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Abstract tacks are being replaced by other mechanisms. Chief
As the web continues to play an ever increasing roleAMong these is the exploitation of the web, and the ser-

in information exchange, so too is it becoming the pre-vICeS built upon it, to distribute malware.

vailing platform for infecting vulnerable hosts. In this  This change in the playing field is particularly alarm-
paper, we provide a detailed study of the pervasivenesig, because unlike traditional scanning attacks that use
of so-calleddrive-by download®n the Internet. Drive- push-based infection to increase their population, web-
by downloads are caused b{RLs that attempt to exploit based malware infection follows a pull-based model. For
their visitors and cause malware to be installed and runhe most part, the techniques in use today for deliver-
automatically. Over a period df) months we processed ing web-malware can be divided into two main cate-
billions of URLs, and our results shows that a non-trivial gories. In the first case, attackers use various social en-
amount, of oveB million maliciousURLSs, initiate drive-  gineering techniques to entice the visitors of a website
by downloads. An even more troubling finding is that to download and run malware. The second, more de-
approximately1.3% of the incoming search queries to vious case, involves the underhanded tactic of targeting
Google’s search engine returned at leastdRe labeled  various browser vulnerabilities tautomaticallydown-

as malicious in the results page. We also explore sevioad and run—i.e., unknowingly to the visitor—the bi-
eral aspects of the drive-by downloads problem. Specifinary upon visiting a website. When popular websites
cally, we study the relationship between the user browsare exploited, the potential victim base from these so-
ing habits and exposure to malware, the techniques usechlleddrive-by downloadsan be far greater than other
to lure the user into the malware distribution networks,forms of exploitation because traditional defenses (e.qg.,
and the different properties of these networks. firewalls, dynamic addressing, proxies) pose no barrier
to infection. While social engineering may, in general,
be an important malware spreading vector, in this work

1 Introduction we restrict our focus and analysis to malware delivered

It should come as no surprise that our increasing reliancd'@ drive-by downloads.

on the Internet for many facets of our daily livesd., Recently, Provogt al. [20] provided insights on this
commerce, communication, entertainment, etc.) makesew phenomenon, and presented a cursory overview of
the Internet an attractive target for a host of illicit ac- web-based malware. Specifically, they described a num-
tivities. Indeed, over the past several years, Internet setber of server- and client-side exploitation techniques tha
vices have witnessed major disruptions from attacks, andre used to spread malware, and elucidated the mecha-
the network itself is continually plagued with malfea- nisms by which a successful exploitation chain can start
sance [14]. While the monetary gains from the myriadand continue to the automatic installation of malware. In
of illicit behaviors being perpetrated todag.q.,phish-  this paper, we present a detailed analysis of the malware
ing, spam) is just barely being understood [11], it is clearserving infrastructure on the web using a large corpus of
that there is a general shift in tactics—wide-scale attacksnalicious URLSs collected over a period of ten months.
aimed at overwhelming computing resources are becomdsing this data, we estimate the global prevalence of
ing less prevalent, and instead, traditional scanning atdrive-by downloads, and identify several trends for dif-



ferent aspects of the web malware problem. Our result2 Background
reveal an alarming contribution of Chinese-based web
sites to the web malware problem: overall, 67% of theUnfortunately, there are a number of existing exploita-
malware distribution servers and 64% of the web sitedion strategies for installing malware on a user’s com-
that link to them are located in China. These results rais@uter. One common technique for doing so is by re-
serious question about the security practices employethotely exploiting vulnerable network services. How-
by web site administrators. ever, lately, this attack strategy has become less suc-
N ) cessful (and presumably, less profitable). Arguably, the
Additionally, we study several properties of the mal- yrgjiferation of technologies such as Network Address
ware serving infrastructure, and show that (for the mostryansjators (NATs) and firewalls make it difficult to re-
part) the malware serving networks are composed Ofnotely connect and exploit services running on users’
tree-like structures with strong fan-in edges leading tocomputers. This, in turn, has lead attackers to seek other
the main malware distribution sites. These distributiongyenues of exploitation. An equally potent alternative is
sites normally deliver the malware to the victim after aq simply lure web users to connect to (compromised)
number of indirection steps traversing a path on the dismgjicious servers that subsequently deliver exploits tar-
tribution network tree. More interestingly, we show that geting vulnerabilities of web browsers or their plugins.
several malware distribution networks have linkages that adyersaries use a number of techniques to inject con-
can be attributed to various relationships. tent under their control into benign websites. In many
In general, the edges of these malware distributiorc@SeS, adversaries exploit web servers via vulnerable
Scripting applications. Typically, these vulnerabilitie

networks represent the hop-points used to lure users t in oh . ) all d
the malware distribution site. By investigating these(e‘g"In phpBB2 or InvisionBoard) allow an adversary

edges, we reveal a number of causal relationships th4dP 9ain hdlrect access 1o ftthe ltj)nderlylrrg (szeratmg Sys-
eventually lead to browser exploitation. More troubling, tern.. That access can often be esca ated to Super-user
we show that drive-by downloads are being induced byprlvneges which in turn can be used to compromise any

mechanisms beyond the conventional techniques of coﬁ’-veb serverrunning on Fhe_compromlsed host. In general,
trolling the content of compromised websites. In par_upon successful exploitation of a web server the adver-

