
Detection and Analysis of Drive-by-Download Attacks
and Malicious JavaScript Code

Marco Cova, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{marco,chris,vigna}@cs.ucsb.edu

ABSTRACT
JavaScript is a browser scripting language that allows developers
to create sophisticated client-side interfaces for web applications.
However, JavaScript code is also used to carry out attacks against
the user’s browser and its extensions. These attacks usually result
in the download of additional malware that takes complete con-
trol of the victim’s platform, and are, therefore, called “drive-by
downloads.” Unfortunately, the dynamic nature of the JavaScript
language and its tight integration with the browser make it difficult
to detect and block malicious JavaScript code.

This paper presents a novel approach to the detection and analy-
sis of malicious JavaScript code. Our approach combines anomaly
detection with emulation to automatically identify malicious Java-
Script code and to support its analysis. We developed a system that
uses a number of features and machine-learning techniques to es-
tablish the characteristics of normal JavaScript code. Then, during
detection, the system is able to identify anomalous JavaScript code
by emulating its behavior and comparing it to the established pro-
files. In addition to identifying malicious code, the system is able
to support the analysis of obfuscated code and to generate detection
signatures for signature-based systems. The system has been made
publicly available and has been used by thousands of analysts.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing and In-
formation Systems—Security and Protection

General Terms
Security

Keywords
Drive-by-download attacks, web client exploits, anomaly detection

1. INTRODUCTION
Malicious web content has become the primary instrument used

by miscreants to perform their attacks on the Internet. In particular,
attacks that target web clients, as opposed to infrastructure compo-
nents, have become pervasive [28].

Drive-by downloads are a particularly common and insidious
form of such attacks [29]. In a drive-by download, a victim is lured
to a malicious web page. The page contains code, typically writ-
ten in the JavaScript language, that exploits vulnerabilities in the

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

user’s browser or in the browser’s plugins. If successful, the ex-
ploit downloads malware on the victim machine, which, as a con-
sequence, often becomes a member of a botnet.

Several factors have contributed to making drive-by-download
attacks very effective. First, vulnerabilities in web clients are wide-
spread (in 2008, such vulnerabilities constituted almost 15% of the
reports in the CVE repository [18]), and vulnerable web clients
are commonly used (about 45% of Internet users use an outdated
browser [8]). Second, attack techniques to reliably exploit web
client vulnerabilities are well-documented [4, 33–35]. Third, so-
phisticated tools for automating the process of fingerprinting the
user’s browser, obfuscating the exploit code, and delivering it to the
victim, are easily obtainable (e.g., NeoSploit, and LuckySploit [15]).

The mix of widespread, vulnerable targets and effective attack
mechanisms has made drive-by downloads the technique of choice
to compromise large numbers of end-user machines. In 2007, Pro-
vos et al. [28] found more than three million URLs that launched
drive-by-download attacks. Even more troubling, malicious URLs
are found both on rogue web sites, that are set up explicitly for
the purpose of attacking unsuspecting users, and on legitimate web
sites, that have been compromised or modified to serve the ma-
licious content (high-profile examples include the Department of
Homeland Security and the BusinessWeek news outlet [10, 11]).

A number of approaches have been proposed to detect mali-
cious web pages. Traditional anti-virus tools use static signatures
to match patterns that are commonly found in malicious scripts [2].
Unfortunately, the effectiveness of syntactic signatures is thwarted
by the use of sophisticated obfuscation techniques that often hide
the exploit code contained in malicious pages. Another approach
is based on low-interaction honeyclients, which simulate a regu-
lar browser and rely on specifications to match the behavior, rather
than the syntactic features, of malicious scripts (for example, invok-
ing a method of an ActiveX control vulnerable to buffer overflows
with a parameter longer than a certain length) [14, 23]. A prob-
lem with low-interaction honeyclients is that they are limited by the
coverage of their specification database; that is, attacks for which a
specification is not available cannot be detected. Finally, the state-
of-the-art in malicious JavaScript detection is represented by high-
interaction honeyclients. These tools consist of full-featured web
browsers typically running in a virtual machine. They work by
monitoring all modifications to the system environment, such as
files created or deleted, and processes launched [21, 28, 37, 39]. If
any unexpected modification occurs, this is considered as the man-
ifestation of an attack, and the corresponding page is flagged as
malicious. Unfortunately, also high-interaction honeyclients have
limitations. In particular, an attack can be detected only if the vul-
nerable component (e.g., an ActiveX control or a browser plugin)
targeted by the exploit is installed and correctly activated on the de-

tection system. Since there exist potentially hundreds of such vul-
nerable components, working under specific combinations of oper-
ating system and browser versions, the setup of a high-interaction
honeyclient and its configuration is difficult and at risk of being in-
complete. As a consequence, a significant fraction of attacks may
go undetected. (Indeed, Seifert, the lead developer of a popular
high-interaction honeyclient, says, “high-interaction client honey-
pots have a tendency to fail at identifying malicious web pages,
producing false negatives that are rooted in the detection mecha-
nism” [32].)

In this paper, we propose a novel approach to the automatic de-
tection and analysis of malicious web pages. For this, we visit web
pages with an instrumented browser and record events that occur
during the interpretation of HTML elements and the execution of
JavaScript code. For each event (e.g., the instantiation of an Ac-
tiveX control via JavaScript code or the retrieval of an external re-
source via an iframe tag), we extract one or more features whose
values are evaluated using anomaly detection techniques. Anoma-
lous features allow us to identify malicious content even in the case
of previously-unseen attacks. Our features are comprehensive and
model many properties that capture intrinsic characteristics of at-
tacks. Moreover, our system provides additional details about the
attack. For example, it identifies the exploits that are used and the
unobfuscated version of the code, which are helpful to explain how
the attack was executed and for performing additional analysis.

We implemented our approach in a tool called JSAND (JavaScript
Anomaly-based aNalysis and Detection), and validated it on over
140,000 web pages. In our experiments, we found that our tool
performed significantly better than existing approaches, detecting
more attacks and raising a low number of false positives. We also
made JSAND available as part of an online service called Wepawet
(at http://wepawet.cs.ucsb.edu), where users can sub-
mit URLs and files that are automatically analyzed, delivering de-
tailed reports about the type of observed attacks and the targeted
vulnerabilities. This service has been operative since November
2008 and analyzes about 1,000 URLs per day submitted from users
across the world.
In summary, our main contributions include:

• A novel approach that has the ability to detect previously-
unseen drive-by downloads by using machine learning and
anomaly detection.

• The identification of a set of ten features that characterize
intrinsic events of a drive-by download and allow our system
to robustly identify web pages containing malicious code.

• An analysis technique that automatically produces the deob-
fuscated version of malicious JavaScript code, characterizes
the exploits contained in the code, and generates exploit sig-
natures for signature-based tools.

• An online service that offers public access to our tool.

2. BACKGROUND
Before introducing our detection approach, we briefly describe a

drive-by-download exploit that we found in the wild.
Redirections, Fingerprinting, and Obfuscations. The attack was
triggered when visiting a benign web site that has fallen victim
to a SQL injection attack. As a consequence, the HTML code
<script src="http://www.kjwd.ru/js.js"> was in-
jected into all pages of the vulnerable site. The injected code causes
a script from www.kjwd.ru to be executed. This script checks
if the visitors has been attacked recently (in which case, a cookie
with a specific name would have been set). If no previous attack
is detected, the script sets the cookie to mark the beginning of the

attack, and injects an iframe tag into the web page. This iframe
is declared with null height and width, so it is invisible to the user.

