2016 IEEE Symposium on Security and Privacy

You Get Where You’re Looking For

The Impact of Information Sources on Code Security

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kimf, Michelle L. Mazurek?, Christian Stransky
CISPA, Saarland University; fUniversity of Maryland, College Park

Abstract—Vulnerabilities in Android code - including but not
limited to insecure data storage, unprotected inter-component
communication, broken TLS implementations, and violations
of least privilege — have enabled real-world privacy leaks and
motivated research cataloguing their prevalence and impact.
Researchers have speculated that appification promotes secu-
rity problems, as it increasingly allows inexperienced laymen
to develop complex and sensitive apps. Anecdotally, Internet
resources such as Stack Overflow are blamed for promoting
insecure solutions that are naively copy-pasted by inexperienced
developers.

In this paper, we for the first time systematically analyzed
how the use of information resources impacts code security.
We first surveyed 295 app developers who have published in
the Google Play market concerning how they use resources to
solve security-related problems. Based on the survey results, we
conducted a lab study with 54 Android developers (students and
professionals), in which participants wrote security- and privacy-
relevant code under time constraints. The participants were
assigned to one of four conditions: free choice of resources, Stack
Overflow only, official Android documentation only, or books
only. Those participants who were allowed to use only Stack
Overflow produced significantly less secure code than those using,
the official Android documentation or books, while participants
using the official Android documentation produced significantly
less functional code than those using Stack Overflow.

To assess the quality of Stack Overflow as a resource, we
surveyed the 139 threads our participants accessed during the
study, finding that only 25% of them were helpful in solving
the assigned tasks and only 17% of them contained secure
code snippets. In order to obtain ground truth concerning the
prevalence of the secure and insecure code our participants wrote
in the lab study, we statically analyzed a random sample of
200,000 apps from Google Play, finding that 93.6% of the apps
used at least one of the API calls our participants used during our
study. We also found that many of the security errors made by
our participants also appear in the wild, possibly also originating
in the use of Stack Overflow to solve programming problems.
Taken together, our results confirm that API documentation is
secure but hard to use, while informal documentation such as
Stack Overflow is more accessible but often leads to insecurity.
Given time constraints and economic pressures, we can expect
that Android developers will continue to choose those resources
that are easiest to use; therefore, our results firmly establish the
need for secure-but-usable documentation.

I. INTRODUCTION

Mobile devices in general and Android in particular are a
rapidly growing market. Globally, mobile digital media has
recently surpassed desktop and other media [37]; billions
of users and devices with millions of apps installed attract
many (new) developers. Previous research has found that
many of these mobile apps have poorly implemented security
mechanisms, potentially because developers are inexperienced,
distracted or overwhelmed [1], [8], [9], [11], [14]-[18], [26],

© 2016, Yasemin Acar. Under license to IEEE.
DOI 10.1109/SP.2016.25

289

[29], [31], [33], [34], [36], [43], [44], [46]. Developers tend to
request more permissions than actually needed, do not use TLS
or cryptographic APIs correctly, often use insecure options
for Inter Component Communication (ICC), and fail to store
sensitive information in private areas.

Some previous work attempts to assess root causes for these
programming errors. A frequent conclusion is that APIs are too
complicated or insufficiently documented. Anecdotal reports
indicate that developers use a search engine for help when
they encounter an unfamiliar security issue. The search results
often lead to official API documentation, blog posts, or Q&A
forums such as Stack Overflow!. For example, Fahl et al. [16]—
[18] interviewed developers whose use of pasted code snippets
from Stack Overflow made them vulnerable to Man-In-The-
Middle attacks.

These anecdotes set the stage for our work: While many
developer issues have been identified in recent years, we know
only very little about how these security issues make their way
into apps, and most of what we know remains unsubstantiated.
In this paper, we assess the validity of these anecdotes by
exploring the following research questions:

« What do Android developers do when they encounter a
security- or privacy-relevant issue?

e Which information sources do they use to look up
security- or privacy-relevant questions?

« Does the use of Stack Overflow really lead to less secure
code than the use of other resources?

« Is the official Android documentation really less usable,
resulting in less functional code compared to other re-
sources?

We are the first to address these questions systematically
rather than anecdotally, shedding light on the root causes
of security-related programming errors in Android apps. In
order to understand these causes, we first conducted an online
survey of 295 developers with apps listed in the Google
Play marketplace, covering how they handle both general and
security-specific programming challenges in their daily work.
We found that most developers indeed use search engines
and Stack Overflow to address security-related issues, with a
sizable number also consulting the official API documentation
and a few using books.

Based on the results of this study, we conducted a laboratory
user study with 54 student and professional Android develop-
ers, assessing how they handle security challenges when given
different resources for assistance. Participants were assigned
to one of four study groups, in which we isolated conditions:

Ihttp://stackoverflow.com

@) CO‘ pute
1(!) I
& SOCIety

free choice of resources, Stack Overflow only, official Android
documentation only, and books only. Each participant was
asked to complete four programming tasks that were drawn
from common errors identified in previous work: A secure
networking task, a secure storage task, an ICC task, and a least
permissions task. We analyzed the correctness and security
of the participants’ code for each task as well as how they
employ the resources we permitted them to use. Our results
validate the prior anecdotal evidence: Participants using Stack
Overflow were more likely to be functionally correct, but less
likely to come up with a secure solution than participants in
other study conditions.

To place these results in context, we also surveyed the
quality of Stack Overflow Q&As. We first analyze the rel-
evance and security implications of the 139 Stack Overflow
threads accessed by our subjects. We found that many of the
threads contain insecure code snippets, and that those threads
are equally as popular as threads with only secure snippets.

To establish ground truth, we also apply static analysis to
a random sample of 200,000 free apps from the Google Play
market in order to investigate if the code written in the context
of our laboratory study can be found in the wild. We find
that our programming tasks were highly representative for
the typical Android programmer, as 93.6% of all apps we
analyzed used at least one of the API calls our participants
generated during the study. Our analysis also finds that many
of the security errors made by our participants when using
these APIs also appear in the wild. For example, most of the
custom hostname verifier implementations we found in real-
world apps implement insecure hostname verification, which
is also true for the code written by our participants.

Taken together, our results confirm an important problem:
Official API documentation is secure but hard to use, while
informal documentation such as Stack Overflow is more acces-
sible but often leads to insecurity. Interestingly, books (the only
paid resource) perform well both for security and functionality.
However, they are rarely used (in our study, one free choice
participant used a book). Given time constraints and economic
pressures, we can expect that Android developers will continue
to choose those resources that appear easiest to use; therefore,
our results firmly establish the need for secure-but-usable
documentation.

The rest of this paper proceeds as follows: In Section II we
review related work. Section III describes our online survey
of Android developers who have published in the Play market,
Section IV describes the design of our laboratory study, and
Section V reports its results. In Section VI we present our
analysis of Stack Overflow posts and in Section VII we present
the ground truth from our static code analysis. Section VIII
discusses some limitations of our work. Finally, in Section IX
we discuss our results and conclude.

II. RELATED WORK

In this section, we discuss related work in three key areas:
Security and privacy flaws in otherwise benign mobile apps,
efforts to understand how mobile developers make security-

290

and privacy-relevant decisions and prior research exploring
online Q&A resources such as StackOverflow.

Security Flaws in Mobile Apps. Many researchers at-
tempted to measure the incidence of security flaws in oth-
erwise benign mobile apps. Fahl et al. found that 8% of
13,500 popular, free Android apps contained misconfigured
TLS code vulnerable to Man-In-The-Middle attacks [16].
Common problems included accepting all certificates without
verifying their validity and not checking whether the name
of the server currently being accessed matches the hostname
specified on the certificate it provides. In follow-up work,
the same research team extended their analysis to iOS and
found similar results: Using a Man-In-The-Middle attack,
they were able to extract sensitive data from 20% of the
apps [18]. Another examination of TLS code, this time in
non-browser software more generally, found similar flaws in
many Android and iOS applications and libraries [20]. In more
recent work, Onwuzurike and De Cristofaro found that the
same problems remain prevalent several years later, even in
apps with more than 10 million downloads [30]. Oltrogge
et al. [29] investigated the applicability of certificate pinning
in Android apps. They came to the conclusion that pinning
was not as widely applicable as commonly believed. However,
there was still a huge gap between developers who actually
implement pinning and apps that could use pinning.

Egele et al. examined the use of cryptography — including
block ciphers and message authentication codes — in Android
applications and found more than 10,000 apps misusing cryp-
tographic primitives in insecure ways [11]. Examples included
using constant keys and salts, using non-random seeds and
initialization vectors, and using insecure modes for block
ciphers.

Many problems also exist with the use and misuse of app
permissions, device identifiers, and inter-application commu-
nication. Enck et al. analyzed 1,100 free Android apps and
reported widespread issues, including the use of fine-grained
location information in potentially unexpected ways, using
device IDs for fingerprinting and tracking (in concert with
personal identifiable information (PII) and account registra-
tion), and transmitting device and location in plaintext [14].
Chin et al. characterized errors in inter-application communi-
cations (intents) that can lead to interception of private data,
service hijacking, and control-flow attacks [9]. Felt et al. [33]
analyzed how app developers use permissions and report that
many request unnecessary permissions. The authors identify
incomplete documentation for developers as one major root
cause of this problem. Work by Poeplau et al. reported that
almost 10% of analyzed apps load code via insecure channels
(e.g., http or the SD card), which can allow attackers to inject
malicious code into benign apps in order to steal data or create
malware [31].