ticular, our results reveal that Ad serving networks are>a"y injects new c_o_ntent to the compromised Websi_te. In
increasingly being used as hops in the malware servinéﬂos'[_ cases, the |njected_content is a link that red_lrects
chain. We attribute this increase to syndication, a com € Visitors of these websites tdRL that hosts a script
mon practice which allows advertisers to rent out part ofcrafted to exploit the browser. To avoid visual detection
their advertising space to other parties. These ﬁndingg’y website owners, adversan(_as normally use 'n_V'S'bIe
are problematic as they show that even protected WebHTML_ components &.g.,zero pixell FRAVES) to hide
servers can be used as vehicles for transferring malwaréhe injected content. L _ )
Additionally, we also show that contrary to common wis- AAnOther common content injection technique is to use
dom, the practice of following “safe browsing” habits websites that aIIow. users to contribute their own con-
(i.e., avoiding gray content) by itself is not an effective tent, _for examplg, Y'a pos_tlngs_to forums or l?"’gs- De-
safeguard against exploitation. pending on the S|t_e s configuration, user contributed con-
tent may be restricted to text but often can also contain
The remainder of this paper is organized as follows.HTML such as links to images or other external content.
In Section 2, we provide background information on howThis is particularly dangerous, as without proper filter-
vulnerable computer systems can be compromised solelyg in place, the adversary can simply inject the exploit
by visiting a malicious web page. Section 3 gives anURL without the need to compromise the web server.
overview of our data collection infrastructure and in Sec- Figure 1 illustrates the main phases in a typical in-
tion 4 we discuss the prevalence of malicious web sitegeraction that takes place when a user visits a web-
on the Internet. In Section 5, we explore the mechasite with injected malicious content. Upon visiting this
nisms used to inject malicious content into web pageswebsite, the browser downloads the initial exploit script
We analyze several aspects of the web malware distribute.g.,via anl FRANVE). The exploit script (in most cases,
tion networks in Section 6. In Section 7 we provide anj avascr i pt) targets a vulnerability in the browser or
overview of the impact of the installed malware on theone of its plugins. Interested readers are referred to
infected system. Section 8 discusses implications of ouProvoset al. [20] for a number of vulnerabilities that
results and Section 9 presents related work. Finally, weare commonly used to gain control of the infected sys-
conclude in Section 10. tem. Successful exploitation of one of these vulnera-



Landing Site Pre-processing Phase. As Figure 2 illustrates, the data
processing starts from a large web repository maintained

(1) Client visits the landing site by Google. Our goal is to inspeRLs from this repos-
itory and identify the ones that trigger drive-by down-
loads. However, exhaustive inspection of e&ftL in
Victim N the repository is prohibitively expensive due to the large
- P number ofURLs in the repository (on the order of bil-
— (3) Redirect to the get the exploit lions). Therefore, we first use light-weight techniques to
extractURLs that are likely malicious then subject them
to a more detailed analysis and verification phase.

(2) Redirect to the get the exploit

Hop _Point
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Repository
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Figure 1: A typical Interaction with of drive-by down- Scoring
load victim with a landindJRL . v
Virtual Machine
Verification

bilities results in the automatic execution of the exploit
code, thereby triggering a drive-by download. Drive-by
downloads start when the exploit instructs the browser to
connect to a malware distribution site to retrieve malware
executable(s). The downloaded executable is then auto-
matically installed and started on the infected system
Finally, attackers use a number of techniques to evade

detection and complicate forensic analysis. For example, . We employ themap_reduce[9] framework to process
the use of randomly seeded obfuscatesascr i pt in billions of web pages in parallel. For each web page, we
their exploit code is not uncommon. Moreover, to com- Extract several features, some of which take advantage of

plicate network based detection attackers use a numbélf]e cht that many IandinURLs_ are hijac_:k_ed to include
malicious payload(s) or to point to malicious payload(s)

or redirection steps before the browser eventually con; S . «
tacts the malware distribution site. from a distribution site. For exampl_e, we use “out of
place”l FRAMES, obfuscated JavaScript, loFRAMES to
known distribution sites as features. Using a specialized
3 Infrastructure and Methodology machine-learning framework [7], we translate these fea-
tures into a likelihood score. We employ five-fold cross-
Our primary objective is to identify malicious web sites validation to measure the quality of the machine-learning
(i.e, URLs that trigger drive-by downloads) and help framework. The cross-validation operates by splitting
improve the safety of the Internet. Before proceedingthe data set into 5 randomly chosen partitions and then
further with the details of our data collection methodol- training on four partitions while using the remaining par-
ogy, we first define some terms we use throughout thidition for validation. This process is repeated five times.
paper. We use the terntanding pagesand malicious  For each trained model, we create an ROC curve and use
URLs interchangeably to denote ti#RLs that initiate  the average ROC curve to estimate the overall accuracy.
drive-by downloads when users visit them. In our subse-Using this ROC curve, we estimate the false positive and
qguent analysis, we group theBBLs according to their  detection rate for different thresholds. Our infrastruetu
top level domain names and we refer to the resulting sepre-processes roughbne billionpages daily. In order to
as thelanding sites In many cases, the malicious pay- fully utilize the capacity of the subsequent detailed ver-
load is not hosted on the landing site, but instead loadedfication phase, we choose a threshold score that results
via anl FRAME or a SCRI PT from a remote site. We in an outcome false positive rate of abdit3 with a
call the remote site that hosts malicious payloadiisa  corresponding detection rate of approximat@l. This
tribution site In what follows, we detail the different amounts to about one milliobRLs that we subject to
components of our data collection infrastructure. the computationally more expensive verification phase.

Malicious
URLs

Figure 2:URL selection and verification workflow.



In addition to analyzing web pages in the crawled webnewURLs are flagged as malicious. The verification sys-
repository, we also regularly select several hundred thoutem records all the network interactions as well as the
sandsURLs for in-depth verification. ThesERLs are  state changes. In what follows, we describe how we pro-
randomly sampled from popul&RLs as well as from cess the network traces associated with the detected ma-
the global index. We also proce&iRls reported by licious URLs to shed light on the malware distribution
users. infrastructure.

