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Abstract

In this paper, we present a systematic study for the de-

tection of malicious applications (or apps) on popular An-

droid Markets. To this end, we first propose a permission-

based behavioral footprinting scheme to detect new sam-

ples of known Android malware families. Then we apply a

heuristics-based filtering scheme to identify certain inher-

ent behaviors of unknown malicious families. We imple-

mented both schemes in a system called DroidRanger. The

experiments with 204, 040 apps collected from five different

Android Markets in May-June 2011 reveal 211 malicious

ones: 32 from the official Android Market (0.02% infec-

tion rate) and 179 from alternative marketplaces (infection

rates ranging from 0.20% to 0.47%). Among those mali-

cious apps, our system also uncovered two zero-day mal-

ware (in 40 apps): one from the official Android Market

and the other from alternative marketplaces. The results

show that current marketplaces are functional and rela-

tively healthy. However, there is also a clear need for a

rigorous policing process, especially for non-regulated al-

ternative marketplaces.

1 Introduction

Smartphones are becoming increasingly ubiquitous. A

recent report from Gartner [12] shows that there are over

100 millions of smartphones sold in the first quarter of 2011,

an increase of 85% over the last year. The popularity is

also partially propelled with the large collection of feature-

rich smartphone applications (or apps) in various market-

places. For example, on May 10, 2011, Google announced

[14] that the official Android Market reached the 200, 000

app milestone. Moreover, in addition to the official mar-

ketplaces (from platform providers such as Google and Ap-

ple), there also exist a number of third-party or alternative

ones (e.g., Amazon AppStore for Android [4]), which fur-

ther boost the popularity. These centralized marketplaces or

app stores streamline the process of browsing, downloading

and installing a variety of apps - therein facilitating the use

of smartphones.

Unfortunately, such popularity also attracts the at-

tention of malware authors. A few reports [19, 20,

25] already showed the presence of malicious apps in

these marketplaces. For instance, DroidDream [19] and

DroidDreamLight [25] were detected from the official An-

droid Market in March and May 2011, respectively. While

these reports offer detailed analysis about the spotted (indi-

vidual) malware, they do not provide a systematic view of

the overall health of existing Android Markets. Recently,

Enck et al. [36] studied 1, 100 free apps from the official

Android Market and attempted to understand a broad range

of security-related metrics among them (as an indication of

the overall app security). However, the study is limited in

only examining a small number of apps, i.e., top 50 free

apps from the 22 app categories.

In this paper, we present a systematic study to better un-

derstand the overall health of existing Android Markets, in-

cluding both official and unofficial (third-party) ones. In

particular, our goal here is to detect malicious apps on these

marketplaces. To do that, we use a crawler to collect all

possible (free) apps we can obtain from five representative

marketplaces within a two-month period, i.e, May and June

2011. In total, we have collected 204, 040 apps. To detect

malware infection among them, we take the following ap-

proach. (1) First, in order to detect the infection from known

malware, we propose a scalable and efficient scheme called

permission-based behavioral footprinting. Instead of taking

a traditional approach with content invariants as malware

signature, our scheme takes a scalable design by initially fil-

tering out these apps based on the inherent Android permis-

sions required by the malware for its wrongdoings and then

matching them with malware-specific behavioral footprints

(that characterize the malware behavior – Section 2.1). (2)

Second, in order to detect unknown malware, we propose

a heuristics-based filtering scheme that defines suspicious



behaviors from possibly malicious apps and then uses them

to detect suspect apps (Section 2.2). Example heuristics in-

clude the suspicious attempts to dynamically fetch and ex-

ecute code from a remote untrusted website. For each de-

tected suspect app, we further dynamically monitor its run-

time execution to confirm whether it is truly malicious or

not. If the app is malicious and does not appear in our (mal-

ware) database, we consider it zero-day and then generate

the corresponding permission-based behavioral footprint in

a feedback loop to detect other samples in the collection.

We have implemented both schemes in a system called

DroidRanger and used the system to detect infected apps in

the collected 204, 040 samples from five different market-

places. Among the collected apps, 153, 002 of them come

from the official Android Market and the rest 51, 038 apps

come from four other (alternative) marketplaces. To eval-

uate the effectiveness of our system, we have initially gen-

erated behavioral footprints from 10 known Android mal-

ware families1. Based on these footprints, DroidRanger

successfully detected 171 infected apps among our collec-

tion: 21 infected apps in the official Android Market and

150 in four other alternative marketplaces. Moreover, we

have implemented two additional heuristics to capture sus-

picious dynamic code loading behavior, either remotely or

locally. These two heuristics effectively lead to the discov-

ery of two sophisticated zero-day malware with 40 samples

in our collection (Section 3)2.

Overall, by combining both schemes to detect known

and zero-day Android malware, DroidRanger reported 211

infected apps in our collection. If we calculate the infection

rate, about 0.02% of apps from the official Android Market

are infected while 0.20% to 0.47% of apps from alternative

marketplaces are infected. As a result, the infection rate

in alternative marketplaces is an order of magnitude higher

than the official marketplace. Considering the recent trend

in observing an unprecedent growth of mobile malware, we

believe these results pose a clear call for better security pro-

tection in both official and unofficial marketplaces.

In summary, this paper makes the following contribu-

tions:

• To the best of our knowledge, DroidRanger is the first

systematic study on the overall health of both official

and unofficial Android Markets with the unique focus

on the detection of malicious apps.

• To perform the study, we have collected 204, 040 An-

droid apps in May and June 2011 from five popu-

lar Android Markets. To allow for scalable and ef-

ficient detection of both known and unknown mali-

1The list of known Android malware is shown in Table 4.
2To better protect users, we have promptly provided samples of these

zero-day malware to leading mobile anti-virus software vendors. They are

now detectable by most mobile anti-virus software.

cious apps, we have accordingly proposed two differ-

ent schemes, permission-based behavioral footprint-

ing and heuristics-based filtering. We believe this is

one of the most extensive study ever performed to un-

derstand the security of existing Android Markets.

