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ABSTRACT
We propose SecVisor, a tiny hypervisor that ensures code integrity
for commodity OS kernels. In particular, SecVisor ensures that
only user-approved code can execute in kernel mode over the en-
tire system lifetime. This protects the kernel against code injection
attacks, such as kernel rootkits. SecVisor can achieve this prop-
erty even against an attacker who controls everything but the CPU,
the memory controller, and system memory chips. Further, SecVi-
sor can even defend against attackers with knowledge of zero-day
kernel exploits.

Our goal is to make SecVisor amenable to formal verification
and manual audit, thereby making it possible to rule out known
classes of vulnerabilities. To this end, SecVisor offers small code
size and small external interface. We rely on memory virtualization
to build SecVisor and implement two versions, one using software
memory virtualization and the other using CPU-supported mem-
ory virtualization. The code sizes of the runtime portions of these
versions are 1739 and 1112 lines, respectively. The size of the ex-
ternal interface for both versions of SecVisor is 2 hypercalls. It is
easy to port OS kernels to SecVisor. We port the Linux kernel ver-
sion 2.6.20 by adding 12 lines and deleting 81 lines, out of a total
of approximately 4.3 million lines of code in the kernel.

Categories and Subject Descriptors:Software, Operating Sys-
tems, Security and Protection, Security Kernels.

General Terms: Security.

Keywords: Hypervisor, Code Attestation, Code Integrity, Prevent-
ing Code Injection Attacks, Memory Virtualization.
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1. INTRODUCTION
Computing platforms are steadily increasing in complexity, in-

corporating an ever-growing range of hardware and supporting an
ever-growing range of applications. Consequently, the complex-
ity of OS kernels is steadily increasing. The increased complexity
of OS kernels also increases the number of security vulnerabili-
ties. The effect of these vulnerabilities is compounded by the fact
that, despite many efforts to make kernels modular, most kernels in
common use today are monolithic in their design. A compromise of
any part of a monolithic kernel could compromise the entire kernel.
Since the kernel occupies a privileged position in the software stack
of a computer system, compromising it gives the attacker complete
control of the system.

In view of the importance of the security of the kernel to the
security of a system, securing existing kernels is of critical impor-
tance. Approaches that do not mandate large-scale design changes
to existing kernels are preferable, since they will ease deployment.
SecVisor represents a first step in that direction, as it provides a
lifetime guarantee of the integrity of the code executing with ker-
nel privilege. In other words, SecVisor prevents an attacker from
either modifying existing code in a kernel or from executing in-
jected code with kernel privilege, over the lifetime of the system.
SecVisor can achieve this guarantee even in the presence of an at-
tacker who controls everything on the system except for the CPU,
memory controller, and system memory chips. SecVisor ensures
that only code approved by the user can execute with kernel privi-
lege. Users can supply their desired approval policy and SecVisor
checks all code loaded into the kernel against the users’ approval
policy. It further ensures that the approved code currently in mem-
ory cannot be modified by the attacker.

SecVisor prevents numerous attacks against current kernels. For
example, there are at least three ways in which an attacker can inject
code into a kernel. First, the attacker can misuse the modularization
support that is part of many current kernels. Modularization sup-
port allows privileged users to add code to the running kernel. An
attacker can employ a privilege escalation attack to load a module
into the kernel. Second, the attacker can locally or remotely ex-
ploit software vulnerabilities in the kernel code. For example, the
attacker can inject code by overflowing a vulnerable kernel buffer.
The NIST National Vulnerability Database shows that the Linux
Kernel and Windows XP SP2 were found to have 81 and 31 such
vulnerabilities in 2006. Third, DMA-capable peripheral devices
can corrupt kernel memory via DMA writes. A sample attack that
uses Firewire peripherals was demonstrated by Becher et al. [3].