Verification Phase. This phase aims to verify whether Constructing the Malware Distribution Networks.
a candidateJRL from the pre-processing phase is ma- To understand the properties of the web malware serving
licious (i.e., initiates a drive-by download). To do that, infrastructure on the Internet, we analyze the recorded
we developed a large scaleb-honeynehat simultane-  network traces associated with the detected malicious
ously runs a large number of Microsoft Windows imagesyRLs to construct themalware distribution networks
in virtual machines. Our system design draws on the exyve define a distribution network as the set of malware
perience from earlier work [25], and includes unique fea-delivery trees from all the landing sites that lead to a par-
tures that are specific to our goals. In what follows wetjcular malware distribution site. A malware delivery tree
discuss the details of tHdRL verification process. consists of the landing site, as the leaf node, and all nodes
Each honeypot instance runs an unpatched version gf.e.,web sites) that the browser visits until it contacts the
Internet Explorer. To inspect a candidagl , the sys-  malware distribution site (the root of the tree). To con-
tem first loads a clean Windows image then automatistruct the delivery trees we extract the edges connecting
cally starts the browser and instructs it to visit the candi-these nodes by inspecting tRef er er header from the
dateURL . We detect maliciousRLs using a combina- recorded successive HTTP requests the browser makes
tion of execution based heuristics and results from anti-after visiting the landing page. However, in many cases
virus engines. Specifically, for each visiteL we run  the Ref er er headers are not sufficient to extract the
the virtual machine for approximately two minutes andfull chain. For example, when the browser redirection
monitor the system behavior for abnormal state changegesults from an external script tiRef err er , in this
including file system changes, newly created processegase, points to the base page and not the external script
and changes to the system’s registry. Additionally, wefile. Additionally, in many cases theef er er header is
subject the HTTP responses to virus scans using multinot set €.g.,because the requests are made from within
ple anti-virus engines. To detect maliciduURLs ,we de-  a browser plugin or newly-downloaded malware).
velop scoring heuristics used to determines the likelihood Tg connect the missing causality links, we interpret the
that aURL is malicious. We determineldRL score based HTML and JavaScript content of the pages fetched by the
on a combined measure of the different state changegrowser and extract all tHdRLs from the fetched pages.
resulting from visiting theURL . Our heuristics score Then, to identify causal edges we look for asfgL_s that
URLs based on the number of created processes, thgatch any of the HTTP fetches that were subsequently
number of observed registry changes and the number Gfisjted by the browser. In some casé#Ls contain
file system changes resulting from visiting tHiL . randomly generated strings, so some requests cannot be
To limit false positives, we choose a conservative dematched exactly. In these cases, we apply heuristics
cision criteria that uses an empirically derived thresh-based on edit distance to identify the most probable par-
old to mark aURL as malicious. This threshold is set ent of theURL . Finally, for each malware distribution
such that it will be met if we detect changes in the sys-site, we construct its associated distribution network by
tem state, including the file system as well as creatiorcombining the different malware delivery trees from all
of new processes. A visitddRL is marked asnalicious  |anding pages that lead to that site.
if it meets the thresholdndone of the incoming HTTP
responses is marked as malicious by at least one anti- Qur infrastructure has been live for more than one
virus scanner. Our extensive evaluation shows that thigear, continuously monitoring the web and detecting ma-
criteria introduces negligible false positives. Finally, licious URLs. In what follows, we report our findings
URL that meets the threshold requirement but has no inbased on analyzing data collected during that time pe-
coming payload flagged by any of the anti-virus enginesyiod. Again, recall that we focus here on the perva-
is marked asuspicious siveness of malicious activity (perpetrated by drive-by
On average, the detailed verification stage processesgownloads) that is induced simply by visiting a landing
about one millionURLs daily, of which roughly25, 000 page, thereafter requiringp additional interaction on the
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client’s part €.9.,clicking on embedded links). Finally,
we note that due to the large scale of our data collection
and some infrastructural constraints, a number longitu- :
dinal aspects of the web malware problesrg(,the life-
time of the different malware distribution networks) are
beyond the scope of this paper and are a subject of oury .|
future investigation.
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We provide an estimate of the prevalence of web-
malware based on data collected over a period Of teN Qs a0 ursamr 4067 Ass 2007 Sep 2007 0ot 2007 Now 007 e 2067 Do 5007 T 5700
months (Jan 2007 - Oct 2007). During that period, we pae

subjected over 60 milliotRLs for in-depth processing  Figure 3: Percentage of search queries that resulted in at

through our verification system. Overa”, we detected|east ondJRL labeled as ma”cious; 7_day running avg.
more thar8 million maliciousURLs hosted on more than

180 thousand landing sites. Overall, we observed more

than9 thousand different distribution sites. The findings appear at uniformly distributed ranks within the top mil-
are summarized in Table 1. Overall, these results showon web sites—with the most popular landing page hav-
the scope of the problem, but do not necessarily reflecing a rank ofl, 588. These results further highlight the
the exposure of end-users to drive-by downloads. In whasignificance of the web malware threat as they show the
follows, we attempt to address this question by estimatextent of the malware problem; in essence, altiotfto

ing the overall impact of the malicious web sites. of the top millionURLs that appeared most frequently

in Google’s search results led to exposure to malicious

Data collection period Jan - Oct 2007 activity at some point.

Total URLs checked in-depth 66, 534, 330 An additional interesting result is the geographic lo-

Unique suspicious landindRLs 3,385,889 cality of web based malware. Table 2 shows the ge-

Unique malicious landing/RLs 3,417,590 ographic breakdown of IP addresses of the top 5 mal-

Unique malicious landing sites 181,699 ware distribution sites and the landing sites. The results

Unique distribution sites 9, 340 show that a significant number of Chinese-based sites
contribute to the drive-by problem. Overal{% of the

Table 1: Summary of collected data. malware distribution sites ard.6% of the landing sites

are hosted in China. These findings provide more evi-
dence [13] of poor security practices by web site admin-

To study the potent!al |mpacF of mahmoqs Wet,) Sltesistrators,e.g, running out-dated and unpatched versions
on the end-users, we first examine the fraction of incCOM-¢ o \web server software.

ing search queries to Google’s search engine that return

at least on@JRL labeled as malicious in the results page. dist. site % of all landing site % of all
Figure 3 provides a running average of this fraction. The hOStigg_Country déSYt-Oi/ites hOStCi?]Q country 'aﬁTTO? sites
H H H H A Ina 0% na 4%
graph shows an increasing trendin thelsearch queries that United States 15 0% United States 15 6%
return at least one malicious result, with an average ap- Russia 4.0% Russia 5.6%
proachingl.3% of the overall incoming search queries. Malaysia 2.2% Korea 2.0%
This finding is troubling as it shows that a significant Korea 2.0% Germany 2.0%

fraction of search queries return results that may expose
the end-user to exploitation attempts.