Enck et al. [13] presented TaintDroid — a tool that ap-
plies dynamic taint tracking to reveal how apps actually use
permission-protected data. They uncovered a number of ques-
tionable privacy practices in apps and motivated enhancements
to Android’s original permission system and access control on

inter-component communication.
In this paper, we consider how the information sources de-
velopers use contribute to these kinds of errors and problems.

Understanding Developers. Many of the flaws discussed
above arose from developer mistakes and misunderstandings.
In interviews with developers who made mistakes in TLS
code, Fahl et al. found that problems arose from several
sources, including developers who disabled TLS functionality
during testing and never re-enabled it, developers who did not
understand the purpose of TLS or the possible threat scenarios,
and problems with default configurations in frameworks and
libraries [18]. Georgiev et al. also reported that confusion
about the many parameters, options, and defaults of TLS
libraries contributed to developer errors [20]. Both papers
noted that developer forums such as Stack Overflow contained
many suggestions for avoiding TLS-related error messages by
disabling TLS features, without warning about the potential
security consequences. Many developers use these resources
to solve security- and privacy-related problems [3]. Similarly,
Egele et al. discussed how poor default configurations and
confusing APIs, along with insufficient documentation, may
contribute to errors using cryptographic primitives [11].

In a non-mobile context, Leon et al. found that many
popular websites used invalid or misleading P3P compact
policies, which are tokens used to summarize a website’s
privacy policy for automated parsing [24]. Their manual anal-
ysis suggested that while many mistakes likely resulted from
developer error, others resulted from attempts to avoid Internet
Explorer’s cookie filtering mechanism, and appeared to rely
on suggestions from forums like Stack Overflow for avoiding
this filtering. While these works on TLS and compact policies
observed problems related to Stack Overflow and similar sites,
our work uses a controlled experiment to compare the impact
of different information sources.

Other flaws, particularly those related to privacy, are caused
when developers do not sufficiently consider the implications
of their decisions. In interviews with mobile developers from
companies of various sizes, Balebako et al. found that privacy
policies are not considered important and that privacy concerns
are frequently outweighed by concerns about revenue, time to
market, and the potential for any data that can be collected
to someday be useful [2]. In a follow-up survey, the same
authors found that many developers are not aware of the
privacy or security implications of third-party advertising and
analytics libraries they use [3]. These findings provide valuable
insight into developers’ perspectives; our work extends these
perspectives with empirical observation of developer behavior.

Other researchers considered how to improve developers’
decision making. Jain and Lindqvist propose a new location-
request API designed to promote privacy-preserving choices
by developers [21]. Fahl et al. suggested providing TLS
as a service within a mobile OS that supports a separate
development mode [18]. Similarly, Onwuzurike and De Cristo-
faro provided a code snippet for correctly using self-signed
certificates during development but not production [30]. Our
work extends Jain and Lindqvist’s methodology to empirically

291

evaluate developers’ decisions.

Collectively, these findings suggest that helping well-
meaning mobile developers to make better security- and
privacy-relevant decisions could have a large impact on the
overall mobile ecosystem. In this paper, we expand on these
findings by using a controlled lab study to quantify how
documentary resources impact security and privacy outcomes.

Exploring Online Q&A Resources. The software en-
gineering and machine learning communities explored how
developers interact with Stack Overflow and other Q&A sites.
Much of this research focused on what types of questions are
asked, which are most likely to be answered, and who does
the asking and answering [5], [6], [27], [38]-[40].

Other research considered the quality of questions and
answers available on Q&A sites — including general sites
not specifically targeting programming [4], [22], [32]. These
works are generally intended to support automated identi-
fication and pruning of low-quality content. In contrast to
the studies described above, our work does not describe or
measure broad trends in how Stack Overflow is used; nor do
we consider how to automatically classify content. Instead, we
directly consider how existing Stack Overflow content affects
the outputs of developers who rely on it.

Others have analyzed Q&A sites specifically in the context
of mobile development. Linares-Véasquez et al. investigated
how changes to Android APIs trigger activities on Stack
Overflow and found that the frequency of questions increases
when Android APIs change, particular in the case of method
updates [25]. In two related works, Wang et al. mined Stack
Overflow posts to identify mobile APIs (Android and iOS)
that frequently give developers trouble. They proposed that
this data can be used both to improve documentation for
these “hotspots" and to help API providers improve the design
of their APIs to better support developer needs [41], [42].
In a similar vein, Nadi et al. analyze Stack Overflow posts
to identify difficulties that developers commonly have with
Java cryptography APIs [28]. While these works used Stack
Overflow to identify trouble spots within APIs, we instead
start from known trouble spots in security and privacy and
measure how information sources, including Stack Overflow,
directly affect the code developers write.

III. SURVEY OF ANDROID DEVELOPERS

To understand the challenges app developers face during
the implementation of security-critical app components, we
conducted an online survey of Android developers covering
their experience, their programming habits, and the resources
they use. Results from this survey helped motivate the design
of our lab experiment (Section IV). In this section, we briefly
discuss the design of this survey as well as the results. The
online study was approved by the University of Maryland
Institutional Review Board.

We collected a random sample of 50,000 email addresses
of Android application developers listed in Google Play (the
official Android application market). We emailed these de-
velopers, introducing ourselves and asking them to take our

not atall How long have you been developing software in general?

W How long have you been developing Android apps?
< 6 months

6 months - 1 year -
B |
THEr
0 50 100 150 200 250 300

Fig. 1. How long participants in our online survey have been developing
software, both in general and specifically for Android.

online survey. A total of 302 people completed the survey
between April 2015 and October 2015. Seven participants
were removed for providing answers that were nonsensical,
profane, or not in English. Results are presented for the
remaining 295.

Education and Experience. ~Most participants (91.2%, 269)
had been developing software for more than two years; 63.1%
(186) had been developing Android apps specifically for more
than two years, as shown in Figure 1. About half of them
(48.7%, 147) had developed between two and five apps;
however, 73.5% (218) of all participants reported that they
do not develop Android apps as their primary job.

Almost half of the participants had formally studied pro-
gramming at the undergraduate (27.8%, 82) or graduate level
(18.6%, 55). Most of the remaining developers reported being
self-taught (41.2%, 121). Most participants had never taken
any classes or training related specifically to Android pro-
gramming (81.3%, 239) or to computer or information security
(56.6%, 167).

As we discuss in Section V-A, these demographics have
some similarity with our lab study participants; however,
survey participants as a whole reported less formal education
than lab participants.

Security and Permissions. @ We also asked participants
about three security-related issues they might have encoun-
tered during app development: HTTPS/TLS, encryption, and
Android permissions. These results provide some context for
the security tasks used in our lab study.

About half of the developers (144) said that their Android
app(s) use HTTPS to secure network connections; of those,
80.6% (116) had looked up information on HTTPS- or TLS-
related topics at least once, but only 11.1% (16) did so more
frequently than once per month. The most popular resources
among these 116 were Stack Overflow (43.1%, 50) and a
search engine such as Google (37.1%, 43); only 8.6% (10)
mentioned the official Android documentation. Interestingly,
a few (2.6%, 3) mentioned asking for help from certification-
related companies such as certificate vendors or hosting com-
panies. A large majority of respondents (78.4%, 91) said they
did not handle HTTPS or certificate problems differently from

292

Does your app use ... mYes “No Idon'tknow

0% 25% 50%

75% 100%

How often do you look up ...
] s e
I |
||]
|| I
0%

50%
W multiple times a day

about once a day
about once a month W rarely

General
Encryption
Permission

HTTPS

25% 75%

M about once aweek

100%

never
What resources do you use?

|
e | —

R

W Books
Official Android documentation

m Searchengine
Stack Overflow

U

]
TS e ——

0% 25% 50% 75% 100%

Fig. 2. Highlights of resource questions from our online developer survey.
How many participants work on apps that include encryption or HTTPS
(top), how often participants look up information when solving general
programming problems or security-related Android problems (middle), how
many participants mentioned using each of the most popular resources for
solving general programming problems or security-related Android problems
(bottom).

other problems.

Fewer participants (25.1%, 74) had used encryption to
store files. Of these, almost all (90.5%, 67) had looked up
encryption-related topics at least once, but again the vast
majority did so once a month or less (82.1%, 55). The primary
sources were once again search engines (mentioned by 31
participants, 46.3%) and Stack Overflow (28.4%, 19). Six of
the 67 (9.0%) mentioned the official Android documentation,
and two (3.0%) mentioned books. As with HTTPS, the major-
ity (58, 86.6%) solved encryption problems similarly to other
problems.

Responses to questions about Android permissions were
somewhat different. As with HTTPS and encryption, most
(74.9%, 221) reported they had looked up permissions infor-
mation at least once, and a large majority of them did so
once per month or less (84.2%, 186). However, participants
who had looked up permission information favored official
documentation (41.2%, 91) over search engines (29.0%, 64)
or Stack Overflow (30.3%, 67) on that topic. One participant
wrote that “[I] don’t have to Google. [I] go directly to Android
developer resource” for authoritative information.

Development Resources More Generally. We also asked
(free response) about the resources participants use when

they encounter programming problems in general. The results
are similar to those for security-specific problems. Large
majorities mentioned Stack Overflow (69.5%, 205) and a
search engine (62.0%, 183). Although this question did not
specifically mention Android programming, 27.5% (81) also
mentioned official Android documentation, including APIs and
best practices guides.

In a separate question, we asked how frequently participants
use any resources when programming for Android. More than
half (52.2%, 154) reported looking up Android programming
information at least once per day and another 25.4% said
at least once per week. Among 35 participants (11.9%) who
selected “rarely,” 11 (31.4%) explicitly mentioned that while
they rarely looked things up now, they had used resources or
documentations for help many times a day when they were
working on Android projects.