The injected iframe points to a resource hosted on a third web
site, namely iroe.ru. This web site uses the User-Agent
request-header field to detect the user’s browser and operating sys-
tem. Depending on the detected versions, a different page is re-
turned to the browser. In this example, our client presents itself
as Internet Explorer 6.1 running on Windows XP. As a result, the
returned page consists of a JavaScript document that carries out ex-
ploits against this browser and platform. Different combinations of
browser and OS brand and version may lead to different exploits
being served, or to a completely benign behavior.

The returned script uses various techniques to make its analysis
more complex. For example, it uses polymorphism and its variable
and function names are generated randomly each time the script is
requested. It is also obfuscated and most of its code is dynamically
generated and executed (using the JavaScript eval function). The
code also uses various techniques to thwart simple analysis. For
example, it uses the value of the property location.href as
a key to decode encrypted strings. As a consequence, an off-line
analysis of the script will fail, since it changes the location to an
incorrect value.
Exploits. After the deobfuscation step, the actual malicious code
is revealed and ready to execute.

1 function a9_bwCED() {
2 var OBGUiGAa = new ActiveXObject(’Sb.SuperBuddy’);
3 if (OBGUiGAa) {
4 Exhne69P();
5 OBGUiGAa.LinkSBIcons(0x0c0c0c0c);
6 }
7 return 0;
8 }
9 if (a9_bwCED() || g0UnHabs() || P9i182jC()) { ... }

The code attempts to execute three exploits (line 9) targeting
different vulnerabilities. We will describe the attack launched by
the a9_bwCED function (the other two attacks are similar). First,
the code attempts to instantiate the vulnerable component (in this
case, the SuperBuddy control, at line 2). If it can be instantiated,
Exhne69P is invoked (line 4). This function loads the shellcode
into the heap, and, by allocating many carefully-chosen strings
through substring and concatenation operations, it controls the heap
layout so that the shellcode is very likely to be reached if the pro-
gram’s control is hijacked by the exploit. This is a technique called
“heap spraying” [33]. Finally, the actual exploit is triggered, in this
case, by invoking a specific method of the ActiveX control with a
large integer, causing an integer overflow (line 5).

In the last step of a successful exploit, the injected shellcode is
executed. The shellcode usually downloads malware from a web
site and executes it. As a consequence, the compromised machine
typically becomes part of a botnet [26].
Discussion. It is interesting to observe how the techniques used
by current malicious JavaScript code affect the applicability and
effectiveness of different approaches to its detection and analy-
sis. First, malicious JavaScript code frequently uses techniques
such as polymorphism, obfuscation, and encoding, which effec-
tively thwart purely syntactic approaches, such as static signatures.
In addition, malicious code extensively relies on the dynamic fea-
tures offered by the JavaScript language, e.g., run-time code gener-
ation and evaluation. These constructs complicate the use of static
analysis approaches, which cannot generally model with sufficient
precision dynamic language features. Furthermore, the attacks tar-
get vulnerabilities in the browser itself and a large number of third-
party components and applications. Tools that rely on observing the
effects of a successful attack require an extensive configuration pro-

cess to install these additional components. This is undesirable, as
more resources are required to setup and maintain the detection sys-
tems. Finally, since new vulnerabilities are discovered frequently
and quickly become exploited in the wild, databases of known ex-
ploits or known vulnerable components are also inadequate.

3. DETECTION APPROACH
We have seen that sophisticated JavaScript-based malware is dif-

ficult to detect and analyze using existing approaches. Thus, there
is the need for a novel approach that overcomes current challenges.
This approach has to be robust to obfuscation techniques, must han-
dle accurately the dynamic features of JavaScript, and should not
require reconfiguration when new vulnerabilities are exploited. To
do so, our approach relies on comprehensive dynamic analysis and
anomaly detection.

3.1 Features
Anomaly detection is based on the hypothesis that malicious ac-

tivity manifests itself through anomalous system events [5]. Anom-
aly detection systems monitor events occurring in the system under
analysis. For each event, a number of features are extracted. Dur-
ing a learning phase, “normal” feature values are learned, using
one or more models. After this initial phase, the system is switched
to detection mode. In this mode, the feature values of occurring
events are assessed with respect to the trained models. Events that
are too distant from the established models of normality are flagged
as malicious.

In our system, the features characterize the events (e.g., the in-
stantiation of an ActiveX control, the invocation of a plugin’s meth-
od, or the evaluation of a string using the eval function) occurring
during the interpretation of the JavaScript and HTML code of a
page. In the following, we introduce the features used in our sys-
tem by following the steps that are often followed in carrying out
an attack, namely redirection and cloaking, deobfuscation, envi-
ronment preparation, and exploitation.

3.1.1 Redirection and cloaking
Typically, before a victim is served the exploit code, several ac-

tivities take place. First, the victim is often sent through a long
chain of redirection operations. These redirections make it more
difficult to track down an attack, notify all the involved parties (e.g.,
registrars and providers), and, ultimately, take down the offending
sites.

In addition, during some of these intermediate steps, the user’s
browser is fingerprinted. Depending on the obtained values, e.g.,
brand, version, and installed plugins, extremely different scripts
may be served to the visitor. These scripts may be targeting dif-
ferent vulnerabilities, or may redirect the user to a benign page, in
case no vulnerability is found.

Finally, it is common for exploit toolkits to store the IP addresses
of victims for a certain interval of time, during which successive
visits do not result in an attack, but, for example, in a redirection to
a legitimate web site.
We monitor two features that characterize this kind of activity:

Feature 1: Number and target of redirections. We record the
number of times the browser is redirected to a different URI, for
example, by responses with HTTP Status 302 or by the setting of
specific JavaScript properties, e.g., document.location. We
also keep track of the targets of each redirection, to identify redirect
chains that involve an unusually-large number of domains.

Feature 2: Browser personality and history-based differences.
We visit each resource twice, each time configuring our browser
with a different personality, i.e., type and version. For example, on

the first visit, we announce the use of Internet Explorer, while, on
the second, we claim to be using Firefox. The visits are originated
from the same IP address. We then measure if the returned pages
differ in terms of their network and exploitation behavior. For this,
we define the distance between the returned pages as the number of
different redirections triggered during the visits and the number of
different ActiveX controls and plugins instantiated by the pages.

An attacker could evade these features by directly exposing the
exploit code in the target page and by always returning the same
page and same exploits irrespective of the targeted browser and vic-
tim. However, these countermeasures would make the attack less
effective (exploits may target plugins that are not installed on the
victim’s machine) and significantly easier to track down.

3.1.2 Deobfuscation
Most of the malicious JavaScript content is heavily obfuscated.

In fact, it is not rare for these scripts to be hidden under several
layers of obfuscation. We found that malicious scripts use a large
variety of specific obfuscation techniques, from simple encodings
in standard formats (e.g., base64) to full-blown encryption. How-
ever, all techniques typically rely on the same primitive JavaScript
operations, i.e., the transformations that are applied to an encoded
string to recover the clear-text version of the code. In addition,
deobfuscation techniques commonly resort to dynamic code gener-
ation and execution to hide their real purpose.
During execution, we extract three features that are indicative of
the basic operations performed during the deobfuscation step:

Feature 3: Ratio of string definitions and string uses. We mea-
sure the number of invocations of JavaScript functions that can be
used to define new strings (such as substring, and fromChar-
Code), and the number of string uses (such as write operations
and eval calls). We found that a high def-to-use ratio of string
variables is often a manifestation of techniques commonly used in
deobfuscation routines.