To further understand the importance of this finding,
we inspect the prevalence of malicious sites among the Upon closer inspection of the geographic locality of
links that appear most often in Google search resultsthe web-malware distribution networks as a whale.(
From the top one milliorURLs appearing in the search the correlation between the location of a distribution site
engine results, abodt 000 belong to sites that have been and the landing sites pointing to it), we see that the mal-
verified as malicious at some point during our data col-ware distribution networks are highly localized within
lection. Upon closer inspection, we found that these sitegommon geographical boundaries. This locality varies

Table 2: Top 5 Hosting countries



across different countries, and is most evident in Chinab Malicious Content Injection
with 96% of the landing sites in China pointing to mal-

ware distribution servers hosted in that country. In Section 4, we showed that exposure to web-malware

is not strongly tied to a particular browsing habit. Our as-
4.1 Impact of browsing habits sertion is that this is due, in part, to the fact that drive-by

downloads are triggered by visiting staging sites that are
In order to examine the impact of users’ browsing habitsnot necessarily of malicious intent but have content that
on their exposure to exploitation via drive-by downloads, lures the visitor into the malware distribution network.
we measure the p_revalenc_e of maI|C|ou§ websites across | ihis section, we validate this conjecture by study-
the different website functional categories based on th
DMOZ classification [1]. Using a large random sample
of about7.2 million URLs , we first map eaclRL to
its corresponding DMOZ category. We were able to find

(T'ng the properties of the web sites that participate in the
malware delivery trees. As discussed in Section 2, at-
tackers use a number of techniques to control the con-

X ) o ~cent of benign web sites and turn them into nodes in the
the corresponding DMOZ categories for about 50% Ofy gy are distribution networks. These techniques can be

> :
FheseURLs W‘? further inspect eacdRL through our divided into two categories: web server compromise and
|ndept_h _ver|f|cat|or_1 system the|_1 measure the p(_ercentagmird party contributed contene(g.,blog posts). Unfor-
o;maI|C|r(])usURle n eacr; Zjnctlongl Catl_eQOW- F|gdure 4 tunately, it is generally difficult to determine the exact
shows the prevalence of detected malicious and SUSPEqnibytion of either category. In fact, in some cases

cious websites |n.each top level DMOZ categgry. even manual inspection of the content of each web site
As the 9raph |IIustraEes, website categories assoCimay not lead to conclusive evidence regarding the man-
ated with “gray content”&.g., adult websites) show & e which the malicious content was injected into the
stronger connection to malicious content. For instanceyep, site. Therefore, in this section we provide insights
about 0.6% of th&RLs in the Adult category exhibited jniq some features of these web sites that may explain
drive-by download activity upon visiting these websites. iqir presence in the malware delivery trees. We only fo-
These results suggest that users who browse such wepyg on the features that we can determine in an automated

sites will likely be more exposed to exploitation com- 5shion.  Specifically, where possible, we first inspect
pared to users who browse websites from the other funCe yersion of the software running on the web server
tional categories. However, an important observatior,, each landing site. Additionally, we explore one im-

from the same figure is that the distribution of malicious ortant angle that we discovered which contributes sig-
websites is not significantly skewed toward pages thaEiﬁcantly to the distribution of web malware—namely,
serve gray content. In fact, the distribution shows thatdrive-by downloads via Ads.

malicious websites are generally presengaihwebsite

categories we observed. Overall, these results show that

while “safe browsing” habits may limit users’ exposure

to drive-by downloads it does not provide an effectives 1 \Web Server Software
safeguard against exploitation.

We first begin by examining (where possible) the soft-

.l " Stspicious 'z | ware running on the web-servers for all the landing sites
that lead to the malware distribution sites. Specifically,

we collected all the Ser ver ” and “X- Power ed- By”
header tokens from each landing page (see Table 3).
Not surprisingly, of those servers that reported this in-
formation, a significant fraction were running outdated
versions of software with well known vulnerabilities
For example, 38.1% of the Apache servers and 39.9%
of servers with PHP scripting support reported a version
with security vulnerabilities. Overall, these resultseef]
the weak security practices applied by the web site ad-
. . . ministrators. Clearly, running unpatched software with
Figure 4: Prevalence of suspicious and malicious pagesynown vulnerabilities increases the risk of content con-

trol via server exploitation.
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| Srv. Softwae | count [ Unknown | Up-to-date| Old |

Apache 55,088 | 26.5% 35.5% 38%
Microsoft IIS | 113,905 n/a n/a n/a
Unknown 12,706 n/a n/a n/a
Scripting

PHP 27,873 | 8.5% | 51.6% | 39.9%

Table 3: Server version for landing sites. In the case of d&ioft 11S, we could not verify their version.