• We have implemented our techniques in DroidRanger.

When applied to the collected apps, our system suc-

cessfully detected 211 malicious apps. Among them,

our heuristics-based filtering scheme leads to the dis-

covery of two sophisticated zero-day malware with 40

samples – 11 of them appear in the official Android

Market. Our reporting of them to the respective mar-

ketplaces has immediately resulted in their removal.

The rest of this paper is organized as follows: We first

describe the overall system design of DroidRanger in Sec-

tion 2. We then present the system prototype and related

evaluation in Section 3. After that, we discuss possible lim-

itations and future improvements in Section 4. Finally, we

present related work in Section 5 and conclude our work in

Section 6.

2 Design

To systematically detect malicious apps in existing An-

droid Markets, we have three key design goals: accuracy,

scalability, and efficiency. Accuracy is a natural require-

ment to effectively detect malicious apps in current market-

places with low false positives and negatives. Scalability

and efficiency are challenging as we need to accommodate

the large number of apps that need to be scanned. Specif-

ically, with our current collection of more than 200, 000

apps, if it takes 6 seconds to examine a single app, a full

scanning of the collection for known malware will require

more than two weeks to complete. In other words, the tradi-

tional approach of performing deep scanning (with content

invariants as signatures) for each app may not be desired

in this study. Therefore, in our design, we choose to take

advantage of the unique information embodied in each app

(i.e., various Android permissions in the app-specific man-

ifest file) and develop a scheme called permission-based

behavioral footprinting for scalable and efficient malware

detection. For unknown malware, we choose to devise a

few heuristics that define suspicious behaviors from possi-

bly malicious apps and then use them to effectively identify

suspect apps for runtime monitoring.

Figure 1 shows an overview of our approach. In essence,

DroidRanger leverages a crawler to collect Android apps

from existing Android Markets and saves them into a local

repository. For each collected app, DroidRanger extracts

fundamental properties associated with each app (e.g., the

requested permissions and author information) and orga-
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Figure 1: The overall architecture of DroidRanger

nizes them along with the app itself in a central database

for efficient indexing and lookup.

After that, in order to detect potentially malicious apps,

we take an approach with two different detection engines.

The first detection engine (or footprint-based detection en-

gine) is tailored to detect known malware. Specifically, each

known malware will be first pre-processed or distilled into a

so-called permission-based behavioral footprint. Each foot-

print essentially contains necessary Android permissions

requested by the malware and succinctly summarizes the

wrongdoings. These footprints are essentially the key to

meet the scalability and efficiency requirements. The sec-

ond detection engine (or heuristics-based detection engine)

aims to uncover malware that has not been reported before.

In particular, it recognizes suspicious behaviors from pos-

sibly malicious apps and detects certain Android features

that may be misused. By doing so, we can identify suspi-

cious apps and each will then be executed and monitored

to verify whether it indeed exhibits any malicious behavior

at runtime. If so, the app will then be manually confirmed

and the associated behavioral footprint will be extracted and

included in the first detection engine. In the following, we

examine each detection engine in detail.

2.1 Detecting Known Android Malware

To meet the scalability and accuracy requirements, our

first detection engine is divided into two steps: permission-

based filtering and behavioral footprint matching. The first

step aims to quickly exclude unrelated apps to obtain a more

focused set of apps, which will then be used in the second

step for detailed malware behavior matching.

Permission-based filtering As mentioned earlier, a

significant challenge in designing DroidRanger is how to

handle hundreds of thousands of apps in a scalable and ef-

ficient way. To address it, we observe that each Android

app has to explicitly declare the permissions it requires in

Table 1: The number of remaining apps after filtering the

repository with RECEIVE SMS/SEND SMS permissions

Permission RECEIVE SMS SEND SMS
RECEIVE SMS

& SEND SMS

Apps 5, 214 8, 235 3, 204

Percentage 2.85% 4.50% 1.75%

its manifest file. Thus, we could use essential permissions

for the malware’s functionalities to filter out unrelated apps

(that do not declare these permissions). By doing so, we can

possibly significantly reduce the number of apps that need

to be processed in the second step. Therefore, our system

can remain efficient even though our second step may in-

volve expensive or time-consuming methods for deep scan-

ning or thorough analysis.

For illustration, we use two functionalities that are of-

ten misused by Android malware: sending SMS messages

and monitoring SMS messages. For instance, the Zsone

malware [24] is designed to send SMS messages to cer-

tain premium numbers, which will cause financial loss to

the infected users. To hide these SMS messages from users,

the malware also monitors received SMS messages and re-

moves billing-related notifications. In Android, to use these

two functionalities, an app needs to request SEND SMS and

RECEIVE SMS permissions, respectively. Therefore, to de-

tect this type of malware, we can first scan the app repos-

itory with these two permissions. In Table 1, we show the

number of apps after we apply the filtering based on these

two permissions in our collection: 5, 214 apps request the

RECEIVE SMS permission, which means 97.15% of apps do

not need to be considered further for this type of malware.

Similarly, filtering the repository with SEND SMS removes

95.50% of apps from consideration. Combining these two

permissions together, only 1.75% apps remain. Our experi-

ence (Section 3.1) indicates that permission-based filtering

is generally effective, even though the final results may de-



pend on the popularity of the permissions of interest. In

one case of our study, only 0.66% apps are needed to be

processed in our second step.