We implement SecVisor as a tiny hypervisor that uses hardware
memory protections to ensure kernel code integrity. SecVisor vir-
tualizes the physical memory, which allows it to set hardware pro-
tections over kernel memory, that are independent of any protec-



tions set by the kernel. SecVisor uses the IO Memory Management
Unit (IOMMU) to protect approved code from Direct Memory Ac-
cess (DMA) writes. Also, SecVisor virtualizes the CPU’s Mem-
ory Management Unit (MMU) and the IOMMU. This ensures that
SecVisor can intercept and check all modifications to MMU and
IOMMU state.

We have three design goals for SecVisor: (1) small code size to
facilitate formal verification and manual audit, (2) limited exter-
nal interface to reduce the attack surface, and (3) minimal kernel
changes to facilitate porting commodity kernels. We have imple-
mented SecVisor on a system with an AMD CPU, and ported the
Linux kernel as our sample commodity kernel. To reduce the com-
plexity of SecVisor, our implementation uses CPU-based virtual-
ization (AMD’s Secure Virtual Machine (SVM) technology [1]) to
virtualize the physical memory, the MMU, and the IOMMU. Intel’s
Trusted eXecution Technology (TXT) (formerly called LaGrande
Technology (LT)) [10] provides facilities similar to SVM. Using
CPU-based virtualization support does not limit the deployment of
SecVisor since such support is now widely available on both Intel
and AMD CPUs. We use the Device Exclusion Vector (DEV) pro-
tections [1] of the SVM technology to protect kernel memory from
DMA-writes by peripherals.

The rest of this paper is organized as follows. The next sec-
tion discusses our assumptions and adversary model. Section 3
describes the design of SecVisor by stating the security properties
required and describing how those properties can be achieved. Sec-
tion 4 gives a brief background of the x86 architecture and SVM
technology. Section 5 describes how we realize SecVisor using
AMD’s SVM technology. We show how we port the Linux kernel
to SecVisor in Section 6 and present our evaluation of SecVisor in
Section 7. Section 8 discusses the limitations and future implemen-
tation directions of SecVisor. Section 9 discusses related work and
Section 10 concludes.

2. ASSUMPTIONS AND THREAT MODEL
In this section we state our assumptions and describe our threat

model.

2.1 Assumptions
We assume that the CPU of the system on which SecVisor runs

provides support for virtualization similar to AMD’s SVM technol-
ogy or Intel’s Trusted eXecution Technology(TXT) [1, 10]. Also,
we assume that the system has a single CPU and that the kernel pro-
tected by SecVisor does not use self-modifying code. In Section 8
we discuss how these two assumptions could be relaxed. On the
x86 architecture, we assume that the kernel that executes in 32-bit
mode. We also assume that SecVisor does not have any vulnerabil-
ities. Given that the code size of SecVisor and its external interface
are small, it could be possible to formally verify or manually audit
SecVisor to rule out known classes of vulnerabilities.

2.2 Threat Model
We consider an attacker who controls everything in the system

but the CPU, the memory controller, and system memory chips.
This trusted computing base (TCB) is minimal for thevon Neu-
mann architecture (also called astored-program computer) [23],
which is the architecture used by most computing devices today.
Examples attacks are: arbitrary modification of all memory con-
tents, injection of malicious code into the system firmware (also
called the BIOS on x86 systems), malicious DMA writes to mem-
ory using peripherals, and the use of malicious peripherals con-
nected to the system. Also, the attacker might be aware of zero-day
vulnerabilities in the kernel and application software on the sys-

tem. The attacker may attempt to use these vulnerabilities to lo-
cally or remotely exploit the system. For the x86 architecture, we
assume that the System Management Mode (SMM) [1] handler is
not compromised by the attacker. In Section 8 we describe how this
requirement can be relaxed.

