Assignment 5

CMSC 726: Machine Learning
November $20^{\text {th }}, 2018$
Name:

1. Problem 23.4 from the textbook.
2. (Programming Assignment)
(a) Let $\mathbf{z}=\left[z_{1}, z_{2}\right]^{T} \in \mathbb{R}^{2}$. We have a collection of samples $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(m)}$ where each $\mathbf{z}^{(i)}$ follows a Gaussian distribution $\mathcal{N}\left(0, \mathbf{I}_{2}\right)$. Moreover, we have the matrix $\mathbf{A} \in \mathbb{R}^{10 \times 2}$ where $A_{i j}$ follows a uniform $[0,1]$ distribution. Each data point $\mathbf{z}^{(i)}$ generates $\mathbf{x}^{(i)}$ according to $\mathbf{x}^{(i)}=\mathbf{A} \mathbf{z}^{(i)}+\epsilon \mathbf{w}^{(i)}$ where $\epsilon=0.01$ and $\mathbf{w}^{(i)}$ follows a Gaussian distribution $\mathcal{N}\left(0, \mathbf{I}_{10}\right)$. Construct a data set consisting of 1,000 points for $\mathbf{x}^{(i)}$ according to outlined generative process.
(b) Implement PCA over the generated dataset. Use the top two PCs to compute low-dimensional representations of points, i.e. for $\mathbf{x}^{(i)}$ find $\hat{\mathbf{z}}^{(i)}=\left[\hat{z}_{1}^{(i)}, \hat{z}_{2}^{(i)}\right]^{T}$. Make two scatter plots (one for each component) comparing the original values $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(m)}$ and the estimated $\hat{\mathbf{z}}^{(1)}, \ldots, \hat{\mathbf{z}}^{(m)}$. What is the mean-squared error between the two sets? (i.e., $1 / m \sum_{i}\left\|\mathbf{z}^{(i)}-\hat{\mathbf{z}}^{(i)}\right\|^{2}$).

Note :You can use a function from a python toolbox to do the eigendecomposition or SVD.
(c) Repeat (a)-(b) this for the case where $\mathbf{x}^{(i)}=\mathbf{A} \mathbf{z}^{(i)} \mathbf{z}^{(i)^{T}} \mathbf{b}+\epsilon \mathbf{w}^{(i)}$ where $\mathbf{b} \in \mathbb{R}^{2 \times 1}$ and both elements in \mathbf{b} are generated from a uniform $[0,1]$.