We stress that in the selection of permissions for fil-

tering, it is important to choose only essential ones. In-

cluding non-essential permissions will unnecessarily ex-

clude apps, which leads to false negatives. For instance,

considering a trojanized app with bot functionalities, we

may select the permissions required for its command and

control channel, but not those required by optional pay-

loads (that could be easily changed from one variant to

another). In our study, we have experienced one case

with respect to the the Pjapps [7] malware. In particu-

lar, the malware requires the INTERNET permission to sup-

port the communication with the remote bot server and the

RECEIVE SMS permission to intercept or monitor incoming

SMS messages. However, some variants may have the pay-

load to add bookmarks to the built-in web browser (requir-

ing WRITE HISTORY BOOKMARKS) and others do not. As such,

we should only choose INTERNET and RECEIVE SMS as the

essential ones, not WRITE HISTORY BOOKMARKS.

Behavioral footprint matching Our first-step screen-

ing is effective in significantly reducing the number of apps

for examination. However, it may leave thousands of apps,

which means manual analysis is still not feasible. In our

second step, we initially attempt to deploy and run off-the-

shelf mobile anti-virus software [16]. However, the results

are not satisfactory. In fact, an example run of a leading

mobile anti-virus software missed about 23.52% of infected

apps from our study (Section 3.1)3.

As our solution, instead of taking the traditional ap-

proach of extracting content invariants as malware signa-

tures, we choose to take a behavior-based approach. Specif-

ically, we manually analyze and distill essential malware

behaviors into their behavioral footprints. Note that be-

cause the first step has significantly reduced the number of

apps for further processing, we can afford in the second step

semantic-rich, but potentially time-consuming methods to

express, summarize, and match malware behaviors. In par-

ticular, our behavioral footprinting scheme accommodates

multiple dimensions to describe malware behaviors.

• First, the app-specific manifest file provides semantic-

rich information about the app and the information

is readily accessible for our purposes. For exam-

ple, if an app needs to listen to system-wide broad-

cast messages, the broadcast receivers can be statically

contained in the manifest file or dynamically regis-

tered in the code. We can then express the following

rule to match any app that monitors incoming SMS

3One possible reason is that the mobile anti-virus software uses content

invariants as malware signatures, which could lead to a high false negative

rate when code is changed or obfuscated.

messages: an app contains a receiver that listens to

android.provider.Telephony.SMS RECEIVED.

• Second, the app bytecode contains a wealth of seman-

tic information, which can also be used in our be-

havioral footprints. Specifically, in DroidRanger, we

choose to focus on those APIs defined in the Android

framework. Particularly, we can express what APIs

are called, and their sequences in a single rule. More-

over, by leveraging the call graph, we can associate

API calls to a specific component in the rule. As an ex-

ample, by extending the previous rule with a call to the

abortBroadcast function, we can obtain a rule to cap-

ture any app that monitors incoming SMS messages

and may potentially intercept received SMS messages.

Furthermore, we can also utilize a data flow analysis

algorithm [36] to detect function parameters with static

or fixed inputs. This rule can be used to express mal-

ware behavior such as sending SMS messages to pre-

mium numbers.

• Third, we can also express malware behaviors based

on the structural layout of the app. As an Android

app is essentially a compressed archive, we can de-

compress it to reveal its internal tree structure and then

correspondingly express rules such as what packages

are used by the app, what kind of class hierarchies they

have, and where a specific resource is located.

To illustrate, we again use the Zsone [24] example,

an SMS Trojan that sends short messages to premium

numbers and removes billing-related notification mes-

sages from respective service providers. We can accord-

ingly generate the following behavioral footprints to de-

scribe Zsone: (1) An app contains a receiver that lis-

tens to android.provider.Telephony.SMS RECEIVED and

calls abortBroadcast; (2) An app sends SMS messages to

certain specific premium numbers, including “10621900”,

“106691819”, “10665123085”, “1066185829” and etc.; (3)

An app intercepts SMS messages from certain numbers, in-

cluding “10086”, “10000”, “10010”, and “1066134.” This

behavioral footprint can then be efficiently applied to detect

Zsone-infected apps in our collection. In practice, we found

this scheme is rather effective and efficient, which leads to

the discovery of 9 instances of Zsone-infected apps from the

official Android Market in our collection (Section 3.1).

2.2 Detecting Unknown Android Malware

Our first detection engine is designed to capture known

malware. Next, we present the second detection engine to

uncover unknown malware. Similar to the first one, our sec-

ond detection engine also works in two steps: heuristics-

based filtering and dynamic execution monitoring. The first



step applies certain heuristics to identify potentially suspi-

cious apps, which will then be confirmed in the second step.

Heuristics-based filtering Unlike the first detection

engine that can have known malware samples as templates

for detection, our second step has to rely on certain heuris-

tics to uncover zero-day malware. Although we can poten-

tially employ different types of heuristics, we in this work

focus on certain Android features that may be misused to

load new code, either Java binary code or native machine

code. The reasoning is straightforward: dynamic loading of

new (untrusted) code can always open the doors for misuse

and it becomes hard to predict what kind of code will be

executed next.

Accordingly, the first heuristic is related to the dy-

namic loading of Java binary code from a remote un-

trusted website. Typically, an Android app is self-contained

in that its classes.dex file contains all the Dalvik byte-

code for execution. However, the Dalvik VM provides

the DexClassLoader class that can be used by an app to

load classes from external files such as .apk or .jar (the

standard archive of Java applications). If the dynamically-

loaded code is fetched from a remote server, it becomes ex-

tremely hard to predict the app’s behavior and thus indicates

a potential threat to user privacy and security. Our mea-

surement on the collected apps shows that DexClassLoader

is used by 1055 apps (about 0.58%), and the vast major-

ity of them are related to advertisement libraries, instead of

the app itself. For example, one particular advertisement li-

brary, i.e., AdTOUCH [2], accounts for 40% of the uses of

DexClassLoader. By considering the use of this feature by

the app itself as suspicious, we further put the related apps

under scrutiny, which essentially leads to the discovery of

the zero-day Plankton spyware (Section 3.2).