~Weightad by frequency of appearance scribed in Section 3. For each tree, we examine every
=+ Weighted by unique landing sites intermediary node for membership in a se2pH00 well
known advertising networks. If any of the nodes qual-
ify, we count the landing site as being infectious via Ads.
Moreover, to highlight the impact of the malware deliv-
ered via Ads relative to the other mechanisms, we weight
the landing sites associated with Ads based on the fre-
quency of their appearance in Google search results com-
pared to that of all landing sites. Figure 5 shows the
percentage of landing sites belonging to Ad networks.
! On average2% of the landing sites were delivering mal-

002007 03007 052007 063007072007 062007 092007 102007 TL2007 ware via advertisements. More importantly, the overall

Week analyzed weighted share for those sites was substantial—on aver-

Figure 5: Percentage of landing sites potentially infect-2ge,12% of the overall search results that returned land-

ing visitors via malicious advertisements, and their rela-Nd Pages were associated with malicious content due to
tive share in the search results. unsafe Ads. This result can be explained by the fact that

Ads normally target popular web sites, and so have a
much wider reach. Consequently, even a small fraction

5.2 Drive-by Downloads via Ads of malicious Ads can have a major impact (compared to
the other delivery mechanisms).

o
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Today, the majority of Web advertisements are dis-

tributed in the form of third party content to the adver- _ ; _
tising web site. This practice is somewhat worrisome, ad!® > iS that Ad-delivered drive-by downloads seem to

a web page is only as secure as it's weakest componerfiPP€ar in sudden short-lived spikes. This is likely due
In particular, even if the web page itself does not containt© the fact that Ads appearing on several advertising web

any exploits, insecure Ad content poses a risk to adversites are centrally controlled, and therefore allow the ma-

tising web sites. With the increasing use of Ad syndica-"dous content to appear on thousands of web sites sites

tion (which allows an advertiser to sell advertising space®MOst instantaneously. Similarity, once detected, these
to other advertising companies that in turn can yet agaif*dS aré removed simultaneously, and so disappear as
syndicate their content to other parties), the chances th&UIckly as they appeared. For this reason, we notice
insecure content gets inserted somewhere along the chajat drive-by downloads delivered by other content in-
quickly escalates. Far too often, this can lead to wet€Ction techniquese(g. individual web servers compro-
pages running advertisements to untrusted content. Thi@'se) have more lasting effecf[ compared to Ad de_llv-
in itself, represents an attractive avenue for distrilgutin €r€d malware, as each web site must be secured inde-
malware, as it provides the adversary with a way to in-Pendently.
ject content to web sites with large visitor base without  The general practice of Ad syndication contributes sig-
having to compromise any web server. nificantly to the rise of Ad delivered malware. Our re-
To assess the extent of this behavior, we estimate thsults show that overall 75% of the landing sites that de-
overall contribution of Ads to drive-by downloads. To livered malware via Ads use multiple levels of Ad syn-
do so, we construct the malware delivery trees from alldication. To understand how far trust would have to ex-
detected maliciousRLs following the methodology de- tend in order to limit the Ad delivered drive-by down-

Another interesting aspect of the results shown in Fig-
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Figure 6: CDF of the number of redirection steps for AdsFigure 7: CDF of the normalized position of the top five
that successfully delivered malware. Ad networks most frequently participating in malware
delivery chains.

loads, we plot the distribution of the path length from the

landing site leading to the malware distribution sites for

each delivery tree. The edges connecting the nodes in

these paths reflect the number of redirects a browser haggories advertising networks do not participate directly
to follow before receiving the final payload. Hence, for in delivering malware. However, the relative position of
syndicated Ads that delivered malware the path lengttnetworks in the delivery chain may be used as an indi-
is indicative of the number of syndication steps beforecation of their relationship with the malware distribution
reaching the final Ad; in our case, the malware payloadsites — the deeper a network’s relative position the closer
Figure 6 shows the distribution of the number of redi-it is related to the malware distribution site. Finally, in
rects for syndicated Ads that delivered malware relativethe third category, indicated by netwovk our analysis

to the other malicious landingRLs. The results are revealed thatin almo$0% of all incidents, the advertis-
quite telling: malware delivered via Ads exhibits longer ing network is directly delivering malware. For example,
delivery chains, irb0% percent of all cases, more thé&n  advertising network/ pushes Ads that install malware in
redirection steps were required before receiving the malthe form of a browser toolbar.

ware payload. Clearly, itis increasingly difficult to main-

tain trust along such long delivery chains. Finally we further elucidate this problem via an in-

Inspecting the delivery trees that featured syndicatiorteresting example from our data corpus. The landing
reveals a total of 55 unique Ad networks participating page in our example refers to a Dutch radio station’s web
in these trees. We further studied the relative role of thesite. The radio station in question was showing a ban-
different networks by evaluating the frequency of appearner advertisement from a German advertising site. Us-
ance of each Ad network in the malware delivery treesing JavaScript, that advertiser redirected to a prominent
Interestingly, our results show that five advertising net-advertiser in the US, which in turn redirected to yet an-
works appear in approximatel% of all malware deliv-  other advertiser in the Netherlands. That advertiser redi-
ery trees. Figure 7 shows the distribution of the relativerected to another advertisement (also in the Netherlands)
position of each network in the malware delivery chainsthat contained obfuscated JavaScript, which when un-
it participated in. The normalized position is calculated obfuscated, pointed to yet another JavaScript hosted in
by dividing the index of the Ad network in each chain Austria. The final JavaScript was encrypted and redi-
by the length of the chain. The graph shows that theseected the browser via multipleFRAMES toadxtnet.net
advertising networks split into three different categerie an exploit site hosted in Austria. This resulted in the
In the first category, which includes network the ad-  automatic installation of multiple Trojan Downloaders.
vertising network appears at the beginning of the deliv-While it is unlikely that the initial advertising companies
ery chain. In the second category, which includes netwere aware of the malware installations, each redirection
works | | -1V, advertising networks appear frequently gave another party control over the content on the origi-
in the middle of the delivery chains. In both these cat-nal web page—with predictable consequences.