Figure 2 illustrates how participants used resources, both
for security-related tasks and in general.

Discussion. Overall, these results indicate that many An-
droid developers must deal with security or privacy issues
periodically, but do not handle them consistently enough to
become experts. This suggests that the quality of documen-
tation is especially critical for these topics. Stack Overflow
(and more generally, online search) is the default resource for
certificate or encryption problems, as well as programming
problems more generally. Permissions, however—perhaps be-
cause they are Android-specific and closely associated with
the platform itself—are more frequently referenced from the
official documentation. These findings validate both the need
to understand the impact of the resources on security and
privacy decisions generally, and our choice to compare Stack
Overflow and the official documentation more specifically.

IV. ANDROID DEVELOPER STUDY

To examine how the resources developers access affect
their security and privacy decision-making, we conducted a
between-subjects laboratory study. We provided a skeleton
Android app and asked participants to complete four program-
ming tasks based on the skeleton, encompassing the storage of
data, the use of HTTPS, the use of ICC and the use of permis-
sions. Each participant was assigned to one of four conditions
governing what resources they were allowed to access. We
examined the resulting code for functional correctness as well
as for security- or privacy-relevant decisions; we also used a
think-aloud protocol and an exit interview to further examine
how participants used resources and how this affected their
programming.

The lab study was also approved by the University of
Maryland Institutional Review Board.

A. Recruitment

We recruited participants who had taken at least one
course in Android development or developed professionally
or as a hobby for at least one year. Initially, participants
were also asked to complete a short programming task to
demonstrate competence with Android development. After
receiving feedback that the qualification task required too great

293

a time commitment for prospective participants, we instead
required participants to correctly answer at least three of five
multiple choice questions testing basic Android development
knowledge. The bar for qualification was intentionally set low,
as we wanted to compare the impact of programming resources
for developers with different expertise levels. In addition, the
usefulness of our results partially depended on our participants
needing to look things up during the programming process.

Participants were recruited in and around one major city in
the U.S., as well as in two university towns in Germany. We
recruited participants by emailing undergraduate and graduate
students (in computer science in general and specifically
those who had taken mobile development courses), as well
as by placing ads on Craiglist, emailing local hacker and
developer groups, and using developer-specific websites such
as meetup.com. Prospective participants who qualified were
invited to complete the study at a university campus or at
another public place (library, coffee shop) of their choice. No
mention of security or privacy was made during recruitment.
Participants were compensated with $30 in the U.S. or an €18
gift card in Germany.

B. Conditions and study setup

Participants were assigned round-robin to one of four con-

ditions, as follows:
Official Only (official). Participants were only allowed to
2

access websites within the official Android documentation ~.

Stack Overflow Only (SO). Participants were only allowed
to access questions and answers within Stack Overflow, a
popular crowd-sourced resource for asking and answering
questions about programming in a variety of contexts.

Book Only (book). Participants were only allowed to use
two books: Pro Android 4 [23] and Android Security Internals
[12]. Participants were provided access to the PDF versions
of the books, enabling text searching as well as use of indices
and tables of contents.

Free Choice (free). Participants were allowed to use any
web resources of their choice, and were also offered access to
the two books used in condition book.

Conditions official and SO were enforced using whitelist-
chrome?, a Chrome browser plugin for limiting web access.

Participants were provided with AndroidStudio, pre-loaded
with our skeleton app, and a software Android phone emulator.
The skeleton app, which was designed to reduce participants’
workload and simplify the programming tasks, was introduced
as a location-tracking tool that would help users keep track of
how much time they spent in various locations (at home, at
work, etc.) each day.

After a brief introduction to the study and the skeleton app,
participants were given four programming tasks in random
order (detailed below), with approximately 20-30 minutes to

2cf. http://developer.android.com
3https://github.com/unindented/whitelist-chrome

complete each. (The first task was allowed to run longer as
participants became acquainted with the skeleton app.) While
the short time limit impeded some participants’ performance,
it also simulated the pressure of writing code on tight deadlines
that many app developers face.

Security and privacy were not mentioned during the intro-
duction to the study and skeleton app or in the directions for
each task (the HTTPS task and password task do inherently
imply some reference to security). We deliberately minimized
security priming to account for the fact that security and
privacy are generally secondary tasks compared to basic app
functionality [2], [10], [18], [19]. Instead, we focus on whether
developers — who in real-world scenarios may or may not be
explicitly considering security — find and implement secure
approaches. This is in line with prior studies examining
security and privacy decisionmaking by developers, such as
one by Jain and Lindqvist [21].

C. The Tasks

Each participant was assigned the same four tasks, but
in a random order. We took care to implement baseline
functionality so that the tasks could be done in any order and
so that remaining tasks would still work, even if a previous
task had not been successfully completed.

Drawing on related work (as discussed in Section II), we
selected four general areas that typically result in security
or privacy errors on Android: (1) Mistakes in TLS and
cryptographic API handling; (2) storing sensitive user data
insecurely, such that it can be accessed by other (unauthorized)
apps; (3) using inter-component communications (ICC) in a
way that violates least privilege principles; and (4) requesting
unneeded permissions. We designed four tasks, detailed below,
to exercise these areas respectively.

Secure Networking Task. This task addressed correct usage
of HTTPS and TLS in the presence of X.509 certificate errors.
The skeleton app connected to a website via HTTP; partici-
pants were asked to convert the connection to HTTPS. This
required making a minor adjustment to the connection object.
More interestingly, we created a certificate for secure.location-
tracker.org (a server we configured specifically for this study),
but the participant was requested to connect to location-
tracker.org, and a matching DNS entry for secure.location-
tracker.org did not exist. As a result, participants received
a HostnameVerifier exception indicating the certificate name
and domain were mismatched. Secure solutions would include
creating a custom HostnameVerifier to handle this case or
pinning the certificate (although we expected pinning to be
too time-consuming for most participants to implement in
the study) *. We also accepted a participant arguing that the
location tracker app should obtain a correct X.509 certificate
rather than working around the problem as a secure solution.
Insecure solutions that allow a connection to be established

4Implementing it correctly requires inspecting the server’s certificate and
using a third-party tool such as the OpenSSL command-line client to generate
the pinning information

294

include using a HostnameVerifier that accepts all hostnames,
or simply accepting all certificates without validation.

ICC Task. This task addressed secure inter-component
communication. Participants were asked to modify a service
within the skeleton app, in order to make the service callable
by other apps. However, participants were asked to limit this
access to apps created by the same developer. To accomplish
this, participants needed to modify the Android Manifest. An
insecure solution would expose the service to be called by any
app; this could happen by setting the flag android:exported
to true or by declaring intent filters, which set the exported
flag to true by default. A secure solution for this task is to
define an own permission with protection level ‘signature’ or
‘signatureOrSystem’ and assign it as required for the service.
A second possible secure solution is to use a sharedUserld
among all apps from the same developer, which allows the
apps to share resources.

Secure Storage Task. This task focused on secure storage
of the user’s login ID and password for the remote server. The
skeleton app contained empty store and load functions for the
participant to fill in; the directions asked the participant to
store the credentials persistently and locally on the device. A
secure solution would be to limit access only to this app, for
example using Android’s shared preferences API in private
mode. An insecure solution would make the data accessible
to third parties, for example by storing it world-readable on
the SD card.

Least Permissions Task. In this task, participants were
asked to add functionality to dial a hard-coded customer
support telephone number. The skeleton app contained a non-
functional call button, to which the dialing functionality was to
be applied. To solve this problem, the participant needed to use
an intent to open the phone’s dialing app. One option is to use
the ACTION_DIAL intent, which requires no permissions; it
opens the phone’s dialer with a preset number but requires the
user to actively initiate the call. Another option is to use the
ACTION_CALL intent, which initiates the call automatically
but requires the CALL_PHONE permission. We consider the
second solution less appropriate because it requires unneces-
sary permissions, violating the principle of least privilege.

D. Exit Interview

After completing each task (or running out of time), partici-
pants were given a short exit interview about their experience.
Using a five-point Likert scale, we asked whether each task
was fun, difficult, and whether the participant was confident
they got the right answer. We also asked whether the docu-
mentation and resources participants had access to were easy
to use, helpful, and correct. We asked free-response questions
about whether the participant had used that documentation
source before and how they felt the documentation restriction
(where applicable) and time crunch affected their performance.
We also asked whether and how participants had considered
security or privacy during each task. Finally, we asked a series

of demographic and programming-experience questions that
matched those in our initial developer survey (see Section III).

E. Data Collection and Analysis

In addition to each participant’s code, think-aloud responses,
and exit interview responses, we collected browser activity
during the session (for participants in all but the book condi-
tion) using the History Export® extension for Chrome, which
stores all visited URLs in a JSON file.

Scoring the Programming Tasks. For each programming
task, we assigned the participant a functionality score of 1 (if
the participant’s code compiled and completed the assigned
task) or O (if not). To provide a security score for each task,
we considered only those participants who had functional
solutions to that task. We manually coded each participant’s
code to one of several possible strategies for solving the task,
each of which was then labeled secure or insecure. Based
on these categories, each participant who completed a task
was assigned a security score of O (insecure approach) or 1
(secure approach) for that task. Manual coding was done by
two independent coders, who then met to review the assigned
codes and resolve any mismatches. All conflicts were resolved
by discussions that resulted in agreement. Example secure and
insecure approaches for each task are detailed in Table I.

Prior to the conducting the lab study, we verified that
functional and secure solutions for each task, such as those
described in Table I, were available in each of the official
Android documentation, Stack Overflow, and the selected
books. This ensured that it was possible (if not necessarily
easy) for participants in all conditions to locate a correct and
secure answer.