Our second heuristic is about the dynamic loading of na-

tive code locally. Most of the Android apps are programmed

in Java. However, for performance or compatibility reasons,

about 4.52% Android apps we studied still use native code.

Note that though each app may run with a separate UID, the

OS (Linux) kernel’s system call interface is directly exposed

to the native code, making it possible for malicious apps to

exploit vulnerabilities in OS kernel and privileged daemons

to “root” the system. In Android, the default directory to

store the native code is in the app-specific lib/armeabi sub-

directory. As such, we consider it unusual if an app attempts

to keep (or rather hide) native code in a directory other than

the default one. Table 2 shows that about 4.52% of the to-

tal apps contain native code. In addition, 0.17% save native

code in the assets directory and 0.11% put native code in

the res/raw directory. This heuristic leads to the discovery

of the zero-day DroidKungFu malware (Section 3.2).

Dynamic execution monitoring Our heuristics effec-

tively identify new untrusted code running in the app. Our

next step deploys a dynamic execution monitor to inspect

Table 2: The number (and percentage of) apps with native

code not in the default location

Apps with

Native Code

Native Code in

Assets Directory

Native Code in

Res Directory

8272 (4.52%) 313 (0.17%) 195 (0.11%)

its runtime behaviors, particularly those triggered by the

new code. In particular, for the dynamically loaded Java

code, our dynamic monitor records any calls to the Android

framework APIs (particularly these related to Android per-

missions) and their arguments. The arguments can provide

rich semantic information about an app’s behavior. For ex-

ample, a call to the SmsManger.sendTextMessage function

reveals both the destination number (is it a premium num-

ber?) and the content of the SMS message body (is it a

message to subscribe a service that will cost money?). For

the dynamically-loaded native code, our dynamic monitor

collects system calls made by the native code. The collec-

tion is possible with a kernel module that hooks the system

call table in the (Linux) kernel. In our prototype, we do

not log all the system calls but instead focus on those used

by existing Android root exploits and/or made with the root

privilege (with the assumption that malware will use them to

subvert the system integrity after gaining the root privilege).

For instance, we are interested in the sys mount system call

because it can be used to remount the (normally read-only)

Android system partition for modification.

After collecting the logs, we then analyze them to look

for signs of suspicious runtime behaviors (e.g., sending

SMS messages to premium numbers, executing certain sys-

tem calls with root privilege and etc.). If so, we will fur-

ther manually validate whether the app is indeed a zero-day

malware. If yes, we will then extract the corresponding be-

havioral footprint and include it in the first detection engine

to detect other samples infected by this malware.

3 Evaluation

In this section, we present our evaluation results by ap-

plying our system to the collected apps from existing An-

droid Markets. Specifically, we crawled five representative

marketplaces, including the official Android Market (main-

tained by Google), eoeMarket [10] , alcatelclub [3], gfan

[13], and mmoovv [17] 4. The collection was made in a

two-month period during May and June 2011 and the num-

ber of apps from each marketplace is shown in Table 3. In

total, we collected 204, 040 free apps. Among them, ∼ 75%

of apps (153, 002) are collected from the official Android

Market and the rest 25% (51, 038) come from the four al-

4For simplicity, we use M1, M2, M3, and M4 to denote these four

alternative marketplaces in the rest of this paper.



Table 3: Statistics of collected apps from existing Android Markets

Official Android

Market

Alternative Android Markets

M1 M2 M3 M4

Number of Apps
153,002

(74.98%)

17,229

(8.44%)

14,943

(7.33%)

10,385

(5.09%)

8,481

(4.16%)

Total Apps
153,002 (74.98%) 51,038 (25.02%)

204,040

Table 4: Ten known malware families used in this study (†: first reported in the official Android Market)

Malware
Reported

Time
MD5 Comments

Geinimi [20] 12/2010
fa6e905d4be3b09541106e1cb4052943

b391d30ec53a08c20552203f58ca712c
Trojan with bot-like capabilities

ADRD [21] 02/2011
b3b38812cc01aa24df68bac4de517e23

a3fec4efca307adab4888d20d786a2a4
Trojan with bot-like capabilities

Pjapps [7] 02/2011
cec4c470a6dbac597064c6f566101028

c05d4ff1a80f18ba9d8a86afd88bc05d
Trojan with bot-like capabilities

Bgserv [6] 03/2011
ea97576befac2b142144ce30c2326ed6

1d696b87e665498b878bf92ce25440db
Trojan with bot-like capabilities

DroidDream† [19] 03/2011
63f26345ba76ef5e033ef6e5ccecd30d

763a1ab4e4a21373a24a921227a6f7a4

Root exploits with Exploid,

Rageagainstthecage

zHash† [23] 03/2011
f3b6eb64adef922096ff8b8618f3c1a9

5beae5543a3f085080c26de48a811da6
Root exploit with Exploid

BaseBridge [5] 05/2011
b2d359952bce1823d29e182dacac159c

d9814e6ec16be5b6174b518c186647b5

Root exploit with

Rageagainstthecage

DroidDreamLight† [25] 05/2011
3ae28cbf5a92e8e7a06db4b9ab0a55ab

5e4fd0a680ffc8d84d16b8c0e5404140

Trojan with information

stealing capabilities

Zsone† [24] 05/2011
d204007a13994cb1ad68d8d2b89cc9a8

a673481ff15028e05f6fe778a773e0f9

Trojan that sends

premium-rate SMS messages

jSMSHider [22] 06/2011
a3c0aacb35c86b4468e85bfb9e226955

389b416fb0f505d661716b8da02f92a2

Trojan that targets

custom firmware devices

ternative markets (with each having about tens of thousands

of apps). Due to the fact that an app may be included in

multiple markets, there are total 182, 823 distinct apps5.

