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ABSTRACT

This paper details the construction of an access-driven side-
channel attack by which a malicious virtual machine (VM)
extracts fine-grained information from a victim VM running
on the same physical computer. This attack is the first such
attack demonstrated on a symmetric multiprocessing sys-
tem virtualized using a modern VMM (Xen). Such systems
are very common today, ranging from desktops that use vir-
tualization to sandbox application or OS compromises, to
clouds that co-locate the workloads of mutually distrust-
ful customers. Constructing such a side-channel requires
overcoming challenges including core migration, numerous
sources of channel noise, and the difficulty of preempting
the victim with sufficient frequency to extract fine-grained
information from it. This paper addresses these challenges
and demonstrates the attack in a lab setting by extracting
an ElGamal decryption key from a victim using the most
recent version of the libgcrypt cryptographic library.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Information flow controls

General Terms
Security

Keywords

Side-channel attack, cross-VM side channel, cache-based side
channel

1. INTRODUCTION

Modern virtualization technologies such as Xen, HyperV,
and VMWare are rapidly becoming the cornerstone for the
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security of critical computing systems. This reliance stems
from their seemingly strong isolation guarantees, meaning
their ability to prevent guest virtual machines (VMs) run-
ning on the same system from interfering with each other’s
execution or, worse, exfiltrating confidential data across VM
boundaries. The assumption of strong isolation underlies the
security of public cloud computing systems [6, 39] such as
Amazon EC2, Microsoft Windows Azure, and Rackspace;
military multi-level security environments [29]; home user
and enterprise desktop security in the face of compromise [20];
and software-based trusted computing [22].

VM managers (VMMs) for modern virtualization systems
attempt to realize this assumption by enforcing logical iso-
lation between VMs using traditional access-control mech-
anisms. But such logical isolation may not be sufficient
if attackers can circumvent them via side-channel attacks.
Concern regarding the existence of such attacks in the VM
setting stems from two facts. First, in non-virtualized, cross-
process isolation contexts, researchers have demonstrated a
wide variety of side-channel attacks that can extract sensi-
tive data such as cryptographic keys on single-core archi-
tectures [1-3, 5, 8,36, 43]. The most effective attacks tend
to be so-called “access-driven” attacks that exploit shared
microarchitectural components such as caches. Second, Ris-
tenpart et al. [39] exhibited coarser, cross-VM, access-driven
side-channel attacks on modern symmetric multi-processing
(SMP, also called multi-core) architectures. But their at-
tack could only provide crude information (such as aggregate
cache usage of a guest VM) and, in particular, is insufficient
for extracting cryptographic secrets.

Despite the clear potential for attacks, no actual demon-
strations of fine-grained cross-VM side-channels attacks have
appeared. The oft-discussed challenges [39,46] to doing so
stem primarily from the facts that VMMs place more lay-
ers of isolation between attacker and victim than in cross-
process settings, and that modern SMP architectures do not
appear to admit fine-grained side-channel attacks (even in
non-virtualized settings) because the attacker and victim are
often assigned to disparate cores. Of course a lack of demon-
strated attack is not a proof of security, and so whether
fine-grained cross-VM side-channel attacks are possible has
remained an important open question.

In this paper, we present the development and applica-
tion of a cross-VM side-channel attack in exactly such an
environment. Like many attacks before, ours is an access-



driven attack in which the attacker VM alternates execution
with the victim VM and leverages processor caches to ob-
serve behavior of the victim. However, we believe many
of the techniques we employ to accomplish this effectively
and with high fidelity in a virtualized SMP environment
are novel. In particular, we provide an account of how to
overcome three classes of significant challenges in this envi-
ronment: (i) inducing regular and frequent attacker-VM ex-
ecution despite the coarse scheduling quanta used by VMM
schedulers; (ii) overcoming sources of noise in the informa-
tion available via the cache timing channel, both due to
hardware features (e.g., CPU power saving) and due to soft-
ware ones (e.g., VMM execution); and (iii) dealing with core
migrations, which give rise to cache “readings” with no in-
formation of interest to the attacker (i.e., the victim was
migrated to a core not shared by the attacker). Finally, we
customize our attack to the task of extracting a private de-
cryption key from the victim and specifically show how to
“stitch together” these intermittent, partial observations of
the victim VM activity to assemble an entire private key.

As we demonstrate in a lab testbed, our attack establishes
a side-channel of sufficient fidelity that an attacker VM can
extract a private ElGamal decryption key from a co-resident
victim VM running Gnu Privacy Guard (GnuPG) [24], a pop-
ular software package that implements the OpenPGP e-mail
encryption standard [14]. The underlying vulnerable code
actually lies in the most recent version of the libgcrypt
library, which is used by other applications and deployed
widely. Specifically, we show that the attacker VM’s moni-
toring of a victim’s repeated exponentiations over the course
of a few hours provides it enough information to reconstruct
the victim’s 457-bit private exponent accompanying a 4096-
bit modulus with very high accuracy—so high that the at-
tacker was then left to search fewer than 10,000 possible
exponents to find the right one.

We stress, moreover, that much about our attack general-
izes beyond ElGamal decryption (or, more generally, discov-
ering private exponents used in modular exponentiations)
in libgcrypt. In particular, our techniques for preempt-
ing the victim frequently for observation and sidestepping
several sources of cache noise are independent of the use to
which the side-channel is put. Even those components that
we necessarily tune toward ElGamal private-key extraction,
and the pipeline of components overall, should provide a
roadmap for constructing side-channels for other ends. We
thus believe that our work serves as a cautionary note for
those who rely on virtualization for guarding highly sensitive
secrets of many types, as well as motivation for the research
community to endeavor to improve the isolation properties
that modern VMMs provide to a range of applications.

2. BACKGROUND

Side-channel attacks and their use to extract cryptographic
keys from a victim device or process have been studied in
a variety of settings. These attacks are generally catego-
rized into one of three classes. A time-driven side-channel
attack is possible when the total execution times of cryp-
tographic operations with a fixed key are influenced by the
value of the key, e.g., due to the structure of the crypto-
graphic implementation or due to system-level effects such
as cache evictions. This influence can be exploited by an at-
tacker who can measure many such timings to statistically
infer information about the key (e.g., [4,11,13,26]). In the
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context of our work, the most relevant research of this type
is due to Weif} et al. [46]. This work mounted a time-driven
attack against an embedded uniprocessor device virtualized
by the L4 microkernel. Their techniques do not translate to
the style of attack we pursue (see below) or the virtualized
SMP environment in which we attempt it.

A second class of side-channel attacks is trace-driven. These
attacks continuously monitor some aspect of a device through-
out a cryptographic operation, such as the device’s power
draw (e.g., [25]) or electromagnetic emanations (e.g., [21,
38]). The ability to continuously monitor the device makes
these attacks quite powerful but typically requires physical
proximity to the device, which we do not assume here.