3. SecVisor DESIGN
In this section, we discuss the design of SecVisor. We start off

by describing the challenges involved. Then, we state the proper-
ties that need to be achieved in order to guarantee that only user-
approved code can execute in kernel mode. Finally, we describe
how SecVisor uses hardware memory protections combined with
controlled entries and exits from kernel mode to achieve the re-
quired properties. This section presents the conceptual design of
SecVisor that is independent of any CPU architecture or OS kernel.
In Section 5 we describe how we realize an implementation of this
conceptual design on the x86 architecture.

3.1 Challenges
We now discuss the challenges we face in designing anenforce-

ment agent that enforces the guarantee of kernel code integrity over
the lifetime of the system, under the assumption that our TCB con-
sists of the CPU, the memory controller, and the system memory
chips. The very first question we face is: where in the software
stack of the system should the enforcement agent execute? The en-
forcement agent needs to be isolated from the kernel so that it can
guarantee kernel code integrity even in the face of attacks against
the kernel. Based on our TCB assumption, we can only rely on
CPU-based protections to provide this isolation. CPU-based pro-
tections are based on the notion of privilege whereby more priv-
ileged software can modify both its own protections and those of
less privileged software. Therefore, the enforcement agent must
execute at a higher CPU privilege level than that of the kernel. We
now describe how we design and build such an enforcement agent
as a tiny hypervisor called SecVisor. SecVisor uses the virtualiza-
tion features built into commodity CPUs to execute at the privilege
level of a Virtual Machine Monitor (VMM).

The next issue that arises is: how to ensure the integrity of kernel
code? SecVisor addresses this issue by ensuring that, when execut-
ing at the privilege level of the kernel (hereafter called thekernel
mode), the CPU refuses to execute any code that is not approved by
the user. In the interest of simplicity, henceforth, we will refer to
SecVisor as approving the kernel code, with the understanding that
SecVisor uses the user supplied policy for code approval. SecVisor
does not prevent code from getting added to the kernel; only that
the CPU will refuse to execute unapproved code. For example, the
attacker could exploit a kernel-level buffer overflow vulnerability
to inject code into the kernel’s data segment. But the CPU will not
execute the injected code since it is not approved by SecVisor. An
additional requirement is that SecVisor approved code should not
be modifiable by any entity on the system other than those in SecVi-
sor’s TCB and SecVisor. In order to implement these requirements,
SecVisor needs to inform the CPU which code is approved for ex-
ecution in kernel mode and also protect the approved code from
modification. The CPU-based protections provide a natural way to
address these. SecVisor sets the CPU-based protections over ker-
nel memory to ensure that only code approved by it is executable
in kernel mode and that the approved code can only be modified by
SecVisor or its TCB.

All CPUs support at least one other privilege level (other than the
kernel mode and VMM privilege level), calleduser mode, at which
user programs execute. Given that a CPU will switch between user
and kernel mode execution via control transfers, SecVisor needs to



prevent the attacker from modifying the expected control flow of
these control transfers to execute arbitrary code with kernel priv-
ilege. This requires two checks. First, SecVisor needs to ensure
that the targets of all control transfers that switch the CPU to kernel
mode lie within approved code. Without this, the attacker could
execute arbitrary code with kernel privilege by modifying the tar-
gets of control transfers that enter kernel mode. Second, the control
transfers that exit kernel mode to enter user mode must modify the
privilege level of the CPU to that of user mode. Otherwise, the
attacker could execute user programs with kernel privilege.

3.2 Required Properties for Approved Code
Execution

We start designing SecVisor by casting the requirements into
properties. Our first requirement is that the CPU only execute
SecVisor approved code in kernel mode. Given that the CPU enters
kernel mode from user mode, performs some processing in kernel
mode, and exits kernel mode to return to user mode, SecVisor must
provide the following three properties:

• P1: Every entry into kernel mode (where an entry into kernel
mode occurs at the instant the privilege of the CPU changes
to kernel mode) should set the CPU’s Instruction Pointer (IP)
to an instruction within approved kernel code.

• P2: After an entry into kernel mode places the IP within ap-
proved code, the IP should continue to point to approved ker-
nel code until the CPU exits kernel mode.

