1). Thus, for each pair which is one 

round apart in the full cipher, we actually get two pairs of plaintext-ciphertext for the 

round function. This process is repeated until enough pairs are known in order to 

recover the key from the round function.
 4

Q2: Note that the slid pair we need is described by the invariant 

E
K(R(x))=R(E 

K(x)). We can rewrite this as: 

 

Here, note that f(b||x) = f((b||x) + (1||k)), thus satisfying the criteria of Simon’s 

problem. Thus, by using Simon’s algorithm on this oracle, we can perform the slide 

attack with only O(n) queries. 

4
 For simplicity, we assume that the slid pair are one round apart, and all round keys are the same. Similar 

variations exist for pairs any length apart and varying round keys as long as the round keys are 

predictable. 
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9.7 Meet-in-the-Middle Attacks [HS2] 

Rather than adding more rounds to an encryption scheme, another strategy for 

increasing security is to repeat the entire algorithm with different keys. This was the 

strategy that led to the creation and adoption of the TripleDES encryption algorithm 

(which, as the name would imply, is the DES algorithm run three times). However, the 

meet-in-the-middle attack shows that this method does not achieve the same amount of 

security as would be expected from the total length of the keys involved. 

Classical: Suppose the cryptosystem is a weak scheme run twice. To break it, the 

adversary performs a brute-force attack on the first key alone, recording the output. 

Then, the adversary runs a brute-force attack decrypting from potential second keys, 

again recording the results. Between the two lists, there will be a collision at the correct 

values for both keys. Thus, rather than attacking every pair of keys, the adversary is able 

to attack the round keys individually, hence double-encryption has no more strength 

than single-encryption. 

Q1: The matching algorithm can be done using local quantum searches, bringing 

the complexity down to O(2n/2
) 

Q2: Rather than computing each possible key on both sides, we instead use a 

quantum counting distinguisher (similar to the ones used in the linear distinguishing 

problem). From there, we proceed as in Q1. The advantage in this case is not in time 

complexity (the complexity roughly matches the Q1 case), but instead uses vastly fewer 

space resources (completing the necessary data for the matching table in O(1) memory) 

10 Conclusion 

Unlike most public-key schemes, much of existing symmetric-key cryptography schemes 

are not trivially broken by widely-known quantum algorithms. The extent to which the 

quantum threat model breaks current symmetric-key cryptosystems is not yet fully 

known, and is widely dependent on what quantum threat model is shown to be realistic. 

By making improvements to existing cryptanalysis techniques, we create a strong 

starting point from which to develop more powerful quantum attacks against these 

schemes. 
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