The third class of side-channel attack, of which ours is
an example, is an access-driven attack, in which the at-
tacker runs a program on the system that is performing the
cryptographic operation of interest. The attacker program
monitors usage of a shared architectural component to learn
information about the key, e.g., the data cache [36,43], in-
struction cache [1,2], floating-point multiplier [5], or branch-
prediction cache [3]. The strongest attacks in this class, first
demonstrated only recently [2, 8], are referred to as asyn-
chronous, meaning that they do not require the attacker
to achieve precisely timed observations of the victim by ac-
tively triggering victim operations. These attacks leverage
CPUs with simultaneous multi-threading (SMT) or the abil-
ity to game operating system process schedulers; none were
shown to work in symmetric multi-processing (SMP) set-
tings. The contribution of this paper is to extend the class
of asynchronous, access-driven attacks to VMs running on
virtualized SMP systems.

The closest work in this area is due to Ristenpart et al. [39],
who gave an access-driven data-cache side channel sufficient
for learning coarse-grained information, such as the current
load, of a co-resident victim VM. They did not offer any ev-
idence, however, that fine-grained information such as keys
could be extracted through cross-VM side-channels. Sub-
sequent work [48, 49] showed how to build various covert
channels in cross-VM SMP settings, but these require coop-
erating VMs and so cannot be used as a side-channel attacks.
Also of interest is work of Owens and Wang [34], who gave
an access-driven attack for fingerprinting the OS of a victim
VM by leveraging memory deduplication in the VMWare
ESXi hypervisor. They did not show how to extract fine-
grained information such as cryptographic keys.

To our knowledge, no prior works have demonstrated cross-
VM side-channels with sufficient fidelity to extract crypto-
graphic keys, however; this is what we show here. Moreover,
as discussed next, the features of virtualized SMP systems
are such that new techniques are required to succeed.

3. OVERVIEW AND CHALLENGES

Attack setting. The setting under consideration is the use
of confidential data, such as cryptographic keys, in a VM.
Our investigations presume an attacker that has in some
manner achieved control of a VM co-resident on the same
physical computer as the victim VM, such as by compromis-
ing an existing VM that is co-resident with the victim.

We focus on the Xen virtualization platform [9] running
on contemporary hardware architectures. Our attack setting
is inspired not only by public clouds such as Amazon EC2
and Rackspace, but also by other Xen use cases. For ex-



ample, many virtual desktop infrastructure (VDI) solutions
(e.g., Citrix XenDesktop) are configured similarly, where vir-
tual desktops and applications are hosted in centralized dat-
acenters on top of a XenServer hypervisor and delivered re-
motely to end user devices via network connections. Another
representative use case separates operating systems into sev-
eral components with different privilege levels and that are
isolated by virtualization [20,37]. An example of such sys-
tems is Qubes [41], which is an open source operating system
run as multiple virtual machines on a Xen hypervisor.

In terms of computer architecture, we target modern multi-
core processors without SMT capabilities or with SMT dis-
abled. This choice is primarily motivated by contemporary
processors used in public clouds such as Amazon AWS and
Microsoft Azure, whose SMT features are intentionally dis-
abled, if equipped, since SMT can facilitate cache-based side
channel attacks [28].

We assume the attacker and victim are separate Xen DomU
guest VMs, each assigned some number of disjoint virtual
CPUs (VCPUs). A distinguished guest VM, Dom0, handles
administrative tasks and some privileged device drivers and
is also assigned some number of VCPUs. The Xen credit
scheduler [16] assigns VCPUs to the physical cores (termed
PCPUs in Xen’s context), with periodic migrations of VC-
PUs amongst the cores.

Our threat model assumes that Xen maintains logical iso-
lation between mutually untrusting co-resident VMs, and
that the attacker is unable to exploit software vulnerabili-
ties that allow it to take control of the entire physical node.
We assume the attacker knows the software running on the
victim VM and has access to a copy of it.

The attack we consider will therefore uses cross-VM side-
channels to reveal a code path taken by the victim applica-
tion. We will use as a running example—and practically rel-
evant target—a cryptographic algorithm whose code-path is
secret-key dependent (look ahead to Fig. 2). However, most
steps of our side-channel attack are agnostic to the purpose
for which the side-channel will be used.

Constructing such a side channel encounters significant
challenges in this cross-VM SMP setting. We here discuss
three key challenge areas and overview the techniques we
develop to overcome them.

Challenge 1: Observation granularity. The way Xen
scheduling works in our SMP setting makes spying on a vic-
tim VM challenging, particularly when one wants to use
per-core microarchitectural features as a side channel. For
example, the L1 caches contain the most potential for dam-
aging side-channels [36], but these are not shared across dif-
ferent cores. An attacker must therefore try to arrange to
frequently alternate execution on the same core with the
victim so that it can measure side-effects of the victim’s ex-
ecution. This strategy has been shown to be successful in
single-core, non-virtualized settings [8, 32,43] by attackers
that game OS process scheduling. But no gaming of VMM
scheduling suitable for fine-grained side-channels has been
reported, and the default scheduling regime in Xen would
seem to bar frequent observations: the credit scheduler nor-
mally reschedules VMs every 30ms, while even a full 4096-
bit modular exponentiation completes in about 200ms on a
modern CPU core (on our local testbed, see Sec. 6). This
leaves an attacker with the possibility of less than 10 side-
channel observations of it.
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In Sec. 4, we overcome this challenge to use the L1 in-
struction cache as a vector for side-channels. We demon-
strate how to use interprocess interrupts (IPIs) to abuse the
Xen credit scheduler in order to arrange for frequent inter-
ruptions of the victim’s execution by a spy process running
from within the attacker’s VM. This takes advantage of an
attacker having access to multiple VCPUs and allows the
spy to time individual L1 cache sets. The scheduling nu-
ances abused are a vulnerability in their own right, enabling
degradation-of-service attacks and possibly cycle-stealing at-
tacks [44,50].

Challenge 2: Observation noise. Even with our IPI-
based spying mechanism, there exists significant noise in the
measured timings of the L1 instruction cache. Beyond the
noise involved in any cache-based measurements, the VMM
exacerbates noise since it also uses the L1 cache when per-
forming scheduling. Manual analysis failed to provide sim-
ple threshold-based rules to classify cache timings as being
indicative of particular victim operations.

In Sec. 5.1, we use a support vector machine (SVM) to
relate L1 cache observations to particular operations of the
victim. A critical challenge here is gathering accurate train-
ing data, which we accomplish via careful hand instrumen-
tation of the target victim executable. Still, the SVM is
error-prone, in the sense that it classifies a small fraction
of code paths incorrectly. Fortunately, for many types of
victim operations, the fine granularity achieved by the at-
tack VM’s IPI-based spying can yield multiple observations
per individual operation. We use the redundancy in these
observations together with knowledge of the set of possible
victim code paths to correct SVM output errors by means of
a hidden Markov model (HMM). This is detailed in Sec. 5.2.
The SVM plus HMM combination, when correctly trained,
can translate a sequence of observations into a sequence of
inferred operations with few errors.

Challenge 3: Core migration. Our SMP setting has at-
tacker and victim VCPUs float amongst the various PCPUs.
The administrative Dom0O VM and any other VMs may also
float amongst them. This gives rise to two hurdles. First, we
must determine whether an observation is associated with
the victim or some other, unrelated VCPU. Second, we will
only be able to spy on the victim when assigned to the same
PCPU, which may coincide with only some fraction of the
victim’s execution.