3.1 Detecting New Samples of Known Malware

To evaluate the effectiveness of our first detection en-

gine, we obtained and analyzed known Android malware

samples from 10 different families. Table 4 lists these ten

malware families, which represent most Android malware

reported in the first half of year 2011. For each family, we

then extract the corresponding behavioral footprints from

two samples (their MD5 values are also included in the ta-

ble). Among these malware, three of them embed at least

one of the following root exploits, i.e., Rageagainstthecage

[18], Zimperlich [26], or Exploid [11]. Specifically,

Rageagainstthecage takes advantage of a vulnerability in

adbd, a privileged daemon running as root; Zimperlich ex-

ploits a similar bug but in the privileged zygote daemon;

5In this study, we consider apps with different SHA1 values are distinct.

while Exploid makes use of the vulnerable udev (init) dae-

mon (CVE-2009-1185) in Android. Among these exploits,

Exploid needs the triggering of certain udev events such

as turning on or off the WIFI interface, which requires the

CHANGE WIFI STATE permission. Accordingly, our detection

engine recognizes such need and uses it to prune the col-

lected apps for Exploid-specific root exploits.

Effectiveness of permission-based filtering Based

on the known Android malware samples, our first step is

to extract the essential permissions required by the mal-

ware to perform its functionalities. In Table 5, we list

the essential permissions for each malware family and also

report the number of apps that survived the permission-

based filter. From the table, the proposed permission-

based filtering is rather effective for most of these mal-

ware families. Specifically, eight of them have less

than 6% apps left after applying the essential permis-

sions. Among the two exceptions, DroidDreamLight re-

quires INTERNET and READ PHONE STATE permissions which

are common in existing apps. In this particular case, we



Table 5: Essential permissions of 10 known malware families

Malware Essential Permissions Apps

ADRD
INTERNET, ACCESS NETWORK STATE

RECEIVE BOOT COMPLETED
10, 379 (5.68%)

Bgserv INTERNET, RECEIVE SMS, SEND SMS 2, 880 (1.58%)

DroidDream CHANGE WIFI STATE 4, 096 (2.24%)

DroidDreamLight INTERNET, READ PHONE STATE 71, 095 (38.89%)

Geinimi INTERNET, SEND SMS 7, 620 (4.17%)

jSMSHider INSTALL PACKAGES 1, 210 (0.66%)

BaseBridge NATIVE CODE 8, 272 (4.52%)

Pjapps INTERNET, RECEIVE SMS 4, 637 (2.54%)

Zsone RECEIVE SMS, SEND SMS 3, 204 (1.75%)

zHash CHANGE WIFI STATE 4, 096 (2.24%)

Table 6: The number of infected apps by 10 known malware families on 5 studied marketplaces

Malware
Official Android

Market

Alternative Marketplaces
Total Distinct

M1 M2 M3 M4

ADRD 0 1 1 4 3 9 8

BaseBridge 0 2 2 0 2 6 4

Bgserv 0 0 0 0 1 1 1

DroidDream 0 6 6 0 0 12 6

DroidDreamLight 12 0 0 0 0 12 12

Geinimi 0 26 26 2 10 64 37

jSMSHider 0 3 3 0 6 12 9

Pjapps 0 12 9 14 8 43 31

zHash 0 1 1 0 1 3 2

Zsone 9 0 0 0 0 9 9

Total 21 51 48 20 31 171 119

also observe it needs to register for a broadcast receiver

for android.intent.action.PHONE STATE. Therefore, we

also leverage it as a pre-condition for our behavioral foot-

print matching, which significantly reduces to 0.64% of

apps (or 1175) for the second step. The another excep-

tion, i.e., BaseBridge, does not require any permission,

but the fact that contains the native code to launch the

Rageagainstthecage immediately reduces to the 4.52% of

apps (with native code) in our collection.

It is worth mentioning the essential permission of a

particular malware, i.e., jSMSHider. It is special in that

it requires INSTALL PACKAGES, a signatureOrSystem per-

mission. This type of permission by definition can only

be granted to an app either signed by the same signing

key as the system firmware or installed in the privileged

/system/app directory. In other words, it will never be

granted to third-party apps. jSMSHider is unique by target-

ing the popular third-party custom firmware whose signing

key is (inappropriately) publicly accessible. In other words,

by signing the infected app with it, jSMSHider is able to gain

this signatureOrSystem permission to install a package. As

a result, we selected INSTALL PACKAGES as the essential per-

mission for the jSMSHider malware.

Effectiveness of behavioral footprint matching After

pruning the apps with essential permissions, our second step

examines the resulting apps for ones that match known mal-

ware behaviors. Our experiments show that the detection of

known malware (of 10 families) among these 204, 040 apps

only took about four and a half hours to complete. Our scan-

ning results are shown in Table 6. In particular, we detected

171 malicious apps in our collection with 21 of them from

the official Android Market and 150 from the other four al-

ternative marketplaces. Similarly, due to the fact that one

sample may be submitted to multiple marketplaces, 119 of

these 171 infected apps are unique.

Based on the detection results in Table 6, it is evident

that the malware infection in alternative marketplaces is

more serious than the infection in official Android Mar-

ket. Specifically, the number (150) of infected apps in these

four alternative marketplaces is more than 7 times of that in

the official marketplace (21) even though the total number

of apps we collected from the former is only one third of

the latter. Moreover, we also found that the Geinimi mal-

ware, which was publicly reported in January, 2011, is still

spreading in alternative marketplaces. This is in sharp con-

trast to the timely removal of malware from the official An-



Table 7: The missed known malware families by Lookout Security & Antivirus software (T, D, and M represent the total,

detected, and missed number of samples, respectively.)