6 Malware Distribution Infrastructure 1

Lénding Sites —
Distribution Sites ---------

In this section, we explore various properties of the host-
ing infrastructure for web malware. In particular, we ex-
plore the size of of the malware distribution networks,
and examine the distribution of binaries hosted across
sites. We argue that such analysis is important, as it sheds
light on the sophistication of the hosting infrastructures
and the level of malfeasance we see today. As is the caseg3
with other recent malware studies (e.qg., [5, 26, 21]) we
hope that this analysis will be of benefit to researchers o Ls

and practitioners alike. 0 50 100 150 200
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Figure 9: The cumulative fraction of malware distribu-

tion sites over the8 IP prefix space.
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06 I 1 distribution servers and the landing sites linking to them.
é Figure 9 shows that the malware distribution sites are
04| ) concentrated in a limited number of /8 prefixes. About
70% of the malware distribution sites have IP addresses
0z | | within 58. » -- 61.* and209.* -- 221.* net-

work ranges. Interestingly, Andersenal. [5] observed

‘ ‘ ‘ ‘ comparable IP space concentrations for the scam hosting

1 10 100 1000 10000 100000 infrastructure. The landing sites, however exhibit rela-
Number of fanding sites tively more IP space diversity; Roughly 50% of the land-

Figure 8: CDF of the number of landing sites pointing to INd Sites fell in the above ranges.
a particular malware distribution site.

1

For the remaining discussion, recall that a malware
distribution network constitutes all the landing sitesttha
point to a single distribution site. Using the methodol-
ogy described in Section 3, we identified the distribution
networks associated with each malware distribution site.
We first evaluate their size in terms of the total number of
landing sites that point to them. Figure 8 shows the dis-
tribution of sizes for the different distribution networks

The graph reveals two main types of malware distri-
bution networks: (1) networks that use only one landing 0
site, and (2) networks that have multiple landing sites.

As the graph shows, distribution networks can grow to

have well over 21,000 landing sites pointing to them.Figure 10: The cumulative fraction of the malware dis-
That said, roughly 45% of the detected malware distri-tribution sites across the different ASes.

bution sites used only a single landing site at a time. We

manually inspected some of these distribution sites and We further investigated the Autonomous System (AS)
found that the vast majority were either subdomains orlocality of the malware distribution sites by mapping
free hosting services, or short-lived domains that wereheir IP addresses to the AS responsible for the longest
created in large numbers. It is likely, though not con-matching prefixes for these IP addresses. We use the lat-
firmed, that each of these sites used only a single landingst BGP snapshot from Routeviews [23] to do the IP to
site as a way to slip under the radar and avoid detectionAS mapping. Our results show that all the malware dis-

Next, we examine the network location of the malwaretribution sites’ IP addresses fall into a relatively small s

0.8

0.6

0.4

0.2

Cumulative Fraction of Distribution Sites

0 50 100 150 200 250 300 350 400 450 500
AS rank



of ASes — only 500 as of this writing. Figure 10 shows Malware hosting infrastructure. Throughout our

the cumulative fraction of these sites across the ASesneasurement period we detected30 malware distri-
hosting them (sorted in descending order by the numbebution sites. In90% of the cases each site is hosted
of sites in each AS). The graph further shows the highlyon a single IP address. The remainin@%t sites are
nonuniform concentration of the malware distribution hosted on IP addresses that host multiple malware distri-
sites:95% of these sites map to onBi0 ASes. Finally,  bution sites. Our results show IP addresses that hosted up
the results of mapping the landing sites (not shown) proto 210 malware distribution sites. Closer inspection re-
duced2, 517 ASes with95% of the sites falling in these vealed that these addresses refer to public hosting servers
500 ASes. that allow users to create their own accounts. These

Lastly, the distribution of malware across domainsaccounts appear as sub-folders of the the virtual host-
also gives rise to some interesting insights. Figure 11Ng server DNS namee(g.,512]j . conl akgy, 512j .
shows the distribution of the number of unique mal-cond al avin,512j . conf anti ) orin many cases as
ware binaries (as inferred from MD5 hashes) down-Separate DNS aliases that resolve to the IP address of the
loaded from each malware distribution site. As the grapHhosting server. We also observed several cases where the
shows, approximately 42% of the distribution sites deliv-hosting server is a public blog that allows users to have
ered a single malware binary. The remaining distributionth€ir own pagese(g., m hanbl og. con’ abadanz2,
sites hosted multiple distinct binaries over their observam hanbl og. conl askbox).
tion period in our data, with 3% of the servers hosting

more than 100 binaries. In many cases, we observed that !
the multiple payloads reflect deliberate obfuscation at-
tempts to evade detection. In what follows, we take a 08 r
more in-depth look by studying the different forms of re-
lationships among the various distribution networks. 06 I
3!
1 0.4
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O
04r 1 Figure 12: CDF of the normalized pairwise intersection
between landing sites across distribution networks.
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Overlapping landing sites. We further evaluate the
overlap between the landing sites that point to the dif-
ferent malware distribution sites. To do so, we calculate
Figure 11: CDF of the number of unique binaries down-the pairwise intersection between the sets of the landing
loaded from each malware distribution site. sites pointing to each of the distribution sites in our data
set. For a distribution network with a set of landing
sites X; and networkj with the set of landing siteX’;,

the normalized pairwise intersection of the two networks,

6.1 Relationships Among Networks Ci;, is calculated as,

1 10 100 1000 10000 100000
Number of Unique Malware Binary Hashes

. . . X;NX;
To gain a better perspective on the degree of connectiv- Cij= %
7

ity between the distribution networks, we investigate the
common properties of the hosting infrastructure across Where|X| is the number of elements in the sét In-
the malware distribution sites. We also evaluate the deterestingly, our results showed thi% of the distribu-
gree of overlap among the landing sites linking to thetion networks share at least one landing page. Figure 12
different malware distribution sites. shows the normalized pair-wise landing sets intersection