• P3: Every exit from kernel mode (where we define an exit
from kernel mode as a control transfer that sets the IP to an
address in user memory) should set the privilege level of the
CPU to user mode.

Our second requirement is that the approved code should only be
modifiable by SecVisor and its TCB. Assuming that main memory
can only be modified by code executing on the CPU or through
Direct Memory Access (DMA) writes by peripheral devices, this
requirement can be stated as:

• P4: Memory containing approved code should not be modi-
fiable by any code executing on the CPU, but SecVisor, or by
any peripheral device.

SecVisor uses hardware memory protections to achieve P2 and
P4, as we describe next. Section 3.4 discusses how we achieve P1
by ensuring whenever the CPU enters to kernel mode it will start
executing approved code, and P3 by intercepting and checking all
kernel exits.

3.3 Using Hardware Memory Protections
The Memory Management Unit (MMU) and the IO Memory

Management Unit (IOMMU) of the CPU enforce hardware mem-
ory protections. Then SecVisor must control all modifications to
the MMU and IOMMU state. Since SecVisor executes at the priv-
ilege level of a VMM, it can virtualize the MMU and IOMMU.
This enables SecVisor to intercept and check all modifications to
the MMU and IOMMU state.

SecVisor uses page tables as the basis of its hardware memory
protections. We choose page tables, rather than other MMU-based
protection schemes, such as segmentation, because page tables are
supported by a large number of CPU architectures. Using page
tables requires SecVisor to protect the page tables from being mod-
ified by any entity but SecVisor and its TCB. There are two ways
to achieve this. One, SecVisor can keep the page tables in its own

address space and allow the kernel to read and modify them only
via “safe” function calls. Two, SecVisor could virtualize physi-
cal memory. Virtualizing physical memory causes the addresses
sent on the memory bus to be different from the physical addresses
seen by the kernel. Hence, SecVisor must maintain page tables that
translate the kernel’s physical addresses to the physical addresses
seen on the memory bus. These page tables could be kept in SecVi-
sor’s address space since the kernel is unaware of the virtualization
of physical memory.

The choice of which of the above two methods to use illustrates
the classic trade-off between performance on one hand and secu-
rity and portability on the other. Using a function call interface
is likely to be fast since there is no overhead of synchronizing the
page tables maintained by SecVisor with the kernel’s page tables
(there is only one set of page tables). However, it increases the size
of SecVisor’s kernel interface which increases the security risk. It
also requires modifications to the kernel’s page table handling code
which increases the amount of effort required to port a new kernel
to SecVisor. On the other hand, virtualizing physical memory is
likely to be slower due to the synchronization overhead. But it is
certainly better for security and ease of portability of the kernel.
Since our focus in this paper is on security and ease of portability
we choose to virtualize physical memory. Henceforth, we will call
the page table used by SecVisor to virtualize physical memory the
Protection Page Table.

Shared address space configuration. In using the Protection
Page Table to set protections over kernel memory, SecVisor has
to consider how the kernel and user memories are mapped into ad-
dress spaces. In most commodity OSes today, the kernel and user
memories share the same address space. Such a shared address
space configuration could enable an attacker to modify the control
flow of the kernel to execute user code with kernel privilege. For
example, the attacker could exploit a buffer overflow vulnerability
and modify a return address stored on the kernel’s stack to point to
user code. To prevent these kinds of attacks, and thereby achieve
property P2, SecVisor sets the Protection Page Table so that user
memory is not executable when the CPU executes in kernel mode.
On the other hand, it is clear that user memory has to be executable
when the CPU is in user mode. Then, SecVisor has to intercept
all transitions between kernel and user mode to modify the user
memory execute permissions in the Protection Page Table. SecVi-
sor uses the execute permissions themselves to intercept these tran-
sitions. It sets execute permissions in the Protection Page Table
only for the memory of the mode that is currently executing. Then,
all inter-mode transitions cause protection violations, which inform
SecVisor of an attempted mode change via a CPU exception. Fig-
ure 1 illustrates how SecVisor manages memory permissions.