ADRD Bgserv jSMSHider BaseBridge Pjapps

T D M T D M T D M T D M T D M

version 6.3 (r8472) 8 3 5 1 0 1 9 6 3 4 1 3 31 15 16

version 6.11 (26cf47e) 8 3 5 1 0 1 9 9 0 4 4 0 31 31 0

Table 8: Two zero-day malware families detected by DroidRanger

Malware
Official Android

Market

Alternative Markets
Total Distinct

M1 M2 M3 M4

Plankton 11 0 0 0 0 11 11

DroidKungFu 0 9 10 1 9 29 18

Total 11 9 10 1 9 40 29

droid Market.

In this study, we also attempted to measure the effective-

ness of existing mobile anti-virus software. Especially, we

downloaded and installed the free version of Lookout Se-

curity & Antivirus, one of the leading mobile security soft-

ware from the official Android Market. We first tested it in

the first week of August 2011 and then tested it again in the

first week of November6 to scan the samples reported by

our system. In our experiments, we installed those malware

samples one by one on a Nexus One phone (running An-

droid version 2.3.3) with the Lookout Security & Antivirus

software. The scanning results are shown in Table 7.

From the table, none of these two versions can detect all

the samples. In particular, among these 119 distinct mal-

ware samples, the earlier version (6.3) reports 91 as mal-

ware and 28 sample as safe, leading to a high false negative

rate 23.52%. To verify that these 28 samples are indeed

malicious, we have manually examined these samples and

confirmed each single of them. The recent version (6.11)

performs better by reporting 113 as malware and 6 samples

as safe with a reduced false negative rate 5.04%. We believe

the improvement of scanning results is due to the active up-

date of malware signatures.

False negative measurement Our previous experi-

ments demonstrate the effectiveness of our scheme (espe-

cially in terms of false positives) for known malware detec-

tion. Next, we aim to measure the false negatives of our sys-

tem. To do that, we first download (in the first week of Au-

gust, 2011) the malware samples from the contagio dump

[8], which seems to be the only publicly available reposi-

tory of mobile malware samples. Within the downloaded

data set, there are 27 samples falling in the 10 known fam-

ilies which we have the related behavioral footprints. Be-

cause our scheme requires known malware samples for be-

havioral footprint extraction, we take cautions in eliminat-

6The version numbers are version 6.3 (release 8472) and version 6.11

(26cf47e) respectively.

ing those duplicate samples in the contagio dump with the

same SHA1 values used in footprint extraction. As a result,

there are 24 distinct samples in total for our measurement.

Though the data set is not sufficient large, this seems to be

the only available source for our study.

Based on these 24 samples, our system detected 23

of them, implying a false negative rate of 4.2%. A de-

tailed analysis of the missing sample shows that it is the

payload (com.android.providers.downloadsmanager) of the

DroidDream malware, not the malware itself. This pay-

load is also a standalone app and we do not have the

corresponding behavioral footprint, which explains why

our system missed it. Meanwhile, from this experi-

ment, we also find that the malware repository has mis-

categorized one particular sample PMSW V1.8 .apk (md5:

5895bcd066abf6100a37a25c0c1290a5). The sample, con-

sidered to be a DroidDream malware, is actually an ADRD

malware.

3.2 Detecting Zero­day Malware

Next, we present the evaluation results for zero-day mal-

ware detection. As mentioned earlier, we have developed

heuristics to identify suspicious apps that dynamically load

untrusted code for execution. These heuristics effectively

lead to the discovery of two zero-day malware: Plankton

and DroidKungFu. Table 8 shows the number of detected

zero-day malware samples from each marketplace. In this

section, we present in more detail on how we discovered

these two malware and what are their malicious behaviors.

Plankton In the second detection engine, our first

heuristic is to capture dynamic loading of untrusted code

from remote websites. With that, we perform a query on

the collected apps and found 1, 055 apps that invoked the

DexClassLoader support for Java class loading. A further

inspection shows that most of such uses are actually by ad-

vertisement libraries. After a simple white-listing of adver-



public enum Commands

{     

    ... 

    static

    {   

        ACTIVATION          = new Commands("ACTIVATION", 1, "Activation", "/activate");

        HOMEPAGE            = new Commands("HOMEPAGE", 2, "Homepage", "/homepage");

        COMMANDS_STATUS     = new Commands("COMMANDS_STATUS", 3, "CommandsStatus", "/commandstatus");

        BOOKMARKS           = new Commands("BOOKMARKS", 4, "Bookmarks", "/bookmarks");

        SHORTCUTS           = new Commands("SHORTCUTS", 5, "Shortcuts", "/shortcuts");

        HISTORY             = new Commands("HISTORY", 6, "History", "/history");

        TERMINATE           = new Commands("TERMINATE", 7, "Terminate", "/terminate");

        STATUS              = new Commands("STATUS", 8, "Status", "/status");

        DUMP_LOG            = new Commands("DUMP_LOG", 9, "DumpLog", "/dumplog");

        UNEXP_EXCEPTION     = new Commands("UNEXP_EXCEPTION", 10, "UnexpectedException", "/unexpectedexception");

        UPGRADE             = new Commands("UPGRADE", 11, "Upgrade", "/installation");

        INSTALLATION        = new Commands("INSTALLATION", 12, "Installation", "/installation");

    

        arrayOfCommands[0]  = COMMANDS;

        arrayOfCommands[1]  = ACTIVATION;

        arrayOfCommands[2]  = HOMEPAGE;

        arrayOfCommands[3]  = COMMANDS_STATUS;

        arrayOfCommands[4]  = BOOKMARKS;

        arrayOfCommands[5]  = SHORTCUTS;

        arrayOfCommands[6]  = HISTORY;

        arrayOfCommands[7]  = TERMINATE;

        arrayOfCommands[8]  = STATUS;

        arrayOfCommands[9]  = DUMP_LOG;

        arrayOfCommands[10] = UNEXPECTED_EXCEPTION;

        arrayOfCommands[11] = UPGRADE;

        arrayOfCommands[12] = INSTALLATION;

    }   

}   

Figure 2: The list of commands supported in Plankton

tisement libraries, we run the remaining 240 apps with a

dynamic execution monitor (Section 2.2).