In Sec. 5.2, we describe how the HMM mentioned above
can be modified to filter out sequences corresponding to un-
related observations. In Sec. 5.3, we provide a dynamic pro-
gramming algorithm, like those in bioinformatics, to “stitch”
together multiple inferred code-path fragments output by
the SVM+HMM and thereby construct fuller hypothesized
code-paths. By observing multiple executions of the vic-
tim, we can gather sufficiently many candidate sequences
to, through majority voting, output a full code path with
negligible errors.

Putting it all together. Our full attack pipeline is de-
picted in Fig. 1. The details of our measurement stage that
addresses the first challenge described above are presented
in Sec. 4. The analysis of these measurements to address
the second and third challenges is then broken down into
three phases: cache-pattern classification (Sec. 5.1), noise
reduction (Sec. 5.2), and code-path reassembly (Sec. 5.3).
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Figure 1: Diagram of the main steps in our side-channel attack.

4. CROSS-VM SIDE CHANNELS

In this section, we demonstrate how an access-driven cross-
VM side channel can be constructed on the L1 instruction
cache in a modern x86 architecture running Xen.

4.1 Instruction Cache Spying

Caches are usually set-associative. A w-way set-associative
cache is partitioned into m sets, each with w lines of size b.
So, if the size of the cache is denoted by ¢, we have m =
¢/(w x b). For example, in the L1 instruction cache of an In-
tel Yorkfield processor as used in our lab testbed, ¢ = 32KB,
w = 8, b = 64B. Hence, m = ¢/(w x b) = 64. Moreover, the
number of cache-line-sized memory blocks in a 4KB mem-
ory page is 4KB/b = 64. Therefore, memory blocks with the
same offset in a memory page will be mapped to the same
cache set.

Probing the instruction cache. A basic technique for
I-cache side-channels is timing how long it takes to read
data from memory associated with individual cache sets, as
described previously by Aciigmez [1]. To do so, we first allo-
cate sufficiently many contiguous memory pages so that their
combined size is equal to the size of the I-cache. We then di-
vide each memory page into 64 cache-line-sized blocks. The
i™ data block in each page will map to the same cache set.
To fill the cache set associated to offset ¢, then, it suffices
to execute an instruction within the i block of each of the
allocated pages. Filling a cache set is called PRIME-ing. We
will also want to measure the time it takes to fill a cache set,
this is called PROBE-ing. To PROBE the cache set associated
with offset i, we executes the rdtsc instruction, then jumps
to the first page’s " block, which has instructions to jump
to the " block of the next page, and so on. The final page
jumps back to code that again executes rdtsc and calculates
the elapsed time. This is repeated for each of the m cache
sets to produce a vector of cache set timings.

The prime-probe protocol. A common method for con-
ducting an access-driven cache attack is to PRIME and later
PROBE the cache, a so-called PRIME-PROBE protocol, as in-
troduced by Osvik et al. [33]. More specifically, a VCPU
U of the attacker’s VM spies on a victim’s VCPU V by
measuring the cache load in the L1 instruction cache in the
following manner:

PriME: U fills one or more cache sets by the method
described above.

IDLE: U waits for a prespecified PRIME-PROBE interval
while the cache is utilized by V.

PROBE: U times the duration to refill the same cache sets
to learn V’s cache activity on those sets.

Cache activity induced by V' during U’s PRIME-PROBE in-
terval will evict U’s instructions from the cache sets and re-
place them with V’s. This will result in a noticeably higher
timing measurement in U’s PROBE phase than if there had
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been little activity from V. Of course, PROBE-ing also ac-
complishes PRIME-ing the cache sets (i.e., evicting all in-
structions other than U’s), and so repeatedly PROBE-ing,
with one PRIME-PROBE interval between each PROBE, elim-
inates the need to separately conduct a PRIME step.

4.2 Preempting the Victim

A fundamental difficulty in an I-cache attack without SMT
support is for the attacker VCPU to regain control of the
PCPU resource sufficiently frequently (i.e., after the desired
PRIME-PROBE interval has passed). To accomplish this, we
leverage the tendency of the Xen credit scheduler to give the
highest run priority to a VCPU that receives an interrupt.
That is, upon receiving an interrupt, the attacker VCPU
will preempt another guest VCPU running on the PCPU,
provided that it is not also running with that highest pri-
ority (as a compute-bound victim would not be). As such,
our attack strategy is to deliver an interrupt to the attacker
VCPU every PRIME-PROBE interval.

We consider three types of interrupts to “wake up” the
attacking VCPU: timer interrupts, network interrupts and
inter-processor interrupts (IPIS).1 Timer interrupts in a
guest OS can be configured to be raised with a frequency
of at most 1000Hz, but this is not sufficiently granular for
our attack targets (e.g., a cryptographic key). Network in-
terrupts, as used in OS level CPU-cycle stealing attacks by
Tsafrir et al. [44], can achieve higher resolution, but in our
experiments the delivery times of network interrupts varied
due to batching and network effects, rendering it hard to
achieve microsecond-level granularity.

We therefore turn to IPIs. In SMP systems, an IPI allows
one processor to interrupt another processor or even itself. It
is usually issued through an advanced programmable inter-
rupt controller (APIC) by one core and passed to other cores
via either the system bus or the APIC bus. To leverage IPIs
in our attack, another attacker VCPU, henceforth called the
IPI VCPU , executes an endless loop that issues IPIs to the
attacker VCPU which is conducting the PRIME-PROBE pro-
tocol, henceforth called the probing VCPU . This approach
works generally well but is limited by two shortcomings.

First, due to interrupt virtualization by Xen, the PRIME-
PROBE interval that can be supported through IPIs cannot
be arbitrarily small. In our local testbed (see Sec. 6), we find
it hard to achieve a PRIME-PROBE interval that is shorter
than 50,000 PCPU cycles (roughly 16 microseconds). More
frequent interrupts will be accumulated and delivered to-
gether. Second, if the IPI VCPU is descheduled then this
can lead to periods during which no usable observations
are made. If the Xen scheduler is non-work-conserving—
meaning that a domain’s execution time is limited to a bud-
get, dictated by the cap and weight parameters assigned to

LA fourth option is high precision event timer interrupts as
used by Bangerter et al. [8], but these are not available to
guests in Xen.



it by Xen—then the IPI VCPU will be descheduled when
it exceeds its budget. These periods then must be detected
and any affected PRIME-PROBE instances discarded. How-
ever, if the scheduler is work-conserving (the default) and
so allows a domain to exceed its budget if no other domain
is occupying the PCPU, then descheduling is rare on a mod-
erately loaded machine. It is worth noting that the probing
VCPU executes so briefly that its execution appears not to
be charged toward its budget by the current Xen scheduler.

4.3 Sources of Noise

In this section we discuss sources of noise in the side chan-
nel described above, and how we deal with each one.

4.3.1 Hardware Sources of Noise

TLB misses. In x86 processors, hardware TLBs are usually
small set-associative caches that cache the translation from
virtual addresses to physical addresses. A TLB miss will
cause several memory fetches. Because the TLB is flushed
at each context switch, the PROBE of the first cache set
(see Sec. 4.1) will always involve TLB misses and so will be
abnormally high; as such, the PROBE results for the first
cache set will be discarded. However, in our approach, the
number of memory pages used for the PRIME-PROBE protocol
is small enough to avoid further TLB evictions.