Statistical Methods. For ordinal and numeric data, we used
the non-parametric Kruskal-Wallis test to compare multiple
samples and Wilcoxon Signed-Rank test to compare two
samples. For categorical data, we used Fisher’s Exact test.
In cases of multiple testing, we report tests as significant if
the p-values are significant after applying the Bon Ferroni-
Holm correction. To examine correlation between two sets of
binary outcomes, we the use Cohen’s x measure of inter-rater
reliability.

To examine functional correctness and security across
tasks and conditions, while accounting for multiple tasks per
participant, we used a cumulative-link (logit) mixed model
(CLMM) [45]. As is standard, we include random effects to
group each participant’s tasks together. For the CLMM, we
tested models with and without the participant’s status as a
professional developer as an explanatory factor, as well as with
and without interactions among task, condition, and developer
status. In each case, we selected the model with the lowest
Akaike information criterion (AIC) [7].

V. LAB STUDY RESULTS
In this section, we discuss our lab study results in terms
of functional correctness, security, and participants’ use of

Shttps://chrome.google.com/webstore/detail/history-
export/Ipmoaclacdaofhlijejogfldmgkdlglj

295

Assigned condition

Official: 13 SO: 13 Book: 14 Free: 14

Location of Study

United States: 12 (22.2%) Germany: 42 (77.8%)

Gender

Male: 46 (85.2%) Female: 8 (14.8%)

Country of Origin
United States: 6 (11.1%)
India: 5 (9.3%)

Germany: 28 (51.9%)
Others: 15 (27.8%)

Professional Android Experience

Yes: 14 No: 40
Ages
mean = 26.0 median = 25 sd = 4.7
TABLE 1T

PARTICIPANT DEMOGRAPHICS.

their assigned resources. We find that while Stack Overflow
is easier to use and results in more functional correctness, it
also results in less security than the less accessible official API
documentation.

A. Participants

A total of 56 people participated in our lab study (13 in
the U.S. and 43 in Germany). Two participants (one from the
U.S. and one from Germany) were removed, one due to an
error assigning the condition and one because of their refusal
to work on the tasks. We report results for the remaining 54.

Our participants were aged between 18 and 40 (mean
26, sd = 4.70), 85.2% were male (46 participants), and most
of them (88.9%, 48) were students. Several were part-time
students and part-time professional developers. More than half
of participants said they grew up in Germany (51.9%, 28). The
next most popular countries of origin were the U.S. (11.1%, 6)
and India (9.3%, 5). Table II shows demographic information
for the participants recruited in each country. Using Fisher’s
exact test, we did not find differences in gender (p = 0.400),
occupation (p = 1.00) or country of origin (p = 0.81) between
the randomly assigned conditions. Using the Kruskal-Wallis
test, we could not find a difference in ages across the randomly
assigned conditions (X2 = 2.22, p = 0.528). Both in the U.S.
and in Germany, participants were distributed evenly across
the four conditions.

Every lab study participant but one (98.1%) had been
programming in general for more than two years; 51.9% (28)
had been specifically developing Android apps for more than
two years. About half of the participants (53.7%, 29) had
developed between two and five Android apps, and 18.5%
(10) had developed 10 or more apps. Most participants (85.2%,
46) were not developing Android apps as their primary job,
but eight participants were employed as Android app pro-
grammers. Using the Kruskal-Wallis test, we did not find
a difference in years of Android experience or in number
of apps developed across the randomly assigned conditions
(X? = 5.06,4.46 and p = 0.409,0.485 respectively). As
shown in Figure 3, our lab-study participants had roughly
similar experience to the developers in our online survey.

Task APIL Details Security Rating Explanation
. s . . return true A custom hostname verifier with a
javax.net.ssl.HostnameVerifier.verify (host, session) d . heck i d
Secure e.g. host.equals ("secure.foo.com") correct domain check is rated as
Networkin a secure solution. Hostname ver-
g org.apache.http.conn.ssl.X509HostnameVerifier.verify (host, return true ifiers which accept all hostnames
session) e.g. host.equals ("secure.foo.com") are rated insecure.
android:exported=true A service that has the exported flag
cintent-filters> </intent—filters set to true, uses intent filters, or
Lnten titerz...s/inten Lrter uses a normal or dangerous permis-
ICcC <service>...</service> android:permission sion is rated as insecure. Services

android:protectionLevel=signature

android:protectionLevel=signatureOrSystem

protected with a signature or signa-
tureOrSystem permission are rated
as secure.

Secure Storage

Environment .getExternalStoragePublicDirectory (type)

Context.getExternalFilesDir (type)

Context.getFilesDir ()

Context.getCacheDir ()

Context.openFileOutput (name, mode)

Context .MODE_PRIVATE
Context .MODE_WORLD_READABLE
Context .MODE_WORLD_WRITABLE

Context.getDir (name, mode)

Context .MODE_PRIVATE
Context .MODE_WORLD_READABLE
Context .MODE_WORLD_WRITABLE

PreferenceManager.getDefaultSharedPreferences ()

PreferenceManager.getSharedPreferences (context)

Context.getSharedPreferences (name, mode)

Context .MODE_PRIVATE
Context .MODE_WORLD_READABLE
Context .MODE_WORLD_WRITABLE

Activity.getPreferences (mode)

Context .MODE_PRIVATE
Context .MODE_WORLD_READABLE
Context .MODE_WORLD_WRITABLE

Context.openOrCreateDatabase (name, mode, ...)

Context .MODE_PRIVATE
Context .MODE_WORLD_READABLE
Context .MODE_WORLD_WRITABLE

We distinguish three different stor-
age backends: SQLite databases,
the file system, and Android’s
shared preferences. All three can
have secure and insecure imple-
mentations. Secure implementa-
tions store information in an area
local to an app; this is the de-
fault implementation for SQLite
databases and shared preferences.
However, both backends can be
used to store data such that other
apps can access it. The file-system
API can be used to either store
data locally or externally on a de-
vice’s SD card. Implementations
that store information in an exter-
nally accessible way are rated inse-
cure. Implementations that store in-
formation locally are rated secure.

Least Permis-
sions

new Intent (action, uri)

Intent .ACTION_DIAL
Intent .ACTION_CALL

android:name=’android.permission.CALL_PHONE’

OO @e00Ce00e0O0Ce 000000 e e 000000 |0O0

Using action_dial is rated secure.
However, using action_call and re-
questing the call_phone permission
is rated insecure.

@ = we rated this solution as secure, O = we rated this solution as insecure

TABLE I

TASK RELATED API CALLS AND THEIR PARAMETERS. WITH SECURITY RATING PARAMETERS HELP CLASSIFY WHETHER A SOLUTION IS SECURE.

296

Lab study vs. Online survey "

>2 years
(Android app)

¥ Online

>2 years
(in general)

Py o
Between 2and 5
I

Android apps
50%

0% 25% 75% 100%

Percent of participants

Fig. 3. Comparison of programming experience for participants in our online
survey and lab study.

We also asked how participants learned to program (multiple
answers allowed). Almost all (83.3%, 45/54) said they were at
least partially self-taught, and 79.6% (43) had formally studied
programming at the undergraduate or graduate level. More
than half (63.0%, 34) had taken at least one security class,
and slightly fewer than half (46.3%, 25) had taken a class
in Android programming. Overall, our lab study participants
had notably more education than the developers in our online
survey.

B. Functional Correctness Results

Our results demonstrate that the assigned resource condition
had a notable impact on participants’ ability to complete
the tasks functionally correctly; SO and book participants
performed best, and official participants performed worst. SO
participants solved 67.3% (35/52) of tasks correctly, compared
to 66.1% (37/56) for book, 51.8% (29/56) for free, and 40.4%
(21) for official. Figure 4 (top) provides more detail on the
breakdown of correctness across tasks and conditions. The
CLMM model (see Table III) indicates that when controlling
for task type, professional status, and multiple tasks per
participant, participants in official were significantly less likely
than baseline SO participants to functionally complete tasks.

Factor Coef. Exp(coef) SE p-value
free -1.054 0.349 0.613 0.085
official -1.535 0.215 0.634 0.015*
book -0.142 0.868 0.602 0.814
ICC 0.795 2.215 0.455 0.081
secure storage 1.280 3.597 0.468 0.006%*
least permissions 3.299 27.092 0.632 < 0.001%*
professional 1.004 2.728 0.501 0.045%
TABLE III

CLMM REGRESSION TABLE FOR FUNCTIONAL CORRECTNESS. THE
NON-INTERACTION MODEL INCLUDING PROFESSIONAL STATUS WAS
SELECTED. NON-SIGNIFICANT VALUES ARE GREYED OUT; SIGNIFICANT
VALUES ARE INDICATED WITH AN ASTERISK. THE BASELINE FOR
CONDITION IS SO, AND THE BASELINE FOR TASK IS SECURE
NETWORKING.

Participants’ perceptions of the tasks only partially dove-
tailed with these results. We asked participants, on a 5-point
Likert scale, whether they were confident they had gotten the

297

Correctness
Official
L Ne]
Book
H Free

Secure Networking

1
ICC
—

Secure Storage

25%

Least Permissions
0% 100%

Security

Secure Networking

|cc —

I
1 —
Secure Storage
|
o I
Least Permissions
I—

0% 25% 50% 75% 100%

Number of participants

Fig. 4. Top: Percentage of participants who produced functionally correct
solutions, by task and condition. Bottom: Percentage of participants whose
functionally correct solutions were scored as secure, by task and condition.

right answer for each task.® Participants in condition free were
most confident: They agreed or strongly agreed they were
confident for 55.4% of tasks. Participants in each of the other
three conditions were confident for slightly fewer than half
of tasks: 47.3% in book and 46.2% in both SO and official.
Figure 5 illustrates these results.