With a dynamic monitor, we can not only intercept the

code-loading behavior, but also obtain the jar/apk files

that are being actually loaded. In this particular case,

when running a suspect app named Angry Birds Cheater

(com.crazyapps.angry.birds.cheater.trainer.helper)

in our dynamic monitor, our logs show the attempt to

load one jar file named “plankton v0.0.4.jar,” which is

downloaded from a remote website. A more in-depth

analysis shows that before downloading this jar file, the app

transports the list of permissions granted to the app over to

a remote server. This would presumably allow the remote

server to customize the dynamically loaded binary based

on the granted app’s permissions. For the downloaded

plankton v0.0.4.jar file, it turns out that it contains a

number of bot-related functionalities or commands that

can be remotely invoked. In Figure 2, we show the list

of commands supported by this spyware. Specifically, the

/bookmarks command manipulates the browser bookmarks,

and the /history command leaks the user browsing history.

It also has a /dumplog command that can dump the runtime

logs from logcat. Earlier reports [15] show that highly

sensitive private information may exist as plain text in the

runtime log.

After we identified the Plankton malware, we generated

its behavioral footprint and applied it to detect other inci-

dents in our collection. As a result, we detect 10 more

Plankton samples; all of them could be downloaded at that

time from the official Android Market. We then reported

these 11 apps to Google, which promptly removed them

from the official Android Market on the same day.

DroidKungFu Our second heuristic aims to detect

suspicious apps that load native code in an unusual way

(e.g., from non-standard directories). In fact, among 8, 272

apps that contain native code, 508 of them keep native code

in non-standard directories. As such, we monitored the

runtime behaviors of these apps with our dynamic moni-

tor. When analyzing the log, we find some particular apps

that attempted to remount the system partition (with the

sys mount syscall) to make it writable. This is highly sus-

picious because remounting system partition can only be

executed by users with the root privilege. For third-party

apps, this almost certainly means that the app has success-

fully launched a root exploit.

Therefore, we further analyze these apps, which lead

to the discovery of DroidKungFu malware. The malware

contains both Rageagainstthecage and Exploid root ex-

ploits in an encrypted form. When DroidKungFu runs, it

will first decrypt and launch the root exploits. If successful,

the malware will essentially elevate its privilege to root so

that it can arbitrarily access and modify any resources on

the phone, including the installation and removal of another

app. Our study shows that one particular app installed by

DroidKungFu pretends to be the legitimate Google Search

app by showing an identical icon. This app actually acts as

a bot client that will connect to a remote server to retrieve

and execute commands.



Table 9: The total number of malware samples detected by DroidRanger

Malware
Official Android

Market

Alternative Markets
Total Distinct

M1 M2 M3 M4

Total (Known) 21 51 48 20 31 171 119

Total (Zero-day) 11 9 10 1 9 40 29

Total
32

(0.02%)

60

(0.35%)

58

(0.39%)

21

(0.20%)

40

(0.47%)
211 148

3.3 Summary of Detected Malware

Overall, our system detected 211 malicious or infected

apps among the collected 204, 040 apps from five studied

marketplaces. The detailed breakdown is shown in Table

9: among these 211 apps, 32 of them are from the official

Android Market (∼ 0.02% infection rate) and 179 come

from the other four alternative marketplaces (0.20%-0.47%

infection rates). Due to the relative lack of regulation in

alternative marketplaces, their infection rate is more than an

order of magnitude higher than the official Android Market.

Considering the recent trend in observing an unprecedent

growth of mobile malware, we believe a rigorous vetting

process needs to be in place for both official and unofficial

marketplaces.

4 Discussion

Our scanning results show a relatively low malware in-

fection rate on studied Android Markets (0.02% on official

Android Market and 0.20% to 0.47% on other alternative

marketplaces). Such infection rate is certainly less than that

of malicious web contents reported earlier in [46]. How-

ever, due to the centralized role they played in the smart-

phone app ecosystem, such infection rate, though low, can

still compromise a tremendous number of smartphones and

cause lots of damages. Using the DroidDream malware as

the example, it is reported that this particular malware in-

fected more than 260, 000 users within 48 hours before

Google removed them from the Android Market [1]. Also,

due to the relative lack of regulation in alternative mar-

ketplaces, even though a malware may be removed from

the official Android Market, it can continue to exist in al-

ternative marketplaces. With the same DroidDream exam-

ple, we found its presence in unofficial marketplaces three

months later after they were removed from the official An-

droid Market. Moreover, we notice that some malware have

embedded the root exploits which allow them to obtain full

access on compromised devices. In fact, among the 10

known malware families, four of them, i.e., BaseBridge,

DroidDream, DroidKungFu, and zHash, have at least one

root exploit. Last but not least, zero-day malware exist in

both official and unofficial marketplaces and they may be

able to bypass most existing, if not all, up-to-date mobile

anti-virus software.

With that, there is a clear need to instantiate a rigorous

vetting or policing process in both official and unofficial

Android Markets, which is currently lacking. In the same

spirit, we argue the current model of passively waiting for

the feedback or ratings from users and the community may

not work as smoothly as we expect. In fact, to foster a hy-

gienic mobile app ecosystem, there is a need for a vetting

process that includes DroidRanger-like systems to examine

uploaded apps and better protect mobile users.

From another perspective, our current prototype is still

limited in the coverage of apps and marketplaces. For ex-

ample, though the collected pool of apps may be useful to

demonstrate the effectiveness of our current prototype, they

are all free apps. A recent report from Androlib [9] shows

that 36.2% of existing apps are paid ones. We have the rea-

son to believe that paid apps could provide unique differ-

ences that may warrant necessary re-design or adaption of

our system. Also, our current study only focuses on five

different Android Markets. Though our findings may not

be directly applicable to other marketplaces including iOS-

related app stores, the principles or key methodologies used

in this study can still be applied.