Given that SecVisor switches execute permissions on kernel en-
try and exit, a natural question arises: how are the execute permis-
sions set initially? At system start-up, the kernel executes before
user programs. Therefore, the SecVisor initializes the Protection
Page Table so that only the approved kernel code is executable.

W ⊕ X protections. On each entry to kernel mode, SecVisor sets
execute permissions in the Protection Page Table so that only ap-
proved code will be executable. Then, the CPU will generate an
exception on every attempt to execute unapproved code in kernel
mode. When SecVisor receives such an exception, it terminates the
kernel. SecVisor also marks the approved code pages read-only in
the Protection Page Table. This prevents any code executing on
the CPU (except SecVisor) from modifying approved code pages,
thereby satisfying part of property P4. From Figure 1 it can be
seen that, in kernel mode, the pages of kernel memory will be ei-
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Figure 1: Memory protections in the Protection Page Table for
user and kernel modes. R, W, and X stand for read, write, and
execute permissions, respectively. In case the kernel’s permis-
sions differ from those in the Protection Page Table, the actual
permissions will be the more restrictive of the two. For exam-
ple, it is likely that the kernel will mark its data segment to be
read-only in user mode. Then, in user mode, the actual permis-
sions over the kernel data segment would be R instead of the
RW shown in the figure.
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Figure 2: System-level overview of memory protections used
by SecVisor. MC is the memory controller, D1 and D2 are pe-
ripheral devices. The MMU enforces memory protections for
accesses from the CPU while the IOMMU enforces DMA write
protections.

ther writable or executable, but never both. This type of memory
protection is generally referred to asW ⊕ X protection.

DMA write protections. SecVisor uses the DMA write protection
functionality of the IOMMU to protect approved code pages from
being modified by DMA writes. These protections along with the
read-only protections set in the Protection Page Table ensure that
property P4 is satisfied. Figure 2 shows a system-level overview of
the two hardware memory protections used by SecVisor.

3.4 Managing Kernel Entries and Exits
We now discuss how SecVisor ensures that kernel mode entries

and exits satisfy properties P1 and P3.

Kernel mode entries. SecVisor ensures that all control transfers
through which the CPU enters kernel mode will set the IP to an
address within the approved code. This requires SecVisor to know
the target of every possible control transfer through which the CPU
can enter kernel mode. The key observation that allows us to find
the target of every possible control transfer to kernel mode is that

CPUs only allow kernel mode entries to transfer control to entry
points designated by the kernel. This prevents user programs from
triggering arbitrary control flows in kernel code by entering at ar-
bitrary points. The kernel informs the CPU of the permitted en-
try points by writing the addresses of such entry points (hereafter
called theentry pointers) in CPU registers and data structures like
the interrupt vector table (IVT). Then, SecVisor only has to ensure
that all entry pointers point to instructions within approved code to
achieve property P1.

To find all the entry pointers, we need to identify all the CPU data
structures that can contain entry pointers. By design, every CPU
architecture has a set of control transfer events that trigger CPU
execution privilege changes. Each control transfer event has an
associated entry pointer in some CPU data structure. Therefore, our
strategy to find all the entry pointers is to first create the exhaustive
entry list of all control transfer events that can transfer control to
kernel mode. The entry list can be created from the architectural
specification of the CPU. Next, for each event in the entry list we
find the CPU data structure which holds its entry pointer. In this
manner, we obtain the list of all the CPU data structures which can
hold the entry pointers.