Feature 4: Number of dynamic code executions. We measure
the number of function calls that are used to dynamically interpret
JavaScript code (e.g., eval and setTimeout), and the number
of DOM changes that may lead to executions (e.g., document.
write, document.createElement).

Feature 5: Length of dynamically evaluated code. We measure
the length of strings passed as arguments to the eval function. It
is common for malicious scripts to dynamically evaluate complex
code using the eval function. In fact, the dynamically evaluated
code is often several kilobytes long.

An attacker could evade these features by not using obfuscation
or by devising obfuscation techniques that “blend” with the behav-
ior of normal pages, in a form of mimicry attack [38]. This would
leave the malicious code in the clear, or would significantly con-
strain the techniques usable for obfuscation. In both cases, the ma-
licious code would be exposed to simple, signature-based detectors
and easy analysis.

3.1.3 Environment preparation
Most of the exploits target memory corruption vulnerabilities. In

these cases, the attack consists of two steps. First, the attacker in-
jects into the memory of the browser process the code she wants to
execute (i.e., the shellcode). This is done though legitimate opera-
tions, e.g., by initializing a string variable in a JavaScript program
with the shellcode bytes. Second, the attacker attempts to hijack
the browser’s execution and direct it to the shellcode. This step is
done by exploiting a vulnerability in the browser or one of its com-
ponents, for example, by overwriting a function pointer through a
heap overflow.

One problem for the attacker is to guess a proper address to jump
to. If the browser process is forced to access a memory address that
does not contain shellcode, it is likely to crash, causing the attack to
fail. In other words, reliable exploitation requires that the attacker
have precise control over the browser’s memory layout. A number
of techniques to control the memory layout of browsers have been
recently proposed [4, 33, 35]. Most of these techniques are based
on the idea of carefully creating a number of JavaScript strings.
This will result in a series of memory allocations and deallocations
in the heap, which, in turn, will make it possible to predict where
some of the data, especially the shellcode, will be mapped.
To model the preparatory steps for a successful exploit, we extract
the following two features:

Feature 6: Number of bytes allocated through string operations.
String functions, such as assignments, concat, and substring
are monitored at run-time to keep track of the allocated memory
space. Most techniques employed to engineer reliable heap ex-
ploits allocate a large amount of memory. For example, exploits
using the heap spraying technique commonly allocate in excess of
100MB of data.

Feature 7: Number of likely shellcode strings. Exploits that tar-
get memory violation vulnerabilities attempt to execute shellcode.
Shellcode can be statically embedded in the text of the script, or
it can be dynamically created. To identify static shellcode, we
parse the script and extract strings longer than a certain threshold
(currently, 256 bytes) that, when interpreted as Unicode-encoded
strings, contain non-printable characters. Similar tests on the length,
encoding, and content type are also performed on strings created at
run-time.

Fine-grained control of the memory content is a necessary re-
quirement for attacks that target memory corruption errors (e.g.,
heap overflows or function pointer overwrites). While improve-
ments have been proposed in this area [34], the actions performed
to correctly set up the memory layout appear distinctively in these
features. The presence of shellcode in memory is also required for
successful memory exploits.

3.1.4 Exploitation
The last step of the attack is the actual exploit. Since the vast ma-

jority of exploits target vulnerabilities in ActiveX or other browser
plugins, we extract the following three features related to these
components:

Feature 8: Number of instantiated components. We track the
number and type of browser components (i.e., plugins and ActiveX
controls) that are instantiated in a page. To maximize their suc-
cess rate, exploit scripts often target a number of vulnerabilities in
different components. This results in pages that load a variety of
unrelated plugins or that load the same plugin multiple times (to
attempt an exploit multiple times).

Feature 9: Values of attributes and parameters in method calls.
For each instantiated component, we keep track of the values passed
as parameters to its methods and the values assigned to its proper-
ties. The values used in exploits are often very long strings, which
are used to overflow a buffer or other memory structures, or large
integers, which represent the expected address of the shellcode.

Feature 10: Sequences of method calls. We also monitor the
sequences of method invocations on instantiated plugins and Ac-
tiveX controls. Certain exploits, in fact, perform method calls that
are perfectly normal when considered in isolation, but are anoma-
lous (and malicious) when combined. For example, certain plugins
allow to download a file on the local machine and to run an exe-
cutable from the local file system. An attack would combine the
two calls to download malware and execute it.

The exploitation step is required to perform the attack and com-
promise vulnerable components. Of course, different types of at-
tacks might affect certain features more than others. We found
that, in practice, these three features are effective at characterizing
a wide range of exploits.

3.1.5 Feature Robustness and Evasion
The ten features we use characterize the entire life cycle of an

exploit, from the initial request to the actual exploitation of vul-
nerable components. This gives us a comprehensive picture of the
behavior of a page.

We observe that our ten features can be classified into two cat-
egories: necessary and useful. Necessary features characterize ac-
tions that are required for a successful exploit. These include the
environment preparation features (Feature 6 and 7) and the ex-
ploitation features (Feature 8, 9, and 10). Useful features character-
ize behaviors that are not strictly required to launch a successful at-
tack, but that allow attackers to hide malicious code from detectors
and to make it more difficult to track and shut down the involved
web sites. These are the redirection and cloaking features (Feature
1 and 2) and the deobfuscation features (Feature 3, 4, and 5).

We claim that our feature set is difficult to evade. To support this
claim, we examined hundreds of publicly available exploit scripts
and vulnerability descriptions. We found that attacks target three
general classes of vulnerabilities: plugin memory violations (e.g.,
overflows in plugins or ActiveX components), unsafe APIs (e.g.,
APIs that, by design, allow to perform unsafe actions, such as
downloading and executing a remote file), and browser memory vi-
olations (e.g., overflows in some of the core browser components,
such as its XML parser). Table 1 shows that, for each of these
three vulnerability classes, at least two necessary features charac-
terize the actions that are required to successfully perform an ex-
ploit. In fact, memory violations require to inject a shellcode in the
browser’s memory (Feature 7) and to properly set up the memory
layout (Feature 6). Overflows require the use of anomalous param-
eters, such as long strings or large integer (Feature 9). Anomalous
parameters or sequences of method calls are necessary in the ex-
ploitation of unsafe APIs, for example the use of the path to an
executable where usually the path to an HTML file is found (Fea-
ture 10). Finally, plugin-related vulnerabilities require loading the
vulnerable plugin or ActiveX control (Feature 8). This shows that
the feature set we identified is robust against evasion.

Finally, it is possible that benign pages display some of the be-
haviors that we associate with drive-by-download attacks. For ex-
ample, fingerprinting of the user’s browser can be done to compute
access statistics, long redirection chains are typical in syndicated
ad-networks, and differences in a page over multiple visits may be
caused by different ads being displayed. However, we argue that it
is unlikely for a page to have a behavior that matches a combination
of our features (especially, the necessary features). We will exam-
ine this issue more in detail when measuring the false positives of
our approach.

3.2 Models
In the context of anomaly detection, a model is a set of proce-

dures used to evaluate a certain feature. More precisely, the task
of a model is to assign a probability score to a feature value. This
probability reflects the likelihood that a given feature value occurs,
given an established model of “normality.” The assumption is that
feature values with a sufficiently low probability are indication of a
potential attack.