@)



across these distribution networks. The graph reveals ane of its plugins and takes control of the infected sys-
strong overlap among the landing sites for the related nettem, after which it retrieves and runs the malware ex-
work pairs. These results suggest that many landing sitescutable(s) downloaded from the malware distribution
are shared among multiple distribution networks. For exsite. Rather than inspecting the behavior of each phase
ample, in several cases we observed landing pages witin isolation, our goal is to give an overview of the col-
multiple | FRAMES linking to different malware distribu- lective changes that happen to the system state after vis-
tion sites. Finally, we note that the sudden jump to aiting a maliciousURL . Figure 14 shows the distribution
pair-wise score of one is mostly due to network pairs inof the number of Windows executables downloaded af-
which the landing sites for one network are a subset oter visiting a malicioudJRL as observed from monitor-
those for the other network. ing the interaction between the browser and the malware
distribution site. As the graph shows, visiting malicious
URLs can lead to a large number of downloads (8 on av-
erage, but as large as 60 in the extreme case).
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Figure 13: CDF of the normalized pairwise intersection ‘ ‘ ‘ ‘ ‘
between malware hashes across distribution networks. 0 10 20 30 40 50 60

Number of Downloaded Executables

Figure 14: CDF of the number of downloaded executa-
Content replication across malware distribution sites.  bles as a result of visiting a malicioWwRL
We finally evaluate the extent to which malware is repli-
cated across the different distribution sites. To do SO, aAnpother noticeable outcome is the increase in the

we use the same metric in Equation 1 to calculate the,ymper of running processes on the virtual machine.
normalized pairwise intersection of the set of malwareThjs jncrease is associated with the automatic execution
hashes served by each pair of distribution sites. Our reaf pinaries. For each landingRL , we collected the
sults show that ir25% of the malware distribution sites, nymber of processes that were started on the guest op-
at least one binary is shared between a pair of siteSerating system after being infected with malware. Fig-
While malware hashes exhibit frequent changes as a rqye 15 shows the CDF of the number of processes
sult of obfuscation, our results suggest that there issstill |5,nched after the system is infected. As the graph shows
level of content replication across the different siteg- Fi visiting maliciousURLs produces a noticeable increase
ure 13 shows the normalized pair-wise intersection of thg, the number of processes, in some cases, inducing so
malware sets across these distribution networks. As thg,,ch overhead that they “crashed” the virtual machine.
graph shows, binaries are less frequently shared between Additionally, we examine the type of registry changes
distribution sites compared to landing sites, but taken a$, .t occur when the malware executes. Overall, we
a whole, there is still a non-trivial degree of similarity jotacteq registry changes after visitifg.5% of the
among these networks. landing pages. We divide these changes into the fol-
lowing categories:BHO indicates that the malware in-
7 Post Infection Impact stalled a Browser Helper Object that can access privi-
leged state in the browsePRreferencesneans that the
Recall that upon visiting a malicioudRL, the browser browser home page, default search engine or name server
downloads the initial exploit. The exploit (in most cases,where changed by the malwar8gcurityindicates that
j avascri pt) targets a vulnerability in the browser or malware changed firewall settings or even disabled au-



Protocol/Port Connections %
B HTTP (80, 8080) 87%
. IRC (6660-7001) 8.3%
| FTP (21) 0.9%
| UPNP (1900) 0.8%
i Mail (25) 0.75%
Other 2.25%

Table 5: Most frequently contacted ports directly by the
02 . downloaded malware.
0.1 -

0 | | | | | | | | | | | | | | i i ) X
I e e A E OB 7.1 Antivirus engine detection rates

Figure 15: CDF of the number of processes started afteAs we discussed earlier, web based malware ugedla
visiting a maliciousJRL baseddelivery mechanism in which a victim is required

to visit the malware hosting server or adRL linking to

it in order to download the malware. This behavior puts
tomatic software updateStartupindicates that the mal- forward a number of challenges to defense mechanisms
ware is trying to persist across reboots. Notice that thes¢e.g.,malware signature generation schemes) mainly due
categories are not mutually exclusiviee(, a single ma-  to the inadequate coverage of the malware collection sys-
licious URL may cause changes in multiple categories).tem. For example, unlike active scanning malware which
Table 4 summarizes the percentage of registry changasgses gpush-basedlelivery mechanism (and so sufficient
per category. Notice that “Startup” changes are moreplacement of honeypot sensors can provide good cover-
prevalent indicating that malware tries to persist even afage), the web is significantly more sparse and, therefore,
ter the machine is rebooted. more difficult to cover.

In what follows, we evaluate the potential implications

Category| BHO  Preferences  Security Startup f the web malware delivery mechanism by measuring

URLs % | 6.99% 23.5% 36.18%  51.27% the detection rates of several well known anti-virus en-

gines. Specifically, we evaluate the detection rate of each
anti-virus engine against the set sfispectednalware
samples collected by our infrastructure. Since we can not
In addition to the registry changes, we analyzed the'ely on anti-virus engines, we developed a heuristic to
network activity of the virtual machine post infection. In detect these suspected binaries before subjecting them to
our system, the virtual machines are allowed to perfornthe anti-virus scanners. For each inspedtil via our
only DNS and HTTP connections. Table 5 shows thein-depth verification system we test whether visiting the
percentage of connection attempts per destination port/RL caused the creation of at least one new process on
Even though we omit the HTTP connections originat- the virtual machine. For theRLs that satisfy this condi-
ing from the browser, HTTP is still the most prevalent tion, we simply extract any binatylownload(s) from the
port for malicious activity post-infection. This is due recorded HTTP response and “flag” them as suspicious.
to “downloader” binaries that fetch, in some cases, up We applied the above methodology to identify suspi-
to 60 binaries over HTTP. We also observe a significantcious binaries on a daily basis over a one month period
percentage of connection attempts to typical IRC portspf April, 2007. We subject each binary for each of the
accounting for more thas0% of all non-HTTP connec- anti-virus scanners using the latest virus definitions on
tions. As a number of earlier studies have already showthat day. Then, for an anti-virus engine, the detection
(e.g.,[6, 19, 8, 21, 22, 12]), the IRC connection attemptgate is simply the number of detected (flagged) samples
are most likely for unwillingly (to the owner) adding the divided by the total number of suspicious malware in-
compromised machine to an IRC botnet, confirming thestances inspected on that day. Figure 16 illustrates the
earlier conjecture by Proved al.[20] regarding the con- individual detection rates of each of the anti-virus en-
nection between web malware and botnets. More degines. The graph reveals that the detection capability of
tailed examples of malware’s behavior can be found inthe anti-virus engines is lacking, with an average detec-
Polychronakist al.[18]. tion rate of 70% for the best engine. These results are