I am confident | got the right answer on this task

25% 100%

Percentage of participants

75%

B Strongly Agree Agree H Neither Disagree B Strongly Disagree

Fig. 5. Participants’ confidence in their tasks’ correctness, by condition, on
a 1-5 Likert scale (1 = Strongly disagree, 5 = Strongly agree).

Using Cohen’s x, we examined whether participants’ self-
reported confidence in their tasks’ correctness (binned as
strongly agree/agree and strongly disagree/disagree/neutral)
matched with our functional correctness result. We found
x = 0.55, indicating that participants were assessing their
functional correctness only somewhat effectively.

Correctness per Task. Observed correctness varied
strongly among the four tasks, as shown in Figure 4 (top). In
the least permissions task, 87.0% (47) of participants produced

%0ne book participant’s confidence answer for the least permissions task
was inadvertently not recorded; we exclude that participant from confidence
analyses only.

a functional solution; in the secure networking task only
33.3% (18) did. These results were mirrored in self-reported
confidence: 81.1% of participants were confident about the
least permissions task, compared to 53.7% for secure storage,
40.7% for ICC, and only 20.1% for secure networking. The
CLMM analysis (Table III) indicates that both the secure
storage and least permissions tasks were significantly more
likely to be functionally correct than the baseline secure
networking task.

C. Security Results

Our results suggest that choice of resources has the opposite
effect on security than it did on functionality: SO participants
performed worst on this metric. As described in Section IV-E,
we scored tasks that had been solved correctly for security,
privacy, and adherence to least-privilege principles. In the SO
condition, only 51.4% (18/35) of functional solutions were
graded as secure, compared to 65.5% (19/29) for free, 73.0%
(27/37) for book, and 85.7% (18/21) for official. Figure 4
(bottom) illustrates these results. Using a CLMM that includes
only tasks that were graded as functionally correct (Table 1V),
we find that both official and book produce significantly more
secure results than . The difference between and free, in which
many participants elected to use Stack Overflow for most of
their tasks (see Section V-D), was not significant.

Factor Coef. Exp(coef) SE p-value

free 1.112 3.040 0.623 0.074

official 2.218 9.184 0.796 0.005*

book 1.539 4.660 0.604 0.011*

ICC 0.763 2.144 0.666 0.252

least permissions 0.856 2.353 0.609 0.160
TABLE IV

CLMM REGRESSION TABLE FOR SECURITY. ONLY TASKS GRADED AS
FUNCTIONALLY CORRECT ARE INCLUDED IN THE MODEL. THE
NON-INTERACTION MODEL WITHOUT PROFESSIONAL STATUS WAS
SELECTED. NON-SIGNIFICANT VALUES ARE GREYED OUT; SIGNIFICANT
VALUES ARE INDICATED WITH AN ASTERISK. THE BASELINE FOR
CONDITION IS SO, AND THE BASELINE FOR TASK IS SECURE
NETWORKING.

Security per Task. As with correctness, security results dif-
fered noticeably among tasks. For example, every participant
who produced a functional solution to the storage task (31)
produced a secure solution. On the other hand, only 38.9%
(7/18) of participants who produced a functional solution to
the networking task were scored as secure. This discrepancy is
illustrated in Figure 4 (bottom). Our CLMM results (Table IV)
indicate that neither the ICC nor least permissions task was
significantly different from the networking task. Because all
functional solutions to the storage task were graded as secure
regardless of condition, the regression coefficient for that task
approaches infinity, and the results of the model estimates for
that task are not interpretable. We omit it from the table.

Considering Security while Programming. We were also
interested in the extent to which participants thought about se-
curity while solving each task. We measured this in two ways.

298

First, we considered the participants’ think-aloud comments
for each task, classifying them as having either explicitly
mentioned security; mentioned security but later decided to
ignore it for the task at hand; or not mentioned security at all.
These classifications were independently coded by two coders
who then reached agreement, as discussed in Section IV-E.
We refer to this as observed security thinking. Second, we
asked participants during the exit interview to self-report for
each task whether or not they had considered security, as
a yes/no question. We refer to this metric as self-reported
security thinking. For both metrics, we considered all tasks,
not just those that participants completed correctly.

In the observed metric, most participants did not mention
security at all (79.2% of all tasks, 171). In the storage task, 16
participants (29.6%) mentioned security and all stuck with it;
in the networking task 20 mentioned security (37.0%) but nine
later abandoned it. In contrast, only five and four participants
ever mentioned security or privacy in the least permissions
and ICC tasks, respectively. Common reasons for abandoning
security included that finding a secure solution proved too
difficult, that the task was for a study rather than real, and
that the participant was running short of time.

In the self-reported metric, more participants reported con-
sidering security: 60.2% of all tasks (130). Using this metric,
security was most frequently considered for secure networking
(79.6%), followed by ICC (70.4%) and secure storage (68.5%).
Only 22.2% of participants reported considering security for
the least permissions task. The higher rate of security thinking
using this metric is most likely attributable to the participants
being prompted.

To compare conditions, we assign each participant a sepa-
rate score for each metric, corresponding to the number of
tasks in which the participant considered security. In both
metrics the average scores were highest in book (0.93, 2.86)
and lowest in SO (0.69, 1.92), but neither difference was
significant (Kruskal-Wallis, observed: X 2 =0.507, p = 0.917,
self-report: X2 =4.728, p=0.192).

Comparing Professionals and Non-Professionals. Al-
though the relatively small sample of professionals we were
able to recruit makes comprehensive comparisons difficult,
we examined differences in correctness and security between
these two groups. For purpose of this analysis, we categorize
14 participants as professionals, including those who are
currently or recently had been professional developers. The
non-professional participants are primarily university students.
The professionals were randomly distributed across conditions:
five in free, three in SO, two in official and four in book.
Overall, professionals were slightly more likely to produce
a functional solution, with a median three functionally correct
tasks (mean = 2.79, sd = 0.70) compared to two functionally
correct tasks (mean = 2.08, sd = 1.23) for non-professionals.
We observed essentially no difference in security results:
professionals’ solutions were median 66.7% secure (mean =
69.0%, sd = 0.20), compared to 66.7% for non-professionals
(mean 66.2%, sd = 0.36). These observations fit with
the CLMM results: professional status predicts a small but

significant increase in functional correctness, but professional
status is excluded from the best-fitting security model.

D. Use of Resources

During the tasks, we collected the search terms used and
pages visited by all participants in non-book conditions. In
addition, during the exit interview, we asked participants
several questions about the resources they were assigned to
use. In this section, we analyze participants’ search and lookup
behavior as well as their self-reported opinions.

Lookup Behavior Across Conditions.

We define “search queries" as submitting a search string
to a search engine or to the search boxes provided by Stack
Overflow and the official Android documentation. Participants
in the SO condition made on average 22.8 queries across
the four tasks, compared to 14.5 for the official condition.
Participants in free were closer to SO than official, with an
average of 21.1 queries. We also observed that participants
in the official, free and SO conditions visited on average
35.4, 36.1, and 53.2 unique web pages across the four tasks.
We offer two hypotheses for these results, based on on our
qualitative observations: First, official participants were more
likely to scroll through a table of contents or index and click
topics that seemed relevant (as opposed to doing a keyword
search) than those in other conditions, presumably because the
official documentation is more structured. Second and perhaps
more importantly, SO participants seemed to be more likely
to visit pages that turned out to be unhelpful and restart their
searches.

Participants in the free condition were given their choice of
Internet resources to help them solve the programming tasks.
Every free participant started every attempt to get help with
a Google search. Undoubtedly this was partially influenced
by Chrome using Google as the default start page as well as
automatically using Google search for terms entered in the
URL bar, but the complete unanimity (along with results from
the online survey) suggests that many or most attempts would
have started there anyway. From within their Google results,
every participant selected at least one page within the official
Android API documentation, and all but one visited Stack
Overflow as well. A few visited blogs, and one visited an
online book. These results are consistent with the online survey
results reported in Section III. In terms of frequency, official
documentation was most popular, representing between 50 and
85% of non-google-search pages for all participants except one
outlier who visited it 98% of the time. Most participants visited
Stack Overflow for between 10 and 40% of their pages, with
outliers at 0 and 2.4% as well as 50%. While participants in the
group visited more official documentation pages than pages at
Stack Overflow, their functionality and security results more
closely resemble the group than the official group. This may
be partially explained by a behavior pattern that we observed
several times in the free condition: participants spent some
time reading through the official documentation, but as the
time limit approached used content (often a copied and pasted
code snippet) from Stack Overflow.

299

Search Query Selection. We also examined the search
query text chosen by participants. Queries were normalized for
capitalization and spacing, and any queries within one string
edit of each other were consolidated (to account for plurals
and typos). Because few participants exactly duplicated one
another’s queries, in order to discern trends, one researcher
manually coded similar terms into categories. For example,
“restrict access developers," “restrict app access for same de-
veloper," and “restrict apps same developer" were categorized
together. For the secure networking task, the most common
queries involved hostname exceptions and HTTPS, together
with just a few searches for certificates, certificate errors, and
hostname verifiers. For the ICC task, the most popular searches
included manifest, permissions, services, external access, and
restricting access. A few more knowledgeable participants
searched for intent filters, user IDs, and signatures. For secure
storage, the most popular choices included storage, persistent
storage, and shared preferences; for least permissions partic-
ipants most frequently searched for call and phone call, with
a few searching for dial. Only four participants searched for
“secure” or “security,” including two in free and one each in
SO and official.