A model can operate in training or detection mode. In training
mode, a model learns the characteristics of normal events and deter-

Attack Class Example Useful Features Necessary Features
Vulnerability F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Plugin memory violation CVE-2008-1027 X X X X
Plugin unsafe API CVE-2006-0003 X X X
Browser memory violation CVE-2008-4844 X X

Table 1: Required and optional features for each attack class. An X in a column means that the corresponding feature characterizes
a required step in an attack. Features are numbered from 1 to 10 as in Section 3.

mines the threshold to distinguish between normal and anomalous
feature values. In detection mode, the established models are used
to determine an anomaly score for each observed feature value. For
our system, we use several models provided by libAnomaly, a li-
brary to develop anomaly detection systems [16,17]. Here, we only
briefly describe these models and refer the interested reader to the
original references for further information.
Token Finder. The Token Finder model determines if the values
of a certain feature are elements of an enumeration, i.e., are drawn
from a limited set of alternatives. In legitimate scripts, certain fea-
tures can often have a few possible values. For example, in an
ActiveX method that expects a Boolean argument, the argument
values should always be 0 or 1. If a script invokes that method with
a value of 0x0c0c0c0c, the call should be flagged as anomalous.

We apply this model to each method parameter and property
value exposed by plugins.
String Length and Occurrence Counting. The goal of this model
is to characterize the “normal” length of a string feature. We also
use it to model the expected range of a feature that counts the oc-
currence of a certain event. The rationale behind this model is that,
in benign scripts, strings are often short and events occur only a
limited number of times. During an attack, instead, longer strings
are used, e.g., to cause overflows, and certain events are repeated a
large number of times, e.g., memory allocations used to set up the
process heap.

We use this model to characterize the length of string parame-
ters passed to methods and properties of plugins, and the length of
dynamically evaluated code. In addition, we use it to characterize
all the features that count how many times a certain event repeats,
i.e., the number of observed redirections, the ratio of string defini-
tions and uses, the number of code executions, the number of bytes
allocated through string operations, the number of likely shellcode
strings, and the number of instantiated plugins.
Character Distribution. The Character Distribution model char-
acterizes the expected frequency distribution of the characters in a
string. The use of this model is motivated by the observation that, in
most cases, strings used in JavaScript code are human-readable and
are taken from a subset of some well-defined character set. On the
contrary, attacks often employ strings containing unusual charac-
ters, e.g., non-printable characters, in order to encode binary code
or to represent memory addresses.

We use this model to characterize the values passed as arguments
to methods and to properties of plugins.
Type Learner. The Type Learner model was not present in the
original libAnomaly library, and we added it for this work. This
model determines if the values of a certain feature are always of
the same type. For example, during normal usage, the parameter of
a plugin’s method may always contain a URL. However, during an
attack, the parameter may be used to overwrite a function pointer
with a specific memory address (i.e., a large integer). In this case,
the Type Learner would flag this value as anomalous.

In training mode, the Type Learner classifies feature values as
one of several possible types. The types currently recognized are
small integers (integer values smaller or equal to 1024), large inte-

gers, strings containing only printable characters, URLs, and strings
identifying a path to an executable file. If all values observed dur-
ing the training phase are classified as the same type, that type is
inferred for the feature. If the type inference fails or is inconsis-
tent, no type is assigned to the corresponding feature. In detection
mode, if a type was determined for a feature and the observed value
is of that same type, the value is considered normal. Otherwise, it
is flagged as anomalous. If no type could be determined, the model
always reports a normal score.

The scores of all models are combined in a weighted sum to form
the overall anomaly score of a web page. Currently, we assign the
same weight to each model. If the overall score is above the thresh-
old established during training, the page is flagged as malicious.

3.3 Emulation
To deal with exploits that heavily rely on dynamic JavaScript fea-

tures and sophisticated browser functionality, we visit web pages
with a customized browser, which loads the page, executes its dy-
namic content, and records the events used by the anomaly detec-
tion system. In particular, in our system, a full browser environ-
ment is emulated by HtmlUnit, a Java-based framework for test-
ing web-based applications [9]. HtmlUnit models HTML docu-
ments and provides an API to interact with these documents. It
supports JavaScript by integrating Mozilla’s Rhino interpreter [22].
HtmlUnit implements the standard functionality provided by regu-
lar browsers, except visual page rendering. We have instrumented
HtmlUnit and Rhino to extract the features used to detect and ana-
lyze malicious code.

We have decided to use HtmlUnit rather than instrumenting a
traditional browser, such as Firefox or Internet Explorer, for sev-
eral reasons. First, HtmlUnit makes it easy to simulate multiple
browser personalities, which is used in one of our detection fea-
tures. For example, depending on the personality we want to as-
sume, we can easily configure the value of HTTP headers that are
transmitted with each request (e.g., the User-Agent header), the
settings of JavaScript attributes (such as the navigator object
and its properties), and the handling of certain HTML and Java-
Script features and capabilities that are implemented differently
in different browsers (e.g., event handlers are registered using the
addEventListener() function in Firefox and the attach-
Event() function in Internet Explorer). While some of these dif-
ferences could be handled by existing browser’s extensions (e.g.,
the User Agent plugin for Firefox [25]), others would require more
substantial changes to the browser itself.

Second, in HtmlUnit, it is possible to simulate an arbitrary sys-
tem environment and configuration. In fact, we have modified
HtmlUnit so that, regardless of the actual system configuration,
requests for loading any ActiveX control or plugin are successful
and cause the instantiation of a custom logging object, which keeps
track of all methods and attributes invoked or set on the control.
This allows us to detect, without any further configuration effort,
exploits that target any control or plugin, even those for which no
vulnerability has been publicly disclosed. This is different from
traditional high-interaction honeyclients (and real browsers), where

an actual component needs to be installed for the exploit to succeed
and for the system to detect the attack.

A third reason for using HtmlUnit is that it allows us to im-
plement anti-cloaking mechanisms. Malicious scripts sometimes
employ techniques to masquerade their real behavior, for example,
they launch an attack only if the language of a visitor’s browser
is en-US. In these cases, it would be beneficial to increment the
code coverage of a script to potentially expose a more complete
picture of its actions. Therefore, we implemented one such tech-
nique. More precisely, at run-time, we parse all the code provided
to the JavaScript interpreter, and we keep track of all the functions
that are defined therein. When the regular execution of the script
finishes, we force the execution of those functions that have not
been invoked, simply by calling them. While less sophisticated
than other approaches with similar goals [19], this technique re-
sembles the forced-execution model presented in [40]. We found
that this simple technique worked well in practice.

4. ANALYSIS
We implemented our proposed approach in a system, which we

call JSAND, and we used it to detect and analyze malicious web
content. In this section, we describe some of the analyses that our
system can perform on malicious JavaScript code.
Exploit classification. It is often useful to understand which vul-
nerabilities are exploited by a malicious page. We currently focus
on vulnerabilities in browser plugins and ActiveX controls. JSAND
extracts this information in two phases. The first phase consists of
identifying exploits used in the wild. JSAND analyzes the samples
that it flagged as malicious and collects all the events (method in-
vocations and attribute settings) related to plugins and controls that
were considered anomalous. For each event, JSAND extracts four
exploit features: the name of the plugin, the name of the method
or attribute involved, the position of the anomalous parameters (if
any), and the type of the identified anomaly (e.g., long string value
or anomalous character distribution). Note that by considering the
anomaly type rather than the concrete, actual values used in an
event, we abstract away from the concrete exploit instance. Then,
for each feature set, we manually search vulnerability repositories,
such as CVE, for vulnerability reports that match the set. If we find
a match, we label the corresponding set with the identified vulnera-
bility, and we say that the feature set characterizes an exploit class,
i.e., the exploits for the matching vulnerability.

