Assignment 5

CMSC 726: Machine Learning November 20^{th} , 2018

Name:

- 1. Problem 23.4 from the textbook.
- 2. (Programming Assignment)
 - (a) Let $\mathbf{z} = [z_1, z_2]^T \in \mathbb{R}^2$. We have a collection of samples $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(m)}$ where each $\mathbf{z}^{(i)}$ follows a Gaussian distribution $\mathcal{N}(0, \mathbf{I}_2)$. Moreover, we have the matrix $\mathbf{A} \in \mathbb{R}^{10 \times 2}$ where A_{ij} follows a uniform [0, 1] distribution. Each data point $\mathbf{z}^{(i)}$ generates $\mathbf{x}^{(i)}$ according to $\mathbf{x}^{(i)} = \mathbf{A}\mathbf{z}^{(i)} + \epsilon \mathbf{w}^{(i)}$ where $\epsilon = 0.01$ and $\mathbf{w}^{(i)}$ follows a Gaussian distribution $\mathcal{N}(0, \mathbf{I}_{10})$. Construct a data set consisting of 1,000 points for $\mathbf{x}^{(i)}$ according to outlined generative process.
 - (b) Implement PCA over the generated dataset. Use the top two PCs to compute low-dimensional representations of points, i.e. for $\mathbf{x}^{(i)}$ find $\hat{\mathbf{z}}^{(i)} = [\hat{z}_1^{(i)}, \hat{z}_2^{(i)}]^T$. Make two scatter plots (one for each component) comparing the original values $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(m)}$ and the estimated $\hat{\mathbf{z}}^{(1)}, \ldots, \hat{\mathbf{z}}^{(m)}$. What is the mean-squared error between the two sets? (i.e., $1/m \sum_i ||\mathbf{z}^{(i)} \hat{\mathbf{z}}^{(i)}||^2$).

Note :You can use a function from a python toolbox to do the eigendecomposition or SVD.

(c) Repeat (a)-(b) this for the case where $\mathbf{x}^{(i)} = \mathbf{A}\mathbf{z}^{(i)}\mathbf{z}^{(i)T}\mathbf{b} + \epsilon \mathbf{w}^{(i)}$ where $\mathbf{b} \in \mathbb{R}^{2 \times 1}$ and both elements in \mathbf{b} are generated from a uniform [0, 1].