Speculative execution. Modern superscalar processors
usually fetch instructions in batches and execute them out-
of-order. In order to force the in-order execution of our
PROBE code for accurate measurement, the instructions need
to be serialized using instructions like cpuid and mfence.

Power saving. The speed of a PROBE may be subject to
change due to PCPU power saving modes. If the attacker
VM is solely occupying a PCPU core, when it finishes its
PROBE and relinquishes PCPU resources, the core may be
slowed to save power. When the interrupt is delivered to
the attacker VCPU, it appears to take longer for the PCPU
to recover from the power saving mode and, in our experi-
ence, yields a much longer effective PRIME-PROBE interval.
Thus, longer-then-expected PRIME-PROBE intervals may in-
dicate there was no victim on the same core and so their
results are discarded.

4.3.2  Software Sources of Noise

Context switches. A Xen hypervisor context switch will
pollute the I-cache (though less than the D-cache in our ex-
perience). Moreover, noise due to a guest OS context switch
in the attacker VM may introduce additional difficulties.
Although there is not much we can do about the hypervi-
sor context-switch noise, we minimize the OS context switch
noise by modifying the core affinity of all the processes in the
attacker VM so that all user-space processes are assigned to
the IPI VCPU, minimizing context switches on the probing
VCPU. This is beneficial also because it enables the probing
VCPU to relinquish the PCPU as much as possible, allowing
another VCPU (hopefully, the victim’s) to share its PCPU.

Address space layout randomization. Address space
layout randomization (ASLR) does not interfere with our
attack (with 32KB L1 cache) because the L1 cache set to
which memory is retrieved is determined purely by its offset
in its memory page, and because ASLR in a Linux imple-
mentation aligns libraries to page boundaries.
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Emulated RDTSC instruction. In the absence of an
invariant timestamp counters [18], Xen 4.0 or later emulates
the rdtsc call to prevent time from going backwards. In this
case, the rdtsc call is about 15 or 20 times slower than the
native call [27], which diminishes the attacker VM’s ability
to measure the duration to PROBE a cache set. As such, the
attack we describe here works much more reliably when the
rdtsc call is not emulated.

Interference from other domains. One important as-
pect of software noise in the cache-based side channel is in-
terference from other domains besides the victim. The fact
that the attacker VCPU may observe activities of Dom0 or
other domains brings about one of a major difficulties in our
study: how can an attacker VM distinguish victim activity
of interest from cache activity from unrelated domains (or
victim activity that is not of interest)?

We discuss our solution to this hurdle in detail in Sec. 5.2,
though even with our solution described there, it is beneficial
if we can minimize the frequency with which PROBE results
reflect a VM other than the victim’s. In the configurations
we will consider in Sec. 6, if Dom0 is idle then the Xen sched-
uler will move the attacker and victim VCPU’s to distinct
cores most of the time. Thus, an effective strategy is to in-
duce load on Dom0: if multiple victim VCPUs and the IPI
VCPU are also busy and so together with Dom0 consume
all four cores of the machine, then the probing VCPU, by
relinquishing the PCPU frequently, invites another VCPU
to share its PCPU with it. When the co-resident VCPU
happens to be the victim’s VCPU that is performing the
target computation, then the PROBE results will be relevant
to the attacker.

Since Dom0 is responsible for handling network packets,
a general strategy to load Dom0 involves sending traffic at
a reasonably high rate to an unopened port of the victim
VM and/or attacker VM from a remote source. This can be
especially effective since traffic filtering (e.g., via iptables)
and shaping are commonly implemented in Dom0. In some
cases (e.g., Amazon AWS), the attacker can even specify
filtering rules to apply to traffic destined to his VM, and
so he can utilize filtering rules and traffic that will together
increase Dom0’s CPU utilization.

S. CLASSIFYING CODE PATHS

In this section we introduce a set of techniques that, when
combined, can enable an attacker VM to learn the code path
used by a co-resident victim VM. In settings where control
flow is dependent on confidential data, this enables exfiltra-
tion of secrets across VM boundaries. While the techniques
are general, for concreteness we will use as a running exam-
ple the context of cryptographic key extraction and, in par-
ticular, learning the code path taken when using the classic
square-and-multiply algorithm. This algorithm (and gener-
alizations thereof) have previously been exploited in access-
driven attacks in non-virtualized settings (e.g., [1,36]), but
not in virtualized SMP systems as we explore here.

The square and multiply algorithm is depicted in Fig. 2. It
efficiently computes the modular exponentiation z* mod N
using the binary representation of e, i.e., e = 2" e, +---+
2¢;. It is clear by observation that the sequence of function
calls in a particular execution of SquareMult directly leaks
e, which corresponds to the private key in many decryption
or signing algorithms. We let M, S, and R stand for calls



SquareMult(z, e, N):
let en,...,e1 be the bits of e
y<+ 1
for i =n down to 1 {

y + Square(y) (S)
y + ModReduce(y, N) (R)
if e; =1 then {

y < Mult(y, ) (
y < ModReduce(y, N)

}
}

return y

EIS

Figure 2: The square-and-multiply algorithm.

to Mult, Square, and ModReduce, respectively, as labeled in
Fig. 2. Thus, the sequence SRM RSR corresponds to expo-
nentiation by e = 2.

The techniques we detail in the next several sections show
how an attacker can, despite VMM isolation, learn such se-
quences of operations.

5.1 Cache Pattern Classifier

Recall from Sec. 4 that the output of a single PRIME-
PROBE instance is a vector of timings, one timing per cache
set. The first step of our algorithm is to classify each such
vector as indicating a multiplication (M), modular reduc-
tion (R) or squaring (S) operation. To do so in our ex-
periments, we employ a multiclass support vector machine
(SVM), specifically that implemented in libsvm [15]. An
SVM is a supervised machine learning tool that, once trained,
labels new instances as belonging to one of the classes on
which it was trained. It also produces a probability esti-
mate in (0, 1] associated with its classification, with a num-
ber closer to 1 indicating a more confident classification.

To use an SVM to classify new instances, it is necessary to
first train the SVM with a set of instance-label pairs. To do
so, we use a machine with the same architecture as the ma-
chine on which the attack will be performed and configure it
with the same hardware settings. We then install a similar
software stack for which we have total control of the hypervi-
sor. To collect our training data, we create a victim VM and
attacker VM like those one would use during an attack. We
use the xm command-line tools in Dom0 to pin the VCPUs
of the victim VM and attacker’s probing VCPU to the same
PCPU. We then set the victim VM to repeatedly perform-
ing modular exponentiations with the same arguments and,
in particular, with an exponent of all 1’s, and the probing
VCPU to repeatedly performing PRIME-PROBE instances.

This allows for the collection of vectors, one per PRIME-
PROBE instance, but there remains the challenge of accu-
rately labeling them as M, S or R. To do so, we need to
establish communication from the victim VM to the at-
tacker VM to inform the latter of the operation being per-
formed (multiplication, squaring, or modular reduction) at
any point in time. However, this communication should take
as little time as possible, since if the communication takes
too long, measurements collected from the PRIME-PROBE tri-
als during training would differ from those in testing.