In the second phase, the actual classification is performed. This
step is completely automatic. For each new sample that is analyzed,
JSAND collects anomalous events related to plugins and extracts
their exploit features. It then uses a naive Bayesian classifier to
classify the exploit feature values in one of the exploit classes. If
the classifier finds a classification with high confidence, the event is
considered a manifestation of an exploit against the corresponding
vulnerability. This classification is both precise and robust, since it
is obtained from analyzing the behavior of a running exploit, rather
than, for example, looking for a static textual match. Most tools we
are aware of do not or cannot provide this kind of information to
their users. The exceptions are anti-virus programs and PhoneyC,
a low-interaction honeyclient (described later).
Signature generation. We can also use the exploit classification
information to generate exploit signatures for signature-based tools.
More precisely, we generate signatures for the PhoneyC tool. In
PhoneyC, signatures are JavaScript objects that redefine the meth-
ods and attributes of a vulnerable component with functions that
check if the conditions required for a successful exploit are met. In
our experience, the information stored in our exploit classes is of-
ten sufficient to automatically generate high-quality signatures for

PhoneyC. To demonstrate this, we generated signatures for three
exploits that were not detected by PhoneyC and submitted them to
the author of PhoneyC.

5. SYSTEM EVALUATION
We will now describe how JSAND performs at detecting pages

that launch drive-by-download attacks. In particular, we examine
the accuracy of our detection approach and compare it with state-
of-the-art tools on over 140K URLs. Note, however, that we are
not attempting to perform a measurement study on the prevalence
of malicious JavaScript on the web (in fact, such studies have ap-
peared before [21, 39], and have examined an amount of data that
is not available to us [28]).

5.1 Detection Results
To evaluate our tool, we compiled the following seven datasets:

a known-good dataset, four known-bad datasets, and two uncate-
gorized datasets.

The known-good dataset consists of web pages that (with high
confidence) do not contain attacks. We use this dataset to train our
models, to determine our anomaly thresholds, and to compute false
positives. In total, the dataset contains 11,215 URLs. We popu-
lated the known-good dataset by downloading the pages returned
for the most popular queries in the past two years, as published
by the Google and Yahoo! search engines, and by visiting the 100
most popular web sites, as determined by Alexa. This allowed us to
obtain pages representative of today’s use of JavaScript. Further-
more, we used the Google Safe Browsing API to discard known
dangerous pages [13].

The known-bad datasets contain pages and scripts that are known
to be malicious. We use these datasets to evaluate the detection ca-
pabilities of our tool and compute false negatives. In total, they
consist of 823 malicious samples. These samples were organized
in four different datasets, according to their sources:

• The spam trap dataset. From January to August 2008, we re-
trieved a feed of spam URLs provided by Spamcop [36]. For
about two months, we also extracted the URLs contained in
emails sent to a local spam trap. To distinguish URLs direct-
ing to drive-by-download sites from those URLs that sim-
ply lead to questionable sites (e.g., online pharmacies), we
analyzed each URL with Capture-HPC, a high-interaction
honeyclient system [37], which classified 257 pages as mali-
cious. We manually verified that these pages actually launch-
ed drive-by downloads.

• The SQL injection dataset. From June to August 2008, we
monitored several SQL injection campaigns against a num-
ber of web sites. These campaigns aimed at injecting in vul-
nerable web sites code that redirects the visitor’s browser to
a malicious page. We identified 351 domains involved in the
attacks. From these, we collected 23 distinct samples.

• The malware forum dataset. We collected 202 malicious
scripts that were published or discussed in several forums,
such as malwaredomainlist.com and milw0rm.com.

• The Wepawet-bad dataset. This dataset contains the URLs
that were submitted to our online service (wepawet.cs.
ucsb.edu, Wepawet in short), which allows the public sub-
mission of URLs for analysis by JSAND. More precisely, we
looked at 531 URLs that were submitted during the month of
January 2009 and that, at the time of their submission, were
found to be malicious by JSAND. We re-analyzed them to
verify that the malicious code was still present and active on

those pages. We identified 341 pages that were still mali-
cious.

The uncategorized datasets contain pages for which no ground
truth is available. The uncategorized pages were organized in two
datasets:

• The crawling dataset. This dataset contains pages collected
during a crawling session. The crawling was seeded with
the results produced by the Google, Yahoo!, and Live search
engines for queries in a number of categories, which were
also used in previous studies on malicious web content [14,
21, 28]. In total, we examined 115,706 URLs from 41,197
domains (to increase the variety of pages analyzed, we ex-
amined up to 3 pages per domain).

• The Wepawet-uncat dataset. This dataset contains 16,894
pages that were submitted to the Wepawet service between
October and November 2009.

False positives. We randomly divided the known-good dataset in
three subsets and used them to train JSAND and compute its false
positive rate. More precisely, we ran JSAND on 5,138 pages to train
the models. We then ran it on 2,569 pages to establish a threshold,
which we set to 20% more than the maximum anomaly score de-
termined on these pages. The remaining 3,508 pages were used to
determine the false positive rate. JSAND caused no false positives
on these pages.

In addition, we computed the false positive rate on the crawling
dataset. This is a more extensive test both in terms of the number of
pages examined (over 115K) and their types (e.g., these pages are
not necessarily derived from popular sites or from results for pop-
ular search queries). On this dataset, JSAND reported 137 URLs as
being malicious. Of these, we manually verified that 122 did actu-
ally launch drive-by downloads. The remaining 15 URLs (hosted
on ten domains) appeared to be benign, and, thus, are false posi-
tives. The majority of them used up to 8 different ActiveX con-
trols, some of which were not observed during training, yielding an
anomaly score larger than our threshold.
False negatives. For the next experiment, we compared the detec-
tion capabilities of JSAND with respect to three other tools: Cla-
mAV [2], PhoneyC [23], and Capture-HPC [37]. These tools are
representative of different detection approaches: syntactic signa-
tures, low-interaction honeyclients using application-level signa-
tures, and high-interaction honeyclients, respectively.

ClamAV is an open-source anti-virus, which includes more than
3,200 signatures matching textual patterns commonly found in ma-
licious web pages. We used ClamAV with the latest signature data-
base available at the time of the experiments.

PhoneyC is a browser honeyclient that uses an emulated browser
and application-level signatures. Signatures are expressed as Java-
Script procedures that, at run-time, check the values provided as in-
put to vulnerable components for conditions that indicate an attack.
Thus, PhoneyC’s signatures characterize the dynamic behavior of
an exploit, rather than its syntactic features. In addition, PhoneyC
scans pages with ClamAV. Unlike our tool, PhoneyC can only de-
tect attacks for which it has a signature. We used PhoneyC version
1680, the latest available at the time of running the experiments.