SecVisor virtualizes the entry pointers and only permits the ker-
nel to operate on the virtualized copies. This allows SecVisor to
intercept and check all modifications to the entry pointers. The
virtualization can be performed in two ways. First, SecVisor can
provide the kernel with “safe” function calls through which the
kernel can read and modify the entry pointers. Second, SecVisor
can maintainshadow copies of the entry pointers for use by the
CPU, and keep the shadow copies synchronized with the kernel’s
entry pointers. As with virtualizing physical memory, the choice
between these two alternatives is a trade-off of performance versus
security and portability. We prefer the shadowing method because
it reduces the size of SecVisor’s kernel interface and also reduces
the number of changes required to port a kernel to SecVisor.

Kernel mode exits. All legitimate methods that exit kernel mode
will transfer control to code in user memory. If on each entry to ker-
nel mode the CPU will start executing approved code, i.e., property
P1 is satisfied, it is fairly direct to ensure that exits from kernel
mode will set the CPU privilege to user mode (property P3).

Recall from Figure 1 that SecVisor marks kernel memory non-
executable in user mode. If property P1 is satisfied, all kernel mode
entries will try to execute approved code, which is part of kernel
memory. This will cause the CPU to generate an exception. As
part of handling this exception, SecVisor marks all user memory
non-executable. Thus, any exit to user mode will cause a protec-
tion violation, generating a CPU exception. As part of handling
this exception, SecVisor sets the privilege level of the CPU to user
mode.

4. BACKGROUND
Before we present the details of SecVisor’s implementation, we

present some background on the features of x86 necessary to under-
stand the implementation. We describe the x86 memory protection
mechanisms followed by the different control transfer events that
can be used to enter and exit kernel mode. Finally, we describe the
Secure Virtual Machine (SVM) extensions, which are present in re-
cent AMD x86 CPUs. Readers who are familiar with this material
may wish to skip directly to Section 5.

4.1 Overview of x86 Memory Protections
This section gives a brief overview of the two memory protection

mechanisms of the x86 CPU: segmentation and paging.



In 32-bit mode, segment-based protections are based on four
privilege levels called rings. Ring 0 is the most privileged while
Ring 3 is the least privileged. The current execution privilege level
of the CPU is stored in the (architecturally-invisible) CPL register.
Segment-based protections divide up the memory into variable size
regions called segments. Each segment of memory has a descriptor
associated with it. This descriptor contains various attributes of the
segment such as the segment base address, the segment size, and
the segment access permissions. The descriptors are stored in two
tables called the Global Descriptor Table (GDT) and the Local De-
scriptor Table (LDT). The CPU has two registers called thegdtr

andldtr that contain the addresses of the GDT and LDT, respec-
tively.1 Software can refer to descriptors in the GDT and LDT by
storing their indices in the CPU’ssegment registers. There are six
segment registers:cs, ds, es, fs, gs, andss. Of these the
cs segment register holds the index of the descriptor of the code
segment that the CPU is currently executing from. Theds, es,

fs, andgs segment registers hold indices of descriptors of data
segments while thess segment register holds the index of the stack
segment’s descriptor.

Page-based protections divide the virtual address space of the
CPU into pages of fixed size. Page table entries describe the ac-
cess permissions of each page. Per-page execute permissions are
supported by the CPU only when the Physical Address Extensions
(PAE) paging mode is used. The CPU has a set of registers called
the Control Registers which allow software to control various as-
pects of the MMU. In particular, the control registercr0 has two
bits calledpe andpg that allow software to turn memory protec-
tions on/off, and turn paging on/off, respectively.cr0 also has the
wp bit that controls whether the CPU enforces read/write permis-
sions in both user and kernel mode or only in user mode. When
wp bit is cleared, read/write permissions are enforced only in user
mode. Setting this bit, causes the CPU to enforce read/write per-
missions in both user and kernel modes. The control registercr3

holds the physical address of the page tables, whilecr4 has thepae
bit which turns the PAE mode on/off.

4.2 Control Transfer Events on the x86
We now give an overview of the control transfer events on the

x86 platform that perform inter-ring switches. We also mention the
CPU registers and data structures that hold the corresponding entry
pointers.