We employ cross-VM shared memory for this communi-
cation. Briefly, Xen permits different domains to establish
memory pages shared between them (see [16, Ch. 4]). We
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utilize this shared memory by modifying the victim VM to
write to the shared memory the type of operation (M, S, or
R) immediately before performing it, and the attacker VM
reads this value immediately after completing each PROBE
of the entire cache.

Another challenge arises, however, which is how to mod-
ify the victim VM’s library that performs the exponentiation
while keeping other parts of the library unchanged. Adding
the shared-memory writes prior to compilation would change
the layout of the binary and so would ruin our PROBE results
for the purpose of training. Instead, we prepare the instruc-
tions for shared-memory writing in a dynamic shared library
called 1ibsync. Then we instrument the binary of the expo-
nentiation library to hook the Square, Mult, and ModReduce
functions and redirect each to libsync, which simply up-
dates the shared memory and jumps back to the Square,
Mult or ModReduce function, as appropriate. Because the
libsync and victim’s library are compiled independently,
the address space layout of the latter remains untouched.
Even so, the memory-writing instructions slightly pollute
the instruction cache, and so we exclude the cache sets used
by these instructions (three sets out of 64).

5.2 Noise Reduction

There are two key sources of noise that we need to address
at this phase of the key extraction process. The first is the
classification errors of the SVM. Noise arising from events
such as random fluctuations in probe timings causes the ma-
jority of SVM classification errors. Incomplete PRIME-PROBE
overlap with exponentiation operations occasionally creates
ambiguous cache observations, for which no classification is
strictly correct. The second is the presence of PRIME-PROBE
results and, in turn, SVM outputs that simply encode no in-
formation of interest to the attacker for other reasons, e.g.,
because the victim VCPU had migrated to a different PCPU
from the attacker or because it was performing an operation
not of interest to the attacker. Consequently, we develop
a sequence of mechanisms to refine SVM outputs to reduce
these sources of noise.

Hidden Markov Model. We start by employing a hid-
den Markov model (HMM) to eliminate many of the errors
in SVM output sequences. (We assume reader familiarity
with HMM basics. For an overview, see, e.g., [12].) Our
HMM models the victim’s exponentiation as a Markov pro-
cess involving transitions among hidden “square,” “multiply,”
and “reduce” states, respectively representing Square, Mult,
and ModReduce operations. As exponentiation is executed
by the victim, labels output by the attacker’s SVM give a
probabilistic indication of the victim’s hidden state.

As the SVM outputs multiple labels per Square, Mult, or
ModReduce operation, we represent an operation as a chain
of hidden states in the HMM. As is the case with any error-
correcting code, the redundancy of SVM output labels helps
rectify errors. Intuitively, given multiple labels per operation
(e.g., induction of correct sequence SSSSS by a Square op-
eration), the HMM can correct occasional mislabelings (e.g.,
the outlying M in SSSMS). The HMM also corrects errors
based on structural information, e.g., the fact that a square
or multiply is always followed by a modular reduction.

While the HMM takes as input a sequence of SVM la-
bels, each such label, S, M, or R, is first mapped into an
expanded label set that reflects its corresponding level of
SVM confidence. Given a “high” SVM confidence, in the
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Figure 3: Diagram of the HMM used in our exper-
iments with 4096-bit base r and modulus N. Emis-
sion labels are depicted in the lower half, hidden
states in the upper half. Solid arrows indicate tran-
sitions, dotted arrows denote emissions. Emission
probabilities below 0.01 are omitted.

range [0.8,1.0], a label remains unchanged. For “medium”
confidence, lying within [0.6, 0.8), a label is transformed into
a different label indicating this medium confidence; i.e., S,
M, and R are mapped respectively to new labels s, m, and
r. Finally, given a “low” confidence, in [0, 0.6), any of S, M,
or R is mapped to a generic, “low confidence” label L.

In brief, then, the SVM output label set {S, M, R} is ex-
panded, through coarse integration of SVM confidence mea-
sures, into a set of seven labels {S, M, R, s, m, r, L}. This ex-
panded set constitutes the emission labels of the HMM. We
found that hand-tuning the transition and emission prob-
abilities in the HMM resulted in better performance, i.e.,
fewer errors in HMM decoding, than training via the Baum-
Welch algorithm [10]. The full HMM, with hidden states,
emission labels, and transition and emission probabilities, is
depicted in Fig. 3.

Given this HMM and a sequence of expanded-label SVM
emissions, we run a standard Viterbi algorithm [45] to de-
termine the maximum likelihood sequence of corresponding
hidden states. The result is a sequence of labels from the
hidden-state set {S1, ..., S5, M1, ..., M5, R1, ..., R5,
Unknown}. We refer to this as the HMM output sequence.

Post-processing HMM Outputs. We post-process HMM
output sequences to remove state labels that are redundant
or agnostic to key-bit values. The states in an HMM oper-
ator chain (e.g., SI...S84 S5%, where “S57” denotes one or
more occurrences of S5) collectively indicate only a single
operation (e.g., one instance of Square). Thus, our post-
processing step replaces every chain of the form S1...54 S5"
with a single S and every chain of the form MI... M4 M5"
with a single M. Unknown states carry no information about
key bit values and so are discarded.

We found it necessary to post-process R1... R4 R5" chains
in a somewhat more refined manner. Recall that ModReduce
operations are key-agnostic, and so we discarded such chains,
provided that they were short. The HMM output sequence,
however, would sometimes include long chains of the form
R1...R4 R5", which would typically signal a cryptographic
observation that passed unobserved. Any such chain of suf-
ficient length was thus replaced in post-processing with a *,
indicating a hypothesized omitted Mult or Square. In our
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experiments described in Sec. 6, we did so for chains of the
form R1...R4 R5" of length 24 or more. Chains of length
less than this were discarded.

Consequently, post-processing yields refined HMM out-
puts over the label set {S, M, *}.

Filtering out non-cryptographic HMM outputs. Suc-
cessful key reconstruction requires that we reliably identify
and retain observed sequences of cryptographic operations,
i.e., those involving private key material, while discarding
non-cryptographic sequences. Extraneous code paths arise
when the victim migrates to a core away from the attacker
or executes software independent of the cryptographic key.

The SVM in our attack does not include a label for ex-
traneous code paths. (Non-cryptographic code constitutes
too broad a class for effective SVM training.) Long non-
cryptographic code paths, however, are readily distinguish-
able from cryptographic code paths based on the following
observation. A random private key—or key subsequence—
includes an equal number of 0 and 1 bits in expectation.
As a 1 induces a square-and-multiply, while a 0 induces a
squaring only, the expected ratio of corresponding S to M la-
bels output by the SVM, and thus the HMM, is 2:1. Thus,
a reasonably long key subsequence will evidence approxi-
mately this 2:1 ratio with high probability. In contrast, a
non-cryptographic code path tends to yield many Unknown
states and therefore outputs sequences that are generally dis-
carded, or in rare cases yields short sequences with highly
skewed S-to-M ratio.