Capture-HPC is a high-interaction honeyclient. It visits a web
page with a real browser and records all the resulting modifica-
tions to the system environment (e.g., files created or deleted, pro-
cesses launched). If any unexpected modification occurs, this is
considered the manifestation of an attack launched by the page.
We used the default configuration of Capture-HPC and installed
Windows XP SP2 and Internet Explorer (a setup used in previous
studies [24]). In addition, we installed the five plugins most tar-

Dataset Samples JSAND ClamAV PhoneyC Capture-HPC
(#) FN FN FN FN

Spam Trap 257 1 (0.3%) 243 (94.5%) 225 (87.5%) 0 (0.0%)
SQL Injection 23 0 (0.0%) 19 (82.6%) 17 (73.9%) –
Malware Forum 202 1 (0.4%) 152 (75.2%) 85 (42.1%) –
Wepawet-bad 341 0 (0.0%) 250 (73.3%) 248 (72.7%) 31 (9.1%)

Total 823 2 (0.2%) 664 (80.6%) 575 (69.9%) 31 (5.2%)

Table 2: Comparison of detection results on the known-bad
datasets. FN indicates false negatives.

geted by exploits in the Wepawet-bad dataset, including vulnerable
versions of Adobe Reader (9.0) and Flash (6.0.21).

Table 2 shows the results of evaluating the detection effective-
ness of the different approaches on the known-bad datasets. For
these tests, we only report the false negatives (all samples are known
to be malicious). We did not test Capture-HPC on the SQL in-
jection dataset and the malware forum dataset, since the attacks
contained therein have long been inactive (e.g., the web sites that
hosted the binaries downloaded by the exploit were unreachable).
Thus, Capture-HPC would have reported no detections.

JSAND had two false negatives on the known-bad datasets. This
corresponds to a false negative rate of 0.2%. The undetected ex-
ploits do not use obfuscation and attack a single vulnerability in
one ActiveX control. JSAND detected anomalies in the number of
memory allocations (due to heap spraying) and in the instantiation
of a control that was not observed during training, but this was not
sufficient to exceed the threshold.

ClamAV missed most of the attacks (80.6%). While better re-
sults may be obtained by tools with larger signature bases, we feel it
is indicative of the limitations of approaches based on static signa-
ture matching. The most effective signatures in ClamAV matched
parts of the decoding routines, methods used in common exploits,
and code used to perform heap spraying. However, these signa-
tures would be easily evadable, for example, by introducing simple
syntactic modifications to the code.

PhoneyC had almost a 70% false negative rate, even if it has
signatures for most of the exploits contained in the known-bad
datasets. At first inspection, the main problem seems to be that
PhoneyC (in the version we tested) only handles a subset of the
mechanisms available to execute dynamically generated JavaScript
code. If unsupported methods are used (e.g., creating new script
elements via the document.createElement method), Phon-
eyC does not detect the attack.

Capture-HPC missed 9.1% of the attacks in the Wepawet-bad
dataset (and 5.2% overall). We manually analyzed the URLs that
were not detected as malicious and we found that, in most cases,
they were using exploits targeting plugins that were not installed
on our Capture-HPC system. This result highlights that the config-
uration of the environment used by Capture-HPC is a critical factor
in determining its detection rate. Unfortunately, installing all possi-
ble, vulnerable components can be difficult, since targeted vulner-
abilities are scattered in tens of different applications, which must
be correctly installed and configured (for example, the known-bad
datasets include 51 different exploits, targeting vulnerabilities in 40
different components).

To better understand this issue, we computed how the detection
rate of Capture-HPC would change on the Wepawet-bad dataset,
given different sets of ActiveX controls. In particular, we want to
understand what is the minimum number of components that needs
to be installed to achieve a given detection rate. This question can
be cast in terms of the set cover problem, where installing an appli-
cation guarantees the detection of all pages that contain at least one

exploit targeting that application. In this case, we say that the ap-
plication “covers” those pages. “Uncovered” pages (those that do
not target any of the installed applications) will not be detected as
malicious. To solve the problem, we used the greedy algorithm (the
problem is known to be NP-complete), where, at each step, we add
to the set of installed applications a program that covers the largest
number of uncovered pages. Figure 1 shows the results. It is inter-
esting to observe that even though a relatively high detection rate
can be achieved with a small number of applications (about 90%
with the top 5 applications), the detection curve is characterized
by a long tail (one would have to install 22 applications to achieve
98% of detection). Clearly, a false negative rate between 10% and
2% is significant, especially when analyzing large datasets.
Large-scale comparison with high-interaction honeyclients. We
performed an additional, more comprehensive experiment to com-
pare the detection capability of our tool with high-interaction hon-
eyclients. More precisely, we ran JSAND and Capture-HPC side-
by-side on the 16,894 URLs of the Wepawet-uncat dataset. Each
URL was analyzed as soon as it was submitted to the Wepawet
online service. Capture-HPC and JSAND were run from distinct
subnets to avoid spurious results due to IP cloaking.

Overall, Capture-HPC raised an alert on 285 URLs, which were
confirmed to be malicious by manual analysis. Of these, JSAND
missed 25. We identified the following reasons for JSAND’s false
negatives. In four cases, JSAND was redirected to a benign page
(google.cn) or an empty page, instead of being presented with
the malicious code. This may be the result of a successful detec-
tion of our tool or of its IP. An internal bug caused the analysis to
fail in three additional cases. Finally, the remaining 18 missed de-
tections were the consequence of subtle differences in the handling
of certain JavaScript features between Internet Explorer and our
custom browser (e.g., indirect calls to eval referencing the local
scope of the current function) or of unimplemented features (e.g.,
the document.lastModified property).

Conversely, JSAND flagged 8,714 URLs as anomalous (for 762
of these URLs, it was also able to identify one or more exploits).
Of these, Capture-HPC missed 8,454. We randomly sampled 100
URLs from this set of URLs and manually analyzed them to iden-
tify the reasons for the different results between JSAND and Capture-
HPC. We identified three common cases. First, an attack is launched
but it is not successful. For example, we found many pages (3,006
in the full Wepawet-uncat dataset) that were infected with Java-
Script code used in a specific drive-by campaign. In the last step
of the attack, the code redirected to a page on a malicious web
site, but this page failed to load because of a timeout. Nonethe-
less, JSAND flagged the infected pages as anomalous because of
the obfuscation and redirection features, while Capture-HPC did
not observe the full attack and, thus, considered them benign. We
believe JSAND’s behavior to be correct in this case, as the infected
pages are indeed malicious (the failure that prevents the successful
attack may be only temporary). Second, we noticed that Capture-
HPC stalled during the analysis (there were 1,093 such cases in
total). We discovered that, in some cases, this may be the conse-
quence of an unreliable exploit, e.g., one that uses too much mem-
ory, causing the analyzer to fail. Finally, a missed detection may
be caused by evasion attempts. Some malicious scripts, for exam-
ple, launch the attack only after a number of seconds have passed
(via the window.setTimeout method) or only if the user min-
imally interacts with the page (e.g., by releasing a mouse button,
as it is done in the code used by the Mebroot malware). In these
cases, JSAND was able to expose the complete behavior of the page
thanks to the forced execution technique described in Section 3.

Performance. JSAND’s performance clearly depends on the com-
plexity of the sample under analysis (e.g., number of redirects and
scripts to interpret). However, to give a feeling for the overall per-
formance of our tool, we report here the time required to analyze
the Wepawet-bad dataset. JSAND completed the workload in 2:22
hours. As a comparison, Capture-HPC examined the same set of
pages in 2:59 hours (25% slower). The analysis can be easily par-
allelized, which further improves performance. For example, by
splitting the workload on three machines, JSAND completed the
task in 1:00 hour. While our browser and JavaScript interpreter are
generally slower than their native counterparts, we have no over-
head associated with reverting the machine to a clean state after a
successful exploitation, as required in Capture-HPC.
Features and Anomaly Score. We analyzed the impact that each
feature group has on the final anomaly score of a page. We found
that, on the known-bad datasets, exploitation features account for
the largest share of the score (88% of the final value), followed
by the environment preparation features (9%), the deobfuscation
features (2.7%), and the redirection and cloaking features (0.3%).
The contribution of redirection and cloaking features is limited also
because the majority of the samples included in the known-bad
datasets consist of self-contained files that do not reference external
resources and, therefore, cause no network activity.