Finally, we point out that our current study only explored

two basic heuristics to uncover zero-day malware. There

exist many other heuristics that could be equally effective.

For example, a heuristic can be developed to capture apps

that involve background sending of unauthorized SMS mes-

sages to certain premium-rated numbers. Another heuristic

can also be designed to detect bot-like behavior that is re-

motely controlled by SMS messages. The exploration of

these heuristics to capture additional zero-day malware re-

mains an interesting future work.

5 Related Work

Smartphone platform security The first area of re-

lated work includes recent systems [27, 28, 31, 32, 34, 35,

36, 37, 38, 39, 40, 42, 44, 47, 48, 54] that either reveal

potential security risks or improve the overall security on

smartphone platforms. For example, TaintDroid [35] and

PiOS [34] are two representative systems that demonstrate



potential privacy threats from third-party apps in both An-

droid and iOS platforms. Comdroid [31] and the subsequent

work [39] analyze the vulnerability in inter-app communi-

cation in Android apps and find a number of exploitable

vulnerabilities. In particular, a notion of permission re-

delegation has been proposed to describe associated risks

when public interfaces of permission-guarded operations

are exposed. Woodpecker [41] similarly exposes capability

leaks on stock Android phones by analyzing preloaded apps

in the phone firmware. Stowaway [38] examines 940 apps

and finds that about one-third apps are over-privileged, i.e.,

they are requesting more permissions than they need. Our

work has a different focus on detecting malicious apps in

current Android Markets.

On the defensive side, ScanDroid [40] extracts app-

specific security specifications and applies data flow anal-

ysis for their consistency in the app code. Kirin [37] aims

to block the installation of potential unsafe apps if they ex-

hibit certain dangerous permission combination. Apex [47],

MockDroid [28], TISSA [54] and AppFence [42] revise

the current Android framework or runtime to better provide

fine-grained controls of resources accessed by third-party

untrusted apps. Saint [48] is proposed to protect the exposed

interfaces (accessible to other apps) according to security

policies defined by the app authors. Quire [32] addresses

the confused deputy attacks in Android by proposing a set

of extensions. L4Android [44] and Cells [27] isolate smart-

phone OSes for different usage environments in different

virtual machines (VMs).

Among the most related, Enck et al. [36] conducts a

systematic study of 1, 100 top free Android apps from the

official Android Market to better understand generic secu-

rity characteristics (e.g., pervasive use/misuse of personal

identifiers and deep penetration of advertising and analytics

networks). The study itself does not lead to any malware

detection. In comparison, our study has an exclusive focus

on detecting malware infection in both official and unof-

ficial marketplaces. Based on the collected 204, 040 apps

from five different marketplaces, our system detects 211 in-

fected apps and uncovers two zero-day malware, including

one from the official Android Market.

Malware detection onmobile devices The second area

of related work includes systems [29, 30, 33, 43, 45, 49, 52]

to detect malware on mobile devices. For example, Bose et

al. [29] presents a framework to detect malware on mo-

bile handsets by observing the logical order of an app’s

actions and matching with “spatial-temporal” representa-

tion of known malware behaviors. pBMDS [52] uses a

probabilistic-based approach that correlates a user’s input

with system call events to detect anomalous behaviors in

mobile phones. Kim et al. [43] focuses on energy-greeding

malware on mobile devices. VirusMeter [45] proposes

to detect malware based on abnormal power consumption

caused by malware. Crowdroid [30] collects system calls of

running apps on mobile devices and applies clustering algo-

rithms to differentiate between benign and malicious apps.

Dixon et al. [33] proposes a system to detect malicious code

by correlating power consumption pattern with the user’s

location. Felt et al. [49] surveys the current situation of mo-

bile malware on three popular smartphone platforms (iOS,

Android and Symbian). DroidMOSS [53] detects repack-

aged apps in third-party Android Markets. DroidRanger is

different from these systems in not detecting mobile mal-

ware on mobile devices (under resource constraints such as

limited battery or CPU). Instead, it performs offline analysis

to detect malware in current Android Markets. Accordingly,

it needs to address different challenges by accommodating

a large number of apps (Section 2).

Other systematic security studies The third area of

related work includes prior efforts [46, 50, 51] to systemat-

ically study malicious web contents. For example, Hon-

eyMonkey [51] identifies malicious websites by deploy-

ing and running client-side honeypots with different levels

of vulnerable web browsers. Moshchuk et al. [46] per-

forms a large-scale, systematic study of malicious objects

on the web, which crawls a large number of webpages and

executables from Internet and uses the off-the-shelf anti-

spyware software to identify malicious ones. Provos et al.

[50] collects billions of URLs in a period of ten months

and finds over 3 million malicious URLs which can launch

drive-by download attacks. Instead of detecting malicious

web contents, our system focuses on detecting malicious

apps, which pose different requirements and challenges in

the system design. From another perspective, our system

does share a similar spirit by involving a large-scale crawl-

ing of apps from existing marketplaces for malicious app

detection.

6 Conclusion

In the paper, we have presented a systematic study to de-

tect malicious apps on both official and unofficial Android

Markets. Our study involves a comprehensive crawling of

five representative Android Markets in May and June 2011,

which results in a collection of 204, 040 Android apps. To

scalably and efficiently detect potential infection from both

known and unknown malware, we have accordingly pro-

posed two different schemes, i.e., permission-based behav-

ioral footprinting and heuristics-based filtering. We have

implemented both schemes in DroidRanger and the evalu-

ation results of successfully detecting 211 malicious apps

and uncovering two zero-day malware in both official and

unofficial marketplaces demonstrate the feasibility and ef-

fectiveness of our approach. From another perspective, our

results also call for the need of a rigorous vetting process to

better police both official and unofficial marketplaces.
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