Participants’ Opinions about Information Sources. We
asked our non-free participants whether they had previously
used their assigned resource. All 14 SO participants had
previously used Stack Overflow, and most (10/13) official
participants had used the official documentation. However,
only six of 14 book participants had used books. We also asked
participants to rate, on a five-point Likert scale, the extent to
which the resources they used were easy to use, helpful, and
correct. Results are shown in Figure 6. As might be expected,
participants found free choice easiest to use and books least
easy; in contrast, they were most likely to consider books and
the official documentation to be correct.

We also asked about the effect of participants’ assigned
resource on their performance. In every non-free condition, the
large majority (official: 92.3% (12/13); book: 92.9% (13/14);
SO: 78.6% (11/14)) said they would have performed better on
the tasks if they had been allowed to use different resources.
In particular, official and book participants said they would
have liked to access Stack Overflow or search engines such as
Google, so that they could search for their specific problems
rather than reading background information. One book user
mentioned the “danger that books could be outdated.” On the
other hand, many SO participants said they would have liked
to access the official documentation to read up on background
information for their problems.

Time constraints were also a concern for our participants.
Most (61.1%, 33) said they would probably have performed
better had they been given more time, while nine (16.7%)
mentioned (unprompted) that more time would have allowed
them to make their solutions more secure. One participant in
official, for example, said that “Twenty minutes is very limited
to consider security.” The remaining 38.9% said more time
would not have helped, either because they solved the tasks to
their satisfaction, or because they believed the resource they

Resources were easy to use

Free
Book —
SO
Official =
0% 25% 50% 75% 100%
Resources were helpful
Free
Book []
SO
Official i
0% 25% 50% 75% 100%
Resources were correct
Free []
Book
SO
Official
0% 25% 50% 75% 100%
W Strongly Agree Agree
Neither Disagree

M Strongly Disagree

Fig. 6. Participants’ agreement (on a five-point Likert scale) with the
statements that the resources they used were easy to use, helpful, and correct,
by condition.

were using did not allow them to find a (better) solution.

VI. QUALITY OF STACK OVERFLOW RESPONSES

To better contextualize the performance of the participants
— in both, the SO and free condition —, we examined in detail
all Stack Overflow pages (threads) visited by our participants
during the programming tasks. In particular, we were curious
about whether these pages contained secure and/or insecure
examples and code snippets, and whether the security im-
plications were explained. As might be expected, we found
many discouraging instances of insecure examples and few
discussions of security implications.

A. Classification Methodology

We rated each thread on five different attributes, described
below. All threads were independently coded by two re-
searchers, who then reached consensus on any conflicts.

Task Relevance. @ We first checked whether the topic of
the thread was actually relevant to solving the study task. If
it would not help the participant in solving the task, it was
flagged as off-topic and not looked at further.

Usefulness. We rated each on-topic thread as useful or not
useful, based on how related answers were to the question.
Threads with no answers, or no answers that responded
to the original question, were rated as not useful. Threads
with answers that discussed the question and gave helpful
comments, links to other resources, or sample code were rated
as useful.

Code Snippets. We examined all answers in each thread for
ready-to-use code snippets. We rated a code snippet as ready-

300

to-use if it was syntactically correct and a developer could
copy and paste it into an app. Each thread in which at least
one answer qualified was marked as containing a code snippet.
Each code snippet was individually rated as secure or insecure
relative to the programming tasks described in Section I'V-C.

External Links. Within each thread, we looked for answers
containing external links. We classified threads as containing
links to GitHub, to other code repositories, to other Stack
Overflow threads, or to anywhere else. Additionally, we clas-
sified the linked content as either secure or insecure.

Security Implications. We investigated whether any answer
in the thread discussed security implications of possible solu-
tions. For example, if two solutions existed and one included
an extra permission request, we checked whether any of the
answers discussed a violation of the least-privilege principle. If
an answer contained a NullHostname Verifier, we would check
if at least one of the answers would advise that verification
should not be disabled.

B. Classification Results

Overall, our participants accessed 139 threads on Stack
Overflow. We categorized 41 threads as being on-topic. Table
V summarizes the classification results for these 41 threads. Of
these, 20 threads contained code snippets. Half of the threads
containing code snippets contained only insecure snippets,
such as instructions to use NullHostnameVerifiers and Null-
TrustManagers, which will accept all certificates regardless
of validity. Among these 10 threads containing only insecure
code snippets, only three described the security implications
of using them. This creates the possibility for developers
to simply copy and paste a “functional” solution that voids
existing security measures, without realizing the consequences
of their actions. More encouragingly, seven of the 10 remain-
ing threads with code snippets contained only secure code
snippets.

We next investigated how threads with different properties
compared in terms of popularity (measured by total upvotes for
the thread). Unsurprisingly, we found that threads with code
snippets were more popular than those without (W = 319.5,
p = 0.00217, o = 0.025, Wilcoxon-Signed-Rank Test (B-H)).
Discouragingly, we found no statistical difference between
threads with secure and insecure code snippets (W = 73,
p = 0.188). On the other hand, threads that discuss security
implications are slightly more popular than those that don’t
(W = 239.5, p = 0.0308, oo = 0.05 (B-H)).

Although these results cover only a very small sample of
Stack Overflow threads, they provide some insight into why
our SO participants had lower security scores than those in
the official condition.

VII. PROGRAMMING TASK VALIDITY

To provide evidence for the validity of our lab study
tasks and results, we examined how the APIs used in our
programming tasks (cf. Table I) are used in real-world apps.
In particular, we were interested in how frequently these APIs
are used in real Google Play apps, as well as whether secure or

Answers in the thread include ... Count

Useful answers 35 (85.4%)
Useless answers 6 (14.6%)
Discussion of security implications 12 (29.3%)
Working code examples 20 (48.8%)
Only secure code examples 7 (17.0%)
Only insecure code examples 10 (24.4%)
...but also discussion of security implications 3 (30.0%)
Secure links 23 (56.1%)
Insecure links 6 (14.6%)
Links to GitHub 4 (9.8%)
Links to other code repositories 1 (2.4%)
Links to other Stack Overflow threads 4 (9.8%)
Only secure code examples and secure links 3 (7.3%)

TABLE V
PROPERTIES OF THE 41 ON-TOPIC STACK OVERFLOW THREADS ACCESSED
DURING THE LAB STUDY.

Stack Overflow Threads
with code snippets

without code snippets

mean 97.7 | mean 3.9
median 12 | median 2.5
sd 163.9 | sd 44

W =319.5, p = 0.00217, o = 0.025 (B-H)

with secure code snippets with insecure code snippets

mean 204.3 | mean 70.2
median 145 | median 14
sd 209.3 | sd 122.4

W =73, p=0.188

with security implications without security implications

mean 135.2 | mean 17.4
median 16 | median 3
sd 207 | sd 37

W =239.5, p=0.0308, o = 0.05 (B-H)

TABLE VI
POPULARITY RATINGS FOR THREADS CONTAINING CODE SNIPPETS.

insecure solutions are more prevalent. Results of our analysis
show that the APIs we examined are widely used; in line with
our lab study results, the secure networking and ICC APIs
were frequently used in ways that suggest security concerns.

A. Analysis

To analyze real-world apps, we applied standard static code-
analysis techniques: We decompiled Android APK files, con-
structed control flow graphs (CFGs), and applied backtracking
to gather insights about how often real-world developers use
APIs relevant to our programming tasks. Limitations of this
approach are discussed in Section VIII. Overall, we analyzed
a random sample of 200,000 free Android apps from Google
Play.

Secure Networking Task. For this task, we analyzed
whether an app implements the HostnameVerifier in-
terface (cf. Table I). Hostname verification requires a de-
veloper to implement the verify (String hostname,
SSLSession session) method. We checked if an imple-
mentation actually performs hostname verification by process-

301

ing the hostname parameter or if it simply accepts every
hostname (i.e. return true;).

ICC Task. For this task, we analyzed an app’s Man-
ifest file (cf. Table I). We extracted <service> entries
from the XML DOM, then checked for <intent-filter>
child nodes to determine whether an intent filter was set.
We also checked whether the android:exported flag,
which indicates whether a service is made publicly avail-
able, was present and if it was set to true. Lastly, we
extracted android:permission attributes to see if ser-
vices were protected by permissions. We also extracted the
android:protectionLevel attributes to learn whether
signature or system permissions are required to use this
service.

Secure Storage Task. To determine whether an app stores
data persistently, we looked up relevant API calls in the
call graph. We distinguished between three different targets:
SQLite databases, the file system, and shared preferences (cf.
Table I).

To check for SQLite database usage, we looked up the
openOrCreateDatabase API call in the CFG. Developers
can use this API call in a way that keeps data local to
an app by explicitly setting the MODE_PRIVATE flag or
using the default. Setting the MODE_WORLD_WRITEABLE or
MODE_WORLD_READABLE flag stores the database outside an
app’s local storage and makes it available to other apps. We
used backtracking to check which flags were set.

To analyze file-system access, we looked up API calls that
return output- or inputstreams to a file handle. This includes
the openFileOutput method and the mode flags. Addition-
ally, we checked for use of methods that find the path of the ex-
ternal storage as well as the WRITE_EXTERNAL_STORAGE
permission.

To check for shared preferences usage, we looked
up the getSharedPreferences, getPreferences
and getDefaultSharedPreferences API calls in the
CFG. The MODE_PRIVATE, MODE_WORLD_WRITEABLE
and MODE_WORLD_READABLE flags are used to distinguish
between secure and insecure solutions.