The following elementary threshold classifier for crypto-
graphic versus non-cryptographic post-processed HMM out-
put sequences proves highly accurate. Within a given HMM
output sequence, we identify all subsequences of S and M la-
bels of length at least «, for parameter a.. (In other words,
we disregard short subsequences, which tend to be spurious
and erroneously skew S-to-M ratios.) We count the total
number a of S labels and b of M labels across all of these
subsequences, and let a/(b + 1) represent the total S-to-M
ratio. (Here “+1” ensures a finite ratio.) If this S-to-M ratio
falls within a predefined range [p1, p2], for parameters p; and
p2, with 0 < p1 < 2 < p2, the output sequence is classified
as a cryptographic observation. Otherwise, it is classified as
non-cryptographic.

We found that we could improve our detection and fil-
tering of inaccurate cryptographic sequences by additionally
applying a second, simple classifier. This classifier counts the
number of M M label pairs in an HMM output sequence. As
square-and-multiply exponentiation never involves two se-
quential multiply operations—there is always an interleaved
squaring—such M M pairs indicate a probable erroneous se-
quence. Thus, if the number of MM pairs exceeds a param-
eter 3, we classify the output sequence as inaccurate and
discard it.

We applied these two classifiers (S-to-M ratio and M M-
pair) to all HMM output sequences, and discarded those
classified as non-cryptographic. The result is a set of post-
processed, filtered HMM outputs, of which an overwhelm-
ing majority represented observed cryptographic operations,
and whose constituent labels were largely correct.

5.3 Code-path reassembly

Recall that a major technical challenge in our setting is
the fact that the victim VM’s VCPUs float across physical
cores. This movement frequently interrupts attacker VM



PRIME-PROBE attempts, and truncates corresponding HMM
output sequences. It is thus helpful to refer to the post-
processed, filtered HMM outputs as fragments.

Fragments are short, more-or-less randomly positioned
subsequences of hypothesized labels for the target key oper-
ations. Despite the error-correcting steps detailed above,
fragments also still contain a small number of erroneous
S and M labels as well as * labels. The error-correcting
steps detailed in Sec. 5.2 operate within fragments. In the fi-
nal, sequence-reconstruction process described here, we cor-
rect errors by comparing labels across fragments, and also
“stitch” fragments together to achieve almost complete code-
path recovery. This will reveal most of the key sequence;
simple brute forcing of the remaining bits reveals the rest.

Accurate sequence alignment and assembly of fragments
into a full key-spanning label sequence is similar to the well-
known sequence-reconstruction problem in bioinformatics.
There are many existing tools for DNA sequencing and sim-
ilar tasks, e.g., [7,17]. However, various differences between
that setting and ours, in error rates, fragment lengths, etc.,
have rendered these tools less helpful than we initially hoped,
at least so far. We therefore developed our own techniques,
and leave improving them to future work.

In this final, sequence-reconstruction step of key recov-
ery, we partition fragments into batches. The number of
batches ¢ and number of fragments 6 per batch, and thus
the total number (0 of fragments that must be harvested
by the attacker VM, are parameters adjusted according to
the key-recovery environment. It is convenient, for the final
stage of processing (“Combining spanning sequences,” see
below) to choose ¢ to be a power of three.

Our final processing step here involves three stages: inter-
fragment error correction, fragment stitching to generate se-
quences that span most of the code-path, and then a method
for combining spanning sequences to provide an inferred
code-path. The first two stages operate on individual batches
of fragments, as follows:

Cross-fragment error-correction. In this stage, we cor-
rect errors by comparing labels across triples of fragments.

First, each distinct pair of fragments is aligned using a
variant of the well-known dynamic programming (DP) algo-
rithm for sequence alignment [31]. We customize the algo-
rithm for our setting in the following ways. First, we permit
a * label to match either a S or an M. Second, because two
fragments may reflect different, potentially non-intersecting
portions of the key, terminal gaps (i.e., inserted before or
after a fragment) are not penalized. Third, a contiguous se-
quence of nonterminal gaps is penalized quadratically as a
function of its length, and a contiguous sequence of matches
is rewarded quadratically as a function of its length.

We then construct a graph G = (V, E) in which each
fragment is represented by a node in V. An edge is included
between two fragments if, after alignment, the number of
label matches exceeds an empirically chosen threshold ~.
Of interest in this graph are triangles, i.e., cliques of size
three. A triangle (vi,v2,v3) corresponds to three mutually
overlapping fragments / nodes, v1, v2, and vz, and is useful
for two purposes.

First, a triangle permits cross-validation of pairwise align-
ments, many of which are spurious. Specifically, let k12 be
the first position of v to which a (non-gap) label of v
aligned; note that ki2 could be negative if the first label
of vy aligned with an initial terminal gap of vi, and simi-
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larly for kis and kos. If |(k13 — ki12) — ko3| < 7, where 7 is
an algorithmic parameter (5 in our experiments), then the
alignments are considered mutually consistent. (Intuitively,
ki3 — k12 is a measure of alignment between vy and vs with
respect to vi, while k23 measures direct alignment between
v2 and wvs. Given perfect alignment, the two are equal.)
Then, the triangle is tagged with the “length” of the region
of intersection among v1,ve and vs

The second function of triangles is error-correction. Each
triangle (v1, v2,v3) of G is processed in the following way, in
descending order. Each position in the region of intersection
of v1, vz and vs has three corresponding labels (or gaps), one
for each fragment. If two are the same non-gap label, then
that label is mapped onto all three fragments in that posi-
tion. In other words, the three fragments are corrected over
their region of intersection according to majority decoding
over labels.

Cross-fragment error-correction changes neither the length
nor number of fragments in the batch. It merely reduces the
global error rate of fragment labels. We observe that if the
mean error rate of fragments, in the sense of edit distance
from ground truth, is in the vicinity of 2% at this stage,
then the remaining processing results in successful key re-
covery. We aim at this mean error rate in parameterizing
batch sizes (0) for a given attack environment.

Fragment stitching. In this next processing stage, a batch
of fragments is assembled into what we call a spanning se-
quence, a long sequence of hypothesized cryptographic op-
erations. In most cases, the maximum-length spanning se-
quence for a batch covers the full target key.

The DP algorithm is again applied in this stage to every
pair of fragments in a batch, but now customized differ-
ently. First, terminal gaps are still not penalized, though a
contiguous sequence of matches or (nonterminal) gaps accu-
mulates rewards or penalties, respectively, only linearly as
a function of its length. This is done since the fragments
are presumably far more correct now, and so rewarding se-
quences of matches superlinearly might overwhelm any gap
penalties. Second, the penalty for each nonterminal gap is
set to be very high relative to the reward for a match, so as
to prevent gaps unless absolutely necessary.

Following these alignments, a directed graph G’ = (V', E’)
is constructed in which each node in V' (as in V above) rep-
resents a fragment. An edge (v1,v2) is inserted into £’ for
every pair of fragments v1 and v2 with an alignment in which
the first label in v2 is aligned with some label in v, after the
first. (Intuitively, vo overlaps with and sits to the “right” of
v1.) Assuming, as observed consistently in our experiments,
that there are no alignment errors in this process, the re-
sulting graph G’ will be a directed acyclic graph (DAG).?

A path of fragments / nodes vi,v2,...,0m € V' in this
graph is stitched together as follows. We start with a source
node v and append to it the non-overlapping sequence of
labels in vz, i.e., all of the labels of vz aligned with the
ending terminal gaps of vy, if any. (Intuitively, any labels
in vy positioned to the “right” of v; are appended to vi.)
We build up a label sequence in this way across the entire
path. The resulting sequence of labels constitutes a spanning
sequence. We employ a basic greedy algorithm to identify

2A cycle in this graph indicates the need to adjust parame-
ters in previous stages and retry.



the path in G’ that induces the maximum-length spanning
sequence.