Furthermore, we examined the breakdown of the anomaly score
between necessary and useful features. Figure 2 shows the results.
In the figure, samples are ordered according to their overall anom-
aly score. The contribution of useful features to the final value is
plotted against the left axis and the contribution of necessary fea-
tures is plotted against the right axis. It can be seen that the neces-
sary features clearly dominate the final anomaly score (note that the
necessary feature axis is log scale). In particular, the use of multiple
exploits in the same page causes the anomaly score to “explode.”
For example, the total anomaly score of 103 samples was more than
ten times higher than the threshold. This is good because it demon-
strates that the detection of malicious pages heavily relies on those
features that are fundamental to attacks. Nonetheless, useful fea-
tures contribute positively to the final score, especially for samples
where the anomaly value determined by necessary features is low
(this is the case for scores represented in the lower left corner of the
graph). In particular, without the contribution of useful features, the
anomaly score of seven samples would be below the threshold (i.e.,
they would be false negatives).
Summary. In summary, our results indicate that JSAND achieves a
detection rate that is significantly better than state-of-the-art tools.
It detected a large number of malicious pages not detected by other
tools, and it missed only a very limited number of attacks. It also
raised only a few false positives. Furthermore, in our tests, JSAND
analyzed about two samples per minute, which is faster than other
tools. Since the analysis can be easily parallelized, performance
can be further improved.

5.2 Operational Experience
We made JSAND publicly available at http://wepawet.cs.

ucsb.edu as an online service, where users can submit URLs or
files for analysis. For each sample, a report is generated that shows
the classification of the page and the results of the deobfuscation,
exploit classification, and other analyses.

The service has been operative since November 2008, and it is
used by a growing number of users. For example, in October 2009,
it was visited by 10,598 unique visitors (according to Google An-
alytics data), who submitted 37,547 samples for analysis. Of these
users, 97 were frequent users, i.e., submitted more than 30 samples.
Of all samples analyzed in October, 11,679 (31%) were flagged as

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

E
x

p
lo

it
s

d
et

ec
te

d
 (

%
)

Number of plugins and ActiveX controls

Figure 1: Capture-HPC detection rate as a function of the in-
stalled vulnerable applications.

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900
 1

 10

 100

 1000

A
n
o

m
al

y
 S

co
re

 (
U

se
fu

l
F

ea
tu

re
s)

A
n

o
m

al
y

 S
co

re
 (

N
ec

es
sa

ry
 F

ea
tu

re
s)

Samples

Useful Features
Necessary Features

Figure 2: Breakdown of the anomaly score for samples in the
known-bad datasets by feature category.

malicious (after additional analysis, we attributed 4,951 samples to
one of eleven well-known drive-by campaigns). Our tool was able
to classify the exploits used in 1,545 of the malicious samples.

The reports generated by JSAND are routinely used to investi-
gate incidents and new exploits (e.g., [1]), as supportive evidence
in take-down requests, and to complement existing blacklists (e.g.,
in October 2009 alone, it detected drive-by downloads on 409 do-
mains that at the moment of the analysis were not flagged as mali-
cious by Google Safe Browsing [13]).

6. POSSIBLE EVASION
It is interesting to discuss more in detail how JSAND performs in

terms of resilience to evasion attempts.
Novel attacks. One way for attackers to evade our detection is
to launch attacks that completely bypass the features we use. We
have shown that our features characterize very well the types of at-
tacks that are performed today. Thus, attackers would need to find
completely new attack classes. In particular, we note that JSAND
is capable of detecting previously-unseen attacks, when these at-
tacks manifest in anomalous features. For example, JSAND cor-
rectly flagged as malicious scripts used in the recent “Aurora” at-
tack [12]. Even if the exploits target a vulnerability (CVE-2010-
0249) in a component of Internet Explorer (the memory manager)
that is not characterized by a specific feature, the anomaly scores
associated with the shellcode detection and environment prepara-
tion were sufficient to raise an alert. In general, to detect a 0-day
attack, other tools would need to upgrade their signature database
or install the additional vulnerable component(s).
Emulation fingerprinting. A second possible evasion technique
consists of detecting differences between JSAND’s emulated envi-
ronment and a real browser’s environment. Malicious scripts may
fingerprint the browser (e.g., they can check the headers our tool
sends and the JavaScript objects it provides), its plugins and Ac-
tiveX controls (e.g., to test that they actually expose the expected
methods and parameters), or the JavaScript interpreter to identify
any differences. This is an issue that is common to any emu-
lated environment and that affects, to a certain degree, even high-
interaction honeyclients using virtual machines [3].

We have two ways of counteracting this technique. First, we can
set up our environment so that it behaves as accurately as possible
as the browser we want to impersonate. This clearly becomes an
arms race between the attacker’s fingerprinting efforts and our emu-
lation efforts. However, the underlying browser we use, HtmlUnit,
is designed to take into account the different behaviors of different
browsers and, in our experience, it was generally easy to correct the
deviations that we found.

The second technique to counteract evasion consists of forcing
the execution of a larger portion of a script to uncover parts of the

code (and, thus, behaviors) that would otherwise be hidden. These
correspond, for example, to functions containing exploit code that
are not invoked unless the corresponding vulnerable component is
identified in the browser. We have already discussed our simple
method to increase the executed code coverage.

7. RELATED WORK
A number of approaches and tools have been proposed in recent

years to identify and analyze malicious code on the web. We will
now briefly present the most relevant ones and compare them with
our approach.
System state change. A number of approaches (e.g., HoneyMon-
key [39], Capture-HPC [37], Moshchuk et al. [20, 21], and Provos
et al. [28]) use high-interaction honeyclients to visit potentially-
malicious web sites and monitor changes in the underlying oper-
ating system that may be caused by malicious web pages. The
system change approach gives detailed information about the con-
sequences of a successful exploit, e.g., which files are created or
which new processes are launched. However, it gives little insight
into how the attack works. In addition, it fails to detect malicious
web content when the honeyclient is not vulnerable to the exploits
used by the malicious page (e.g., the vulnerable plugins are not in-
stalled). As we have seen, JSAND solves this problem by simulating
the presence of any ActiveX control or plugin requested by a page.
Generic malware tools. Some tools (e.g., Monkey-Spider [14]
and SpyeBye [27]) consider a page to be malicious if it links to
resources that are classified as malware by external tools, such as
anti-virus, malware analysis tools, or domain blacklists. JSAND can
be used in these approaches as an additional detector.
Malicious code signatures. Signatures (i.e., patterns that charac-
terize malicious code) can be matched at the network level (e.g., in
the Snort IDS [31]), or at the application level (as in PhoneyC [23]).
JSAND does not rely on predetermined signatures, and, thus, can
potentially detect novel attacks. Furthermore, we have shown that
JSAND can automatically generate signatures for signature-based
systems.
Anomaly detection. Caffeine Monkey is a tool to collect events as-
sociated with the execution of JavaScript code [7]. The authors pro-
pose to use the distribution of function calls in a JavaScript program
to differentiate between malicious and benign pages. However,
their detection technique is based on the manual analysis of the
collected events and their validation only considered 368 scripts.
JSAND has more comprehensive features, is automatic, and has
been extensively validated.
Shellcode detection. A number of recent approaches are based on
the detection of the shellcode used in an attack (e.g., [6, 30]). Two
of JSAND’s features are designed for the same purpose. Further-
more, the richer feature set of JSAND allows it to detect attacks that

do not rely on shellcode injection, which would necessarily evade
detection by these approaches.