Least Permissions Task. To examine use of dialing com-
pared to calling, we analyzed the Manifest file for the occur-
rence of the CALL_PHONE permission request and searched
for relevant API calls in the CFG. To initiate a phone call, a
new Intent object must be created using a string parameter to
specify the intended action. We used backtracking to obtain
the respective action value and searched for ACTION_DIAL
and ACTION_CALL values.

Apps that used an ACTION_DIAL intent were rated as
adhering to least privilege since they use the system’s dialer
and do not require an additional permission. Apps that use
an ACTION_CALL intent in combination with requesting the
CALL_PHONE permission were rated as not adhering to least
privilege.

secure apps
Secure Networking Task
broken hostname verifier (o] 19,520
alternative hostname verification o 214
ICC Task
service - 42,193
intent filter O 8,133
exported=true (o] 3,796
permission)] 3,827
permission, signature [J 86
permission, signature or system [15
Secure Storage Task
filesystem, private [] 120,834
filesystem, public (o] 34,183
database, private [] 4,471
database, public (@) 154
shared preferences, private [] 130,408
shared preferences, public (o] 17,848
Least Permissions Task
dial, permission (o] 3,907
dial, no permission [48,832
call, permission (o] 5,336
call, no permission)] 6,157

@ = secure; O = insecure

TABLE VII
RESULTS OF STATICALLY ANALYSING A RANDOM SAMPLE OF 200,000
ANDROID APPS.

B. Results

Table VII summarizes the results of our real-world app
analysis, which are further detailed below.

Secure Networking Task. We identified 19,734 apps that
implement their own hostname verifier. Of those apps, 19,520
apps (98.9%) implement it in a way that accepts any hostname,
i.e. they effectively turn off hostname verification and make
their apps vulnerable to active Man-In-The-Middle attacks.
Only the remaining 214 apps (0.1%) implement alternative
hostname verification strategies. Although the limitations of
static code anlaysis prevent us from assessing whether these
implementations meet the programmers’ expectations, we
score them as secure compared to hostname verifiers that
simply accept every hostname.

ICC Task. 42,193 apps implemented their own services.
Of those, 15,857 (37.6%) configured a non-default access
policy for their services by setting respective properties in the
Manifest file. 11,929 (75.2%) of those apps use intent filters or
set the exported=true flag, which weakens security. 3,928
(24.8%) of those apps configured their services to that an entity
must have a permission in order to launch the service or bind
to it. Only 101 apps required an entity to have a permission
of the same developer or a system permission.

Secure Storage Task. 155,017 apps implemented
file-system access. Of those, 34,183 (22.1%) access
files on external storage or write to the internal storage

302

with MODE_WORLD_READABLE/WRITEABLE. Howver,
120,834 (77.9%) only access files on internal storage with
MODE_PRIVATE. Similar numbers can be seen with shared
preferences, where 130,408 (88.0%) apps out of 148,256
use MODE_PRIVATE and 17,848 (12.0%) use a publicly
accessible mode. SQLite databases are not very common
among our dataset, but 4471 out of 4625 (96.7%) also use a
private mode and only 154 (3.3%) a public mode.

Least Permissions Task. Overall we identified 64,232 apps
that use intents to make phone calls. Of those apps 52,739
(82.1%) use the ACTION_DIAL action for that purpose. Inter-
estingly 3,907 (7.4%) of those apps request the CALL_PHONE
permission although ACTION_DIAL does not require a ded-
icated permission. The remaining 11,493 (17.9%) apps use
the ACTION_CALL action which requires the CALL_PHONE
permission to be requested by the developer. Of those apps,
6,157 (53.6%) do not request the CALL_PHONE permission
and hence might crash if the ACTION_CALL intent is called.

C. Discussion

We found that 187,291 (93.6%) of the randomly chosen
200,000 apps we analyzed in our study used at least one of the
APIs we used in our programming tasks, suggesting that our
laboratory study includes programming tasks that real-world
developers encounter. Interestingly, for the secure storage and
least privilege tasks, most apps implement the more secure
solutions. In contrast, for the secure networking and ICC tasks,
we found more insecure solutions. This mirrors the results of
our lab study (cf. Section V). This analysis provides additional
concrete evidence for the relevance and the results of our lab
study.

VIII. LIMITATIONS

As with most studies of this type, our work has several
limitations.

First, the response rate for our online developer survey was
very low, as might be expected from sending unsolicited emails
to prospective participants. This may introduce some self-
selection bias, but we have no reason to believe a priori that
those who responded differ meaningfully in terms of security
knowledge or resource usage from those who did not.

Our lab study created an artificial scenario—working within
a tight time limit, with unfamiliar starter code—which may
have impacted participants’ ability to complete tasks cor-
rectly and securely. Similarly, the artificial nature of study
participation may have reduced participants’ incentives to
consider security. In addition, a majority of our lab participants
were students rather than professional developers, and overall
the lab participants were more formally educated than the
developers in our online survey, which may limit the gen-
eralizability of our results somewhat. The professionals in the
study performed slightly but not significantly better than the
non-professionals in functional correctness, but not in security.
All of these issues, however, were present across conditions,
suggesting that comparisons among conditions are valid. We
also hoped that the time limit would partially emulate the

pressure professional developers feel to bring apps to market
quickly rather than focus on writing the best possible software.

Our analysis of Stack Overflow threads is limited to only
those accessed by our lab study participants; threads on other
topics may exhibit different properties. In addition, our manual
coding process was somewhat subjective. Nonetheless, we
believe this analysis provides a useful glimpse into the broader
characteristics of Stack Overflow as a resource.

The static code analysis we conducted has several limita-
tions. Although we performed reachability analyses for all API
calls, an inherent limitation of static code analysis is that we
still might have included code paths that are not executed. For
the ICC task, it is possible that some services we marked as
insecure were made publicly available deliberately rather than
by mistake; however, the official Android documentation 7
discourages the use of intent filters for security reasons. Hence,
while we may have some false positives, our results do
suggest at minimum a violation of best practices. A similar
limitation applies to the storage task: while some uses of
external storage are necessary or deliberate, this also represents
a risky violation of best practices ® that can lead to unexpected
disclosures of personal information [35].

Additional limitations apply some of the tasks. Implement-
ing a hostname verifier that accepts every hostname is an
inherently insecure solution. Hence, we do not produce false
positives or negatives for this task. However, for the ICC task
we might have produced false positives, i.e. marked services
that have the exported flag set to true or use an intent filter.
In cases where services should be publicly available both
options should not be rated as insecure. However, the official
Android documentation ° discourages the use of intent filters
for security reasons. Hence, although we might have rated
service implementations as insecure that use intent filter inten-
tionally, our results describe a clear trend towards violating the
documentation’s recommendation. A similar limitation applies
for the storage task: Some apps might have the eligible need
to store data externally. However, the Android documentation
discourages developers to do so '°. Hence, although we might
have rated implementations that use external storage inten-
tionally as insecure, our results describe a clear trend towards
violating the documentation’s recommendation. Requesting a
permission for the least privilege task is an insecure solution
most of the times. Only apps that need to initiate a phone call
themselves without any user interaction need that permission.
However, all other apps could go with the permission saving
solution.

IX. DISCUSSION

In the past, anecdotal evidence has suggested that the
resources Android developers use when programming directly
affect the security and privacy properties of the apps they
make. In this paper, we present the first systematic inves-
tigation of this theory by approaching the problem of how

TCf. http://developer.android.com/guide/components/intents-filters.html
8Cf. http://developer.android.com/guide/topics/data/data-storage.html
9Cf. http://developer.android.com/guide/components/intents-filters.html
10Cf. http://developer.android.com/guide/topics/data/data-storage.html

303

programming resources affect Android developers’ security-
and privacy-relevant decisions from several different angles.
We conducted a 295-person online survey about the resources
developer use, both in general and specifically for security-
relevant problems. Based on results from this survey, we then
conducted a 54-person lab study directly exploring the impact
of resource choice on both functional correctness and security.
To provide context for these studies, we manually analyzed
the security characteristics of the Stack Overflow posts our
participants accessed and automatically analyzed how the APIs
we tested in the lab are used in 200,000 randomly sampled
apps from the Google Play market.

When combined, results from these varied analyses suggest
several interesting conclusions:

« Real-world Android developers use Stack Overflow (and
other Q&A communities) as a major resource for solving
programming problems, including security- and privacy-
relevant problems.

e Other resources, such as official Android API docu-
mentation, do not provide the same degree of quickly
understandable, directly applicable assistance. Our results
suggest that using Stack Overflow helps Android devel-
opers to arrive at functional solutions more quickly than
with other resources.

« Participants who were given free choice of resources
tended to visit both the official documentation and Stack
Overflow, but their performance in both functional cor-
rectness and security was more similar to participants in
the Stack Overflow condition.

« Because Stack Overflow contains many insecure answers,
Android developers who rely on this resource are likely
to create less secure code. Access to quick solutions via
a Q&A community may also inhibit developers’ security
thinking or reduce their focus on security.

e Code relevant to the tasks we explored can be found
in 93.6% of the apps we sampled. Many of these apps
exhibit similar security patterns to those observed in our
lab study.

Few participants in our study explicitly mentioned security
or used it as a search term when accessing resources. While
this may be partially a function of our artificial environment,
when combined with prior research and anecdotal evidence,
this suggests that security remains at best a secondary concern
for many real-world developers [2], [18]. This underscores
the need for both APIs and informational resources that
promote security even when developers are not thinking about
it directly.