Table 4: Registry changes from drive-by downloads.



disturbing as they show that even the best anti-virus en8 Discussion
gines in the market (armed with their latest definitions)

fail to cover a significant fraction of web malware. Undoubtedly, the level of malfeasance on the Internetis a
cause for concern. That said, while our work to date has

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ shown that the prevalence of web-malware is indeed a
Vo — serious threat, the analysis herein says nothing about the

AVIIE e number of visitors that become infected as a result of vis-

80 1
\/\,\/\”\/—/\/\—J"\/\' iting a malicious page. In particular, we note that since

co | i P | our goal is to survey the landscape, our infrastructure is
- A A intentionally configured to be vulnerable to a wide range
of attacks; hopefully, savvy computer users who dili-
gently apply software updates would be far less vulnera-
T T ble to infection. To be clear, while our analysis unequiv-
| ocally shows that millions of users are exposed to ma-
licious content every day, without a wide-scale browser
0 5 1‘0 1‘5 éo 25 éo 55 40 vulnerability study, the actual number of compromises
Days since April, 1st remains unknown. Nonetheless, we believe the perva-
sive nature of the results in this study elucidates the state
Figure 16: Detection rates of 3 anti-virus engines.  of the malware problem today, and hopefully, serves to
educate both users, web masters and other researchers
about the security challenges ahead.
N ) Lastly, we note that several outlets exists for taking
False Positives. Notice that the above strategy may aqvantage of the results of our infrastructure. For in-
falsely classify benign binaries as malicious. To eval-giance, the data that Google uses to flag search results
uate the false positives, we use the following heuristic:jg freely available through the Safe Browsing API [2], as
we optimistically assume that all suspicious binaries will \ye|| as via the Safe Browsing diagnostic page [3]. We

eventually be discovered by the anti-virus vendors. Ustgpe these services prove to be of benefit to the greater
ing the set of suspicious binaries collected over a mon”?:ommunity at large.

historic period, we re-scan all undetected binaries two
months later (in July, 2007) using the latest virus defini-
tions. Then, all undetected binaries from the rescannin® Related Work
step are considered false positives. Overall, our results
show that the earlier analysis is fairly accurate with falsevirtual machines have been used as honeypots for de-
positive rates of less than 10%. We further investigated aecting unknown attacks by several researchers [4, 16,
number of binaries identified as false positives and foundL.7, 25, 26]. Although, honeypots have traditionally been
that a number of popular installers exhibit a behaviorused mostly for detecting attacks against servers, the
similar to that of drive-by downloads, where the installer same principles also apply to client honeypots (e.g., an
process first runs and then downloads the associated sofiastrumented browser running on a virtual machine). For
ware package. To minimize the impact of false positives example, Moshchulet al. used client-side techniques
we created a white-list of all known benign downloads,to study spyware on the web (by crawling 18 million
and all binaries in the white-list are exempted from theURLs in May 2005 [17]). Their primary focus was not on
analysis in this paper. detecting drive-by downloads, but in finding links to ex-
Of course, we are being overly conservative here agcutables labeled spyware by an adware scanner. Addi-
our heuristic does not account for binaries that are nevetionally, they sampled5, 000 URLs for drive-by down-
detected by any anti-virus engine. However, for ourloads and showed decreaseover time. However, the
goals, this method produces an upper bound for the refundamental limitation of analyzing the malicious nature
sulting false positives. As an additional benchmark weof URLs discovered by “spidering” is that a crawl can
asked for direct feedback from anti-virus vendors aboubnly follow content links, whereas the malicious nature
the accuracy of the undetected binaries that we (nowpf a page is often determined by the web hosting infras-
share with them. On average, they reported alsétit  tructure. As such, while the study of Moshchekal.
false positives in the shared binaries, which is within theprovides valuable insights, a truly comprehensive analy-
bounds of our prediction. sis of this problem requires a much more in-depth crawl
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of the web. As we were able to analyze many billions oftions between some distribution sites and networks. A
URLs , we believe our findings are more representativemore troubling concern is the extent to which users may
of the state of the overall problem. be lured into the malware distribution networks by con-
More closely related is the work of Provesal.[20]  tent served through online Ads. For the most part, the
and Seifertet al. [24] which raised awareness of the syndication relations that implicitly exist in advertigin
threat posed by drive-by downloads. These works araietworks are being abused to deliver malware through
aimed at explaining how different web page compo-Ads. Lastly, we show that merely avoiding the dark
nents are used to exploit web browsers, and provides agorners of the Internet does not limit exposure to mal-
overview of the different exploitation techniques in useware. Unfortunately, we also find that even state-of-the-
today. Wanget al. proposed an approach for detecting art anti-virus engines are lacking in their ability to picite
exploits against Windows XP when visiting webpages inagainst drive-by downloads. While this is to be expected,
Internet Explorer [26]. Their approach is capable of de-it does call for more elaborate defense mechanisms to
tecting zero-day exploits against Windows and can de<urtail this rapidly increasing threat.
termine which vulnerability is being exploited by expos-
ing Windows systems with different patch levels to dan-
gerousURLs. Their results, on roughly7,000 URLs, ~Acknowledgments
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1Some compromised web servers also trigger dialog windows as
ing users to manually download and run malware. Howeves,ahal-
ysis considers only malware installs that require no ugeraction.
2This mapping is readily available at Google.
3We consider a version as outdated if it is older than thetiatase-
sponding version released by January, 2007 (the start dataif data
collection).

4We restrict our analysis to Windows executables identifigd b
searching for PE headers in each payload.