Combining spanning sequences. The previous stages,
applied per batch, produce ¢ spanning sequences. The (
spanning sequences emerging from the fragment stitching
stage are of nearly, but not exactly, equal length, and con-
tain some errors. For the final key-recovery stage, we im-
plement an alignment and error-correction algorithm that
proceeds in rounds. In each round, the sequences produced
from the previous round are arbitrarily divided into triples,
and each triple is reduced to a single spanning sequence that
is carried forward to the next round (and the three used to
create it are not). For this reason, we choose (, the num-
ber of batches, to be a power of three, and so we iterate
the triple-merging algorithm logs ¢ times. The result is a
sequence of hypothesized cryptographic operations covering
enough of the target key to enable exhaustive search over all
possibilities for any remaining * values.

Each round proceeds as follows. Each triple (s1,s2,s3)
is first aligned using a basic three-way generalization of DP
(e.g., see [23, Section 4.1.4]). This may insert gaps (rarely
consecutively) into the sequences, yielding new sequences
(s, sh, s5). Below we denote a gap so inserted by the “label”
U. The algorithm is parameterized to prevent alignment of S
and M labels in the same position within different spanning
sequences.

To the resulting aligned sequence triple (s, s5,s3), the
length of which is denoted as ¢, is applied a modified majority-
decoding algorithm that condenses the triple into a single,
merged output sequence. We say that s7, s, and s5 strongly
agree at position j if all three sequences have identical labels
at position j or, for 1 < j < £, if any two of the three have
identical labels at each of positions j — 1, 7, and 5+ 1. In
this step, the output sequence adopts a label at position j
if the three strongly agree on that label at position j and
the label is S, M, or, in the last round, L. Otherwise, the
output sequence adopts * at position j. At the end of the
last round, any residual LI labels are removed.

6. EVALUATION

We performed a case study using the libgcrypt v.1.5.0
cryptographic library (see http://www.gnu.org/software/
libgcrypt/). This is the most recent version of libgcrypt;
our results extend to cover earlier versions as well. To be
concrete, we also fixed an application that uses the library:
Gnu Privacy Guard (GnuPG) v.2.0.19 (http://www.gnupg.
org/). GnuPG is used widely for encrypting and signing
email, but we note that libgcrypt use goes beyond just
GnuPG. The attack should extend to any application using
the vulnerable routines from libgcrypt.

ElGamal encryption. Manual code review revealed that
libgcrypt employs a more-or-less textbook variant of the
square-and-multiply modular exponentiation algorithm for
use with cryptosystems such as RSA [40] and ElGamal [19].
Our case study focuses on the latter.

ElGamal encryption in libgcrypt uses a cyclic group Z,
for prime p and generator g. The bit length size of p is
dictated by a user-specified security parameter x. Given g
and p, a secret key is chosen uniformly at random to be a
non-negative integer x whose bit length is, for example, 337,
403, or 457 when « is 2048, 3072, or 4096, respectively. We
note that this deviates from standard ElGamal, in which one
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would have |z| ~ |p|. The smaller exponent makes decryp-
tion faster. The public key is set to be X = g” mod p.

To encrypt a message M € Zj, a new value r € Z,, for
m = 2‘””‘, is chosen at random; the resulting ciphertext is
(¢",X"-M). (Typically M is a key for a separate symmetric
encryption mechanism.) Decryption of a ciphertext (R,Y)
is performed by computing R* mod p, inverting it modulo p,
and then multiplying Y by the result modulo p.

Our attack abuses the fact that computation of R* mod p
during decryption is performed using the square-and-multiply
modular exponentiation algorithm. The pseudocode of Fig. 2
is a close proxy of the code used by libgcrypt.

6.1 With a Work-Conserving Scheduler

Experiment settings. We evaluated our attack in a set-
ting in which two paravirtualized guest VMs, each of which
possesses two VCPUs, co-reside on a single-socket quad-core
processor, specifically an Intel Core 2 Q9650 with an oper-
ating frequency of 3.0GHz. The two guest VMs and DomO
were each given weight 256 and cap 0O; in particular, this
configuration is work-conserving, i.e., it allows any of them
to continue utilizing a PCPU provided that no other domain
needs it. Dom0 was given a single VCPU. One guest VM
acted as the victim and the other as the attacker. We ran
Xen 4.0 as the virtualization substrate, with rdtsc emula-
tion disabled. Both VMs ran an Ubuntu 10.04 server with
a Linux kernel 2.6.32.16. The size of the memory in the
guest VMs was large enough to avoid frequent page swap-
ping and so was irrelevant to the experiments. The victim
VM ran GnuPG v.2.0.19 with libgcrypt version v.1.5.0, the
latest versions as of this writing. The victim’s ElGamal pri-
vate key was generated with security parameter x = 4096.
Other parameters for our attack are shown in Fig. 4.
In general, the at-
tacker can either pas-

sively wait for peri- Parameter | Sec. 6.1 | Sec. 6.2
ods where it shares [p1, p2] [1,4] (1,4]
a PCPU with the o 200 100
victim, or can ac- B 5 5
3 113 ) C 9 9
tively “create” more 0 30 35
frequent and longer - 5 5
such periods on pur- y 100 50

pose. To abbrevi-
ate our experiment,
we assumed a situa-
tion that is to the at-
tacker’s advantage (but is nevertheless realistic), in which
both Dom0O and one victim VCPU are CPU-bound, run-
ning non-cryptographic computational tasks. These con-
ditions maximized the frequency with which the attacker
and the other victim VCPU share a PCPU. As discussed
in Sec. 4.3.2, Dom0 can be loaded by, for example, forcing
it to analyze a high rate of traffic with expensive filtering
rules. We experimented with several such scenarios (vary-
ing in the number of rules and packet rates), as well as other
situations that would encourage the attacker and victim to
share a PCPU (e.g., dedicating one core to Dom0, which
“might be a good idea for systems running I/O intensive
guests” [47]), many of which gave results similar to those
reported here.

Another way in which we were generous to the attacker
in this demonstration was that we assumed the victim VM
would often perform ElGamal decryption with the target

Figure 4: Parameter settings
for attacks
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Figure 6: Results with work-conserving scheduler
(Sec. 6.1). (a) Frequency of fragment lengths ex-
tracted, each bar represents the number of frag-
ments whose length falls between the x-axis labels.
(b) Accuracy of spanning sequences as a function of
number of fragments in a batch.

key—e.g., because the attacker had the ability to remotely
trigger decryption, as might be realistic for a network service
that the attacker could invoke—and that this decryption ex-
ecuted on the victim VCPU that was not already compute-
bound. As such, in our demonstration, the attacker did
not have to wait indefinitely for a private-key decryption,
but rather the victim performed decryptions over and over.
Given our ability to filter non-cryptographic observations,
less frequent exponentiations would slow down, but not pre-
vent, the attack. In fact, it is worth noting that exponen-
tiation with the private exponent under attack constitutes
only roughly 2% of the execution time of a private-key de-
cryption, and so even in this demonstration, 98% of victim
execution was irrelevant to our attack and filtered out by
our techniques.