8. CONCLUSIONS
We presented a novel approach to the detection and analysis of

malicious JavaScript code that combines anomaly detection tech-
niques and dynamic emulation. The approach has been imple-
mented in a tool, called JSAND, which was evaluated on a large
corpus of real-world JavaScript code and made publicly available
online. The results of the evaluation show that it is possible to
reliably detect malicious code by using emulation to exercise the
(possibly hidden) behavior of the code and comparing this behav-
ior with a (learned) model of normal JavaScript code execution.

Future work will extend the techniques described here to im-
prove the detection of malicious JavaScript code. For example, we
plan to improve the procedures to identify binary shellcode used in
JavaScript malware. In addition, we plan to implement a browser
extension that is able to use the characterization learned by JSAND
to proactively block drive-by-download attacks.

Acknowledgment
This work has been supported by the National Science Foundation,
under grants CCR-0238492, CCR-0524853, CCR-0716095, CCR-
0831408, CNS-0845559 and CNS-0905537, and by the ONR under
grant N000140911042.

9. REFERENCES
[1] Andre L. IE 0day exploit domains.

http://isc.sans.org/diary.html?storyid=6739,
2009.

[2] ClamAV. Clam AntiVirus. http://www.clamav.net/.
[3] D. De Beer. Detecting VMware with JavaScript.

http://carnal0wnage.blogspot.com/2009/04/, 2009.
[4] M. Daniel, J. Honoroff, and C. Miller. Engineering Heap Overflow

Exploits with JavaScript. In Proceedings of the USENIX Workshop
on Offensive Technologies, 2008.

[5] D. Denning. An Intrusion-Detection Model. IEEE Transactions on
Software Engineering, 13(2), February 1987.

[6] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending
Browsers against Drive-by Downloads: Mitigating Heap-Spraying
Code Injection Attacks. In Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment,
2009.

[7] B. Feinstein and D. Peck. Caffeine Monkey.
http://www.secureworks.com/research/tools/
caffeinemonkey.html.

[8] S. Frei, T. Dübendorfer, G. Ollman, and M. May. Understanding the
Web browser threat: Examination of vulnerable online Web browser
populations and the “insecurity iceberg”. In Proceedings of DefCon
16, 2008.

[9] Gargoyle Software Inc. HtmlUnit.
http://htmlunit.sourceforge.net/.

[10] D. Goodin. Department of Homeland Security website hacked!
http://www.theregister.co.uk/2008/04/25/mass_
web_attack_grows/, 2008.

[11] D. Goodin. SQL injection taints BusinessWeek.com.
http://www.theregister.co.uk/2008/09/16/
businessweek_hacked/, 2008.

[12] D. Goodin. Exploit code for potent IE zero-day bug goes wild.
http://www.theregister.co.uk/2010/01/15/ie_
zero_day_exploit_goes_wild/print.html, 2010.

[13] Google. Safe Browsing API.
http://code.google.com/apis/safebrowsing/.

[14] A. Ikinci, T. Holz, and F. Freiling. Monkey-Spider: Detecting
Malicious Websites with Low-Interaction Honeyclients. In
Proceedings of Sicherheit, Schutz und Zuverlässigkeit, April 2008.

[15] Internet Security Systems X-Force. Mid-Year Trend Statistics.
Technical report, IBM, 2008.

[16] C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks.
In Proceedings of the ACM Conference on Computer and
Communications Security, 2003.

[17] C. Kruegel, G. Vigna, and W. Robertson. A Multi-model Approach
to the Detection of Web-based Attacks. Journal of Computer
Networks, 48(5), July 2005.

[18] MITRE Corporation. Common Vulnerabilities and Exposures (CVE).
http://cve.mitre.org/.

[19] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execution
Paths for Malware Analysis. In Proceedings of the IEEE Symposium
on Security and Privacy, 2007.

[20] A. Moshchuk, T. Bragin, D. Deville, S. Gribble, and H. Levy.
SpyProxy: Execution-based Detection of Malicious Web Content. In
Proceedings of the USENIX Security Symposium, 2007.

[21] A. Moshchuk, T. Bragin, S. Gribble, and H. Levy. A Crawler-based
Study of Spyware in the Web. In Proceedings of the Symposium on
Network and Distributed System Security, 2006.

[22] Mozilla.org. Rhino: JavaScript for Java.
http://www.mozilla.org/rhino/.

[23] J. Nazario. PhoneyC: A Virtual Client Honeypot. In Proceedings of
the USENIX Workshop on Large-Scale Exploits and Emergent
Threats, 2009.

[24] New Zealand Honeynet Project. Know Your Enemy: Malicious Web
Servers. http://www.honeynet.org/papers/mws, 2007.

[25] C. Pederick. User Agent Switcher Firefox Plugin. https:
//addons.mozilla.org/en-US/firefox/addon/59.

[26] M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost Turns
Zombie: Exploring the Life Cycle of Web-based Malware. In
Proceedings of the USENIX Workshop on Large-Scale Exploits and
Emergent Threats, 2008.

[27] N. Provos. SpyBye. http://code.google.com/p/spybye.
[28] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose. All Your

iFRAMEs Point to Us. In Proceedings of the USENIX Security
Symposium, 2008.

[29] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The Ghost in the Browser: Analysis of Web-based
Malware. In Proceedings of the USENIX Workshop on Hot Topics in
Understanding Botnet, 2007.

[30] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A Defense
Against Heap-spraying Code Injection Attacks. In Proceedings of the
USENIX Security Symposium, 2009.

[31] M. Roesch. Snort – Lightweight Intrusion Detection for Networks. In
Proceedings of the USENIX Conference on System Administration,
1999.

[32] C. Seifert, I. Welch, P. Komisarczuk, C. Aval, and
B. Endicott-Popovsky. Identification of Malicious Web Pages
Through Analysis of Underlying DNS and Web Server
Relationships. In Proceedings of the Australasian
Telecommunication Networks and Applications Conference, 2008.

[33] SkyLined. Internet Explorer IFRAME src&name parameter BoF
remote compromise. http://www.edup.tudelft.nl/
~bjwever/advisory_iframe.html.php, 2004.

[34] A. Sotirov. Heap Feng Shui in JavaScript. Black Hat Europe, 2007.
[35] A. Sotirov and M. Dowd. Bypassing Browser Memory Protections:

Setting back browser security by 10 years. Black Hat, 2008.
[36] SpamCop. SpamCop.net. http://www.spamcop.net/, 2008.
[37] The Honeynet Project. Capture-HPC.

https://projects.honeynet.org/capture-hpc.
[38] D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion

Detection Systems. In Proceedings of the ACM Conference on
Computer and Communications Security, 2002.

[39] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,
and S. King. Automated Web Patrol with Strider HoneyMonkeys:
Finding Web Sites That Exploit Browser Vulnerabilities. In
Proceedings of the Symposium on Network and Distributed System
Security, 2006.

[40] J. Wilhelm and T. Chiueh. A Forced Sampled Execution Approach to
Kernel Rootkit Identification. In Proceedings of the Symposium on
Recent Advances in Intrusion Detection, 2007.