Android developers are unlikely to give up using resources
that help them quickly address their immediate problems.
Therefore, it is critical to develop documentation and re-
sources that combine the usefulness of forums like Stack
Overflow with the security awareness of books or official
API documents. One approach might involve rewriting API
documents to be more usable, e.g. by adding secure and
functional code examples. Another might be to develop a
separate programming-answers site in which experts address
popular questions, perhaps initially drawn from other forums,

in a security-sensitive manner. Alternatively, Stack Overflow
could add a mechanism for explicitly rating the security
of provided answers and weighting those rated secure more
heavily in search results and thread ordering. Further research
is needed to develop and evaluate solutions to help prevent in-
experienced or overwhelmed mobile developers from making
critical mistakes that put their users at risk.

ACKNOWLEDGEMENTS

The authors would like to thank Sven Bugiel, Andrew Lui,
and Yichen Qian for their support in the lab study, Marten
Oltrogge for his contribution to the static analysis, Joseph
Smith and Jennifer DeSimone for helping us navigate the
IRB requirements for an international study, and all of the
developers and/or students who kindly participated in our
study. This work was supported in part by the German Ministry
for Education and Research (BMBF) through funding for the
Center for IT-Security, Privacy and Accountability (CISPA),
and by the U.S. Department of Commerce, National Institute
for Standards and Technology, under Cooperative Agreement
70NANB15H330.

REFERENCES
[1]1 K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing the
Android Permission Specification. In Proc. 19th ACM Conference on
Computer and Communication Security (CCS’12). ACM, 2012.
R. Balebako and L. F. Cranor. Improving App Privacy: Nudging App
Developers to Protect User Privacy. IEEE Security & Privacy, 12(4):55—
58, 2014.
R. Balebako, A. Marsh, J. Lin, and J. Hong. The Privacy and Security
Behaviors of Smartphone App Developers. In Workshop on Usable
Security (USEC’14), 2014.
A. Baltadzhieva and G. Chrupala. Question Quality in Community
Question Answering Forums: A Survey. SIGKDD Explorations, 17(1):8—
13, 2015.
A. Barua, S. W. Thomas, and A. E. Hassan. What Are Developers
Talking About? An Analysis of Topics and Trends in Stack Overflow.
Empirical Software Engineering, 19(3):619-654, 2012.
B. Bazelli, A. Hindle, and E. Stroulia. On the Personality Traits of
StackOverflow Users. In Software Maintenance (ICSM), 2013 29th IEEE
International Conference on. IEEE, 2013.
K. P. Burnham. Multimodel Inference: Understanding AIC and BIC
in Model Selection. Sociological Methods & Research, 33(2):261-304,
2004.
E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. OAuth
Demystified for Mobile Application Developers. In Proc. 21st ACM
Conference on Computer and Communication Security (CCS’14). ACM,
2014.
E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-
application Communication in Android. In Proc. 9th International Con-
ference on Mobile Systems, Applications, and Services (MobiSys’11).
ACM, 2011.
L. F Cranor. A Framework for Reasoning About the Human in the
Loop. In Proc. Ist Conference on Usability, Psychology, and Security
(UPSEC’08), 2008.
M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An Empirical
Study of Cryptographic Misuse in Android Applications. In Proc. 20th
ACM Conference on Computer and Communication Security (CCS’13).
ACM, 2013.
N. Elenkov. Android Security Internals. No Starch Press, 2015.
W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. TaintDroid: An Information-flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In Proc. 9th Usenix Sym-
posium on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, 2010.
W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study of
Android Application Security. In Proc. 20th Usenix Security Symposium
(SEC’11). USENIX Association, 2011.

[2

[91

[10]

[11]

[12]
[13]

[14]

304

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith. Hey,
NSA: Stay Away from my Market! Future Proofing App Markets against
Powerful Attackers. In Proc. 21st ACM Conference on Computer and
Communication Security (CCS’14). ACM, 2014.

S. Fahl, M. Harbach, T. Muders, L. Baumgirtner, B. Freisleben, and
M. Smith. Why Eve and Mallory Love Android: An Analysis of Android
SSL (in)Security. In Proc. 19th ACM Conference on Computer and
Communication Security (CCS’12). ACM, Oct. 2012.

S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith. Hey, You,
Get Off of My Clipboard. In Financial Cryptography and Data Security,
volume 7859, pages 144-161. Springer, 2013.

S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith. Rethinking
SSL Development in an Appified World. In Proc. 20th ACM Conference
on Computer and Communication Security (CCS’13). ACM, 2013.

S. Garfinkel and H. R. Lipford. Usable security: History, themes, and
challenges. Synthesis Lectures on Information Security, Privacy, and
Trust, 5(2):1-124, 2014.

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. TThe Most Dangerous Code in the World: Validating SSL
Certificates in Non-browser Software. In Proc. 19th ACM Conference
on Computer and Communication Security (CCS’12). ACM, 2012.

S. Jain and J. Lindqvist. Should I Protect You? Understanding Devel-
opers’ Behavior to Privacy-Preserving APIs. In Workshop on Usable
Security (USEC’14), 2014.

J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein. Dr. Android and Mr. Hide: Fine-grained Permissions
in Android Applications. In Proc. 2nd ACM CCS Workshop on Security
and Privacy in Mobile Devices (SPSM’12). ACM, 2012.

S. Komatineni and D. MacLean. Pro Android 4. Apress, 2012.

P. G. Leon, L. E Cranor, A. M. McDonald, and R. McGuire. Token
Attempt: The Misrepresentation of Website Privacy Policies Through
the Misuse of P3P Compact Policy Tokens. In Proc. 9th Annual ACM
Workshop on Privacy in the Electronic Society (WPES ’10). ACM, 2010.
M. Linares-Vésquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk. How Do API Changes Trigger Stack Overflow Discussions? A
Study on the Android SDK. In Proc. 22nd International Conference on
Program Comprehension (ICPC ’14). ACM, 2014.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities. In Proc. 19th
ACM Conference on Computer and Communication Security (CCS’12).
ACM, 2012.

D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, and
C. Faloutsos. Analysis of the Reputation System and User Contributions
on a Question Answering Website: StackOverflow. In Proc. 2013
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM’13). 1EEE, 2013.

S. Nadi, S. Kriiger, M. Mezini, and E. Bodden. “Jumping Through
Hoops": Why do Java Developers Struggle With Cryptography APIs?
In Proc. 37th IEEE International Conference on Software Engineering
(ICSE’15), May 2016.

M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl. To
Pin or Not to Pin—Helping App Developers Bullet Proof Their TLS
Connections. In Proc. 24th USENIX Security Symposium (SEC’15).
USENIX Association, 2015.

L. Onwuzurike and E. De Cristofaro. Danger is My Middle Name:
Experimenting with SSL Vulnerabilities in Android Apps. In Proc.
8th ACM Conference on Security & Privacy in Wireless and Mobile
Networks (WiSec’15). ACM, 2015.

S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications. In Proc. 21st Annual Network and Distributed
System Security Symposium (NDSS’14). The Internet Society, 2014.

L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza. Understanding
and Classifying the Quality of Technical Forum Questions. In Proc. 14th
International Conference on Quality Software (QSIC’14). IEEE, 2014.
A. Porter Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions Demystified. In Proc. 18th ACM Conference on Computer
and Communication Security (CCS’11). ACM, 2011.

A. Porter Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission Re-Delegation: Attacks and Defenses. In Proc. 20th Usenix
Security Symposium (SEC’11). USENIX Association, 2011.

S. Son, D. Kim, and V. Shmatikov. What Mobile Ads Know About
Mobile Users. In Proc. 23rd Annual Network and Distributed System
Security Symposium (NDSS’16). The Internet Society, 2016.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan. SMV-
Hunter: Large Scale, Automated Detection of SSL/TLS Man-in-the-
Middle Vulnerabilities in Android Apps. In Proc. 21st Annual Network
and Distributed System Security Symposium (NDSS’14). The Internet
Society, 2014.

The Internet Society. Internet Society Global Internet Re-
port 2015. http://www.internetsociety.org/globalinternetreport/assets/
download/IS_web.pdf, 2015.

C. Treude, O. Barzilay, and M. A. Storey. How Do Programmers Ask
and Answer Questions on the Web? (NIER Track). In Proc. 33rd
International Conference on Software Engineering (ICSE’11), 2011.
B. Vasilescu, A. Capiluppi, and A. Serebrenik. Gender, Representation
and Online Participation: A Quantitative Study of StackOverflow. In
Proc. 2012 International Conference on Social Informatics (Socialln-
formatics). IEEE, 2012.

S. Wang, D. Lo, and L. Jiang. An Empirical Study on Developer
Interactions in StackOverflow. In Proc. 28th Annual ACM Symposium
on Applied Computing (SAC’13). ACM, 2013.

W. Wang and M. W. Godfrey. Detecting API Usage Obstacles: A
Study of iOS and Android Developer Questions. In Proc. 10th Working
Conference on Mining Software Repositories (MSR’13). IEEE, 2013.
W. Wang, H. Malik, and M. W. Godfrey. Recommending posts
concerning api issues in developer q&a sites. In Proc. 12th Working
Conference on Mining Software Repositories (MSR ’15). IEEE, 2015.
X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission Evolution
in the Android Ecosystem. In Proc. 28th Annual Computer Security
Applications Conference (ACSAC’12). ACM, 2012.

L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The Impact of Vendor
Customizations on Android Security. In Proc. 20th ACM Conference
on Computer and Communication Security (CCS’13). ACM, 2013.

Y. Xie and D. Powers. Statistical Methods for Categorical Data Analysis.
Emerald, 2008.

Y. Zhou and X. Jiang. Detecting Passive Content Leaks and Pollution
in Android Applications. In Proc. 20th Annual Network and Distributed
System Security Symposium (NDSS’13). The Internet Society, 2013.

305

