Assignment 3

CMSC 726: Machine Learning October 9^{th} , 2018

Name:

LATE SUBMISSIONS WILL NOT BE ACCEPTED FOR THIS HOMEWORK.

- 1. In this question, we compute the VC dimension of a Hypothesis class. Consider the following hypothesis class $\mathcal{H} = \{h(x) : sign(\mathbf{w}^T \mathbf{x}) | x \in \mathbb{R}^n\}$, where sign(z) = 1 if $z \ge 0$ and sign(z) = 0 if $z \le 0$.
 - (a) Show that $\operatorname{VCdim}(\mathcal{H}) \geq n$. **Hint**: Consider a set of points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ that correspond to the standard basis in \mathbb{R}^n , i.e. $\mathbf{x}_k^{(i)} = 1$ if k = i and $\mathbf{x}_k^{(i)} = 0$ if $k \neq i$. Show that using $\mathbf{w} = \sum_{i=1}^d y^{(i)} \mathbf{x}^{(i)}$, we can classify all points $(\mathbf{x}^{(i)}, y^{(i)})$ correctly.
 - (b) Show that VCdim $\leq n$.

Hint 2: Suppose there exists a set of points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n+1)}$ (more than n) such that they can be shattered by \mathcal{H} . Form a matrix $\mathbf{H} = \mathbf{X}\mathbf{W}$ where $\mathbf{X} = [\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n+1)}]^T$ and $\mathbf{W} = [\mathbf{w}_1, \ldots, \mathbf{w}_{2^n}]$ where each $\mathbf{w}_i, 1 \leq i \leq 2^n$ corresponds to a possible labeling of points. Show that this implies that $rank(\mathbf{H}) \leq n$. Moreover, show that the fact that \mathcal{H} shatters $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n+1)}$ implies that $rank(\mathbf{H}) \geq n+1$. This leads to a contradiction.

2. Recall that the Rademacher complexity of a class of functions \mathcal{F} is defined as

$$R_m(\mathcal{F}) = \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^m \sigma_i f(z_i) \right].$$

Suppose $\mathbf{x} \in \{0, 1\}^n$ has only k non-zero entries. Define the following class of linear functions where the parameters are bounded by B > 0, i.e.: $\mathcal{F} = \{\mathbf{x} \to \mathbf{w}^T \mathbf{x} : \max_i |w_i| \le B\}$. Compute an upper bound on the Rademacher complexity as a function of B, k, n, m.

Hint: see the proof of Lemma 26.10 in section 26.2 of the textbook.

3. (Programming Assignment) The Hoeffding inequality states that:

$$\mathbb{P}\left[\left|\frac{\theta_1 + \dots + \theta_m}{m} - \mathbb{E}[\theta]\right| \ge \epsilon\right] \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

where θ_i 's are i.i.d. random variables such that $a \leq \theta_i \leq b$. Let each θ_i be generated from \mathbb{P}_{θ} which is a uniform [0, 1] distribution.

- (a) Generate k = 100 many sets where each set S_i consists of m = 100 i.i.d. samples from \mathbb{P}_{θ} .
- (b) What is the fraction of k sets that satisfies the following bound: $\mathbb{P}[|\frac{\theta_1 + \dots + \theta_m}{m} \frac{1}{2}| \le 0.1]?$
- (c) Compare the number from part (b) with the Hoeffding bound.