Experiment results. Our SVM was trained as per the
procedure discussed in Sec. 5.1 with PRIME-PROBE results
from 30, 000 Square operations, 30,000 Mult operations, and
80, 000 ModReduce operations. We skewed the training data
toward ModReduce operations to minimize ModReduce op-
erations being misclassified as Square or Mult operations. A
three-fold cross validation resulted in the confusion matrix
shown in Fig. 5.

In the attack, we per-
formed 300,000,000 PRIME- S|IM|R
PROBE trials in chunks of S || .91 | .00 | .09
100,000. The data collec- M| .01 ] .92 | .07
tion lasted about six hours, R | .02 ].01 ]| .97

during which roughly 1000
key-related fragments were
recovered from our HMM
(Sec. 5.2).

Of these, 330 key-related fragments had length at least a.
The lengths of these fragments are shown in Fig. 6(a). Let
the accuracy of a fragment be defined as 1 minus the normal-
ized edit distance of the fragment from ground truth, i.e.,
the edit distance divided by the length of the fragment. On
average, these fragments had 0.958 accuracy with a standard
deviation of 0.0164.

We then combined fragments (Sec. 5.3) to produce span-
ning sequences. The accuracy of these spanning sequences
was a function of the number of fragments in each batch,
as shown in Fig. 6(b). We chose to use batches of 30 frag-

Figure 5: Confusion
matrix for SVM
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ments each, yielding an average spanning sequence accuracy
of 0.981.

The final step was to combine the spanning sequences (end
of Sec. 5.3). The resulting key had no erasures, insertions or
replacements. The only uncertainties arose from * labels at
the two ends or occasionally in the middle, each representing
“no-op” (a spurious operation) or a single Square or Mult
operation. This left us needing to perform a brute-force
search for the uncertain bits, but the search space was only
9,862 keys.?

6.2 With a Non-Work-Conserving Scheduler

We also evaluated the attack for a non-work-conserving
setting of the Xen scheduler which is configured as weight =
256 and cap = 80 (and other parameters as shown in Fig. 4).
The induced workload in Dom0 and the victim remains the
same as in the previous section. Recall from Sec. 4 that this
is a more difficult case for our attack, since it causes the
IPI VCPU to be descheduled more aggressively, which in
turn interferes with initiating an IPI to the probing VCPU.
When this occurs, the corresponding PRIME-PROBE result
must be discarded. Therefore, if the scheduler is non-work-
conserving, data collection takes longer and the fragments
resulting from our HMM tend to be shorter.

These effects are
demonstrated in Fig. 7,
which shows the frag-
ment lengths at the
same stage of pro-
cessing as is reflected
in Fig. 6(a) for the
work-conserving case.
Despite the fact that
these fragments are
based on 1, 900, 000, 000
PRIME-PROBE trials
(collected during about
45 hours), over six
times the number we collected in Sec. 6.1, only 322 frag-
ments of length at least o resulted—an order of magnitude
less than the work-conserving case. And this occurred de-
spite the fact that we set a to only 100 in the non-work-
conserving case, i.e., half of the value in Sec. 6.1. These 322
fragments yielded 9 spanning sequences with average accu-
racy 0.98, which were “stitched” together into a single key
with only a few missing bits, yielding a search space of only
6615 keys.

120

2 o » 3
& 8 &8 8

Number of fragments

[~}
S

0 [ l—,
100 120 140 160 180 200 220 240 265 285 305
Length of fragment (number of operations)

Figure 7: Fragment lengths,
non-work-conserving sched-
uler (Sec. 6.2)

7. COUNTERMEASURES

There are multiple avenues for possible defenses against
cross-VM side-channels, whose benefits and downsides we
discuss here.

Avoiding co-residency. In high-security environments, a
longstanding practice is to simply not use the same computer
to execute tasks that must be isolated from each other, i.e.,
to maintain an “air gap” between the tasks. This remains
the most high-assurance defense against side-channel (and
many other) attacks. But this would obviate many of the

3Rather than searching over all three possible operation
assignments to each * symbol, we prune the search space
by grouping assignments into functional equivalence classes;
e.g., (Square, no-op) is equivalent to (no-op, Square).



current and future uses of VMs, including public clouds that
multiplex physical servers such as Amazon EC2, Windows
Azure, and Rackspace, and the other VM-powered applica-
tions discussed in the introduction.

Side-channel resistant algorithms. There exists a long
line of work on cryptographic algorithms designed to be
side-channel resistant (e.g., [11, 33,35, 35,36]). Recent ver-
sions of some cryptographic libraries attempt to prevent the
most egregious side-channels; e.g., one can use the Mont-
gomery ladder algorithm [30] for exponentiation or even a
branchless algorithm. But these algorithms are slower than
leakier ones, legacy code is still in wide use (as exhibited by
the case of libgcrypt), and proving that implementations
are side-channel free remains beyond the scope of modern
techniques. Moreover, our techniques are applicable to non-
cryptographic settings where there are few existing mecha-
nisms for preventing side-channels.

Core scheduling. Another defense might seek to modify
scheduling to at least limit the granularity of interrupt-based
side-channels. The current Xen credit scheduler optimizes
low latency at the cost of allowing frequent interrupts, even
by non-malicious programs. Future Xen releases [42] already
have plans to modify the way interrupts are handled, allow-
ing a VCPU to preempt another VCPU only when the latter
has been running for a certain amount of time (default be-
ing 1ms). This will reduce our side-channel’s measurement
granularity, but not eliminate the side-channel. Coarser side
channels may already prove damaging [39]. A fundamen-
tal question for future work, therefore, is what interruption
granularity best balances performance and security.

8. CONCLUSION

The use of virtualization to isolate a computation from
malicious ones that co-reside with it is growing increasingly
pervasive. This trend has been facilitated by the failure of
today’s operating systems to provide adequate isolation, the
emergence of commodity VMMs offering good performance
(e.g., VMWare, Xen, HyperV), and the growth of cloud fa-
cilities (e.g., EC2, Rackspace) that leverage virtualization
to enable customers to provision computations and services
flexibly. Given the widespread adoption of virtualization, it
is thus critical that its isolation properties be explored and
understood.

In this paper, we have shed light on the isolation prop-
erties (or lack thereof) of a leading VMM (Xen) in SMP
environments, by demonstrating that side-channel attacks
with fidelity sufficient to exfiltrate a cryptographic key from
a victim VM can be mounted. Ours is the first demonstra-
tion of such a side-channel in a virtualized SMP environ-
ment. Challenges that our attack overcomes include: pre-
empting the victim VM with sufficient frequency to enable
fine-grained monitoring of its I-cache activity; filtering out
numerous sources of noise in the I-cache arising from both
hardware and software effects; and core migration that ren-
ders many attacker observations irrelevant to the task of
extracting the victim’s key. Through a novel combination
of low-level systems implementation and sophisticated tools
such as classifiers (e.g., SVMs and HMMSs) and sequence
alignment algorithms, we assembled an attack that was suf-
ficiently powerful to extract ElGamal decryption keys from
a victim VM in our lab tests.
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