An x86 CPU assumes that control transfers between rings always
originate at a ring of lower privilege. In other words, a lower priv-
ilege ringcalls a higher privilege ring, whichreturns to the lower
privilege ring. Then, on the x86 architecture, theexit list of events
that can cause the CPU to exit kernel mode contains thereturn fam-
ily of instructions:ret, iret, sysexit, andsysret [2].

The entry list consists of the hardware interrupts and the excep-
tions, and the instructions in thecall family: jmp, call, sysen-

ter, int (software interrupt), andsyscall [2]. The entry point-
ers for hardware interrupts and exceptions, and software interrupts
are located in the interrupt descriptor table (IDT). The CPU has a
register called theidtr which holds the address of the IDT. We
now briefly describe the remaining instructions in the entry list: the
jmp, call, sysenter, andsyscall.

jmp and call. The entry pointers for thejmp and thecall in-
structions exist in the GDT and the LDT. The x86 architecture does
not allow thecall andjmp instructions to directly specify a higher

1This is a slight simplification. Theldtr actually stores the selec-
tor of the LDT descriptor in the GDT. The LDT descriptor in the
GDT contains the LDT’s base address.
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Figure 3: A VMM and one guest VM executing on a CPU with
SVM extensions. Both the VMM and the guest VM have ac-
cess to all four x86 CPU privilege levels. Within the guest VM,
the OS executes at the highest CPU privilege level, while user
applications execute at the lowest CPU privilege level.

privilege code segment as the target. Instead, these instructions
must use one of three data structures, thecall gate, thetask gate, or
the task descriptor, as their target. The kernel is expected to set up
these data structures with the addresses of acceptable entry points.
The CPU then ensures that thejmp and thecall instructions will
transfer control only to entry points permitted by the kernel. The
task gates and the call gates can reside in the GDT or the LDT. Task
descriptors can only reside in the GDT.

sysenter and syscall.Sysenter andsyscall are special instruc-
tions that decrease the latency of system calls. The entry pointers
for thesysenter and thesyscall instructions are in CPU regis-
ters called the model specific registers (MSR).

The sysenter instruction uses the MSRsmsr_sysenter_cs
andmsr_sysenter_eip for its entry pointer. When a user mode
program executes thesysenter instruction, the CPU loads the
cs segment register and the IP from themsr_sysenter_cs and
msr_sysenter_eip respectively. Thesyscall instruction was
recently introduced as replacement forsysenter. The use of this
instruction is enabled by setting theefer.sce bit of the MSR
efer. It uses themsr_star for its entry pointer. On the execu-
tion of thesyscall instruction, the CPU loadscs and the IP with
bits 47-32 and bits 31-0 of thestar respectively.

4.3 Overview of AMD’s SVM extensions
AMD provides CPU-based virtualization support via the SVM

extensions. SVM separates the CPU execution into two modes
called guest mode and host mode. The VMM (also referred to as
host) executes in host mode while all the virtual machines (VM)
(also referred to as guests) execute in guest mode. The host and
guest modes have separate address spaces. Software executing in
both modes can execute in any of the four privilege levels. For
example, under SVM, it is possible for both the guest OS and the
VMM to execute at the highest CPU privilege level. Figure 3 shows
one possible execution configuration of the host and guest modes
when using SVM extensions.

Each guest has a data structure called the Virtual Machine Con-
trol Block (VMCB) associated with it, which contains the execu-
tion state of the guest. The value of the CPL register is a part of
this execution state. To execute a guest, the VMM calls thevmrun

instruction with the VMCB as the argument. The CPU then loads
the execution state of the guest from the VMCB and begins execut-
ing the guest. Once started, the CPU continues to execute the guest
until an event that has been intercepted by the VMM occurs. On
hitting an intercept, the CPU suspends the execution of the guest,
stores the guest’s execution state in the VMCB, and exits to the
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Figure 4: Operation of the nested page tables. VA is the virtual
address space, PT are the guest kernel’s page tables, GPA is the
guest’s physical address space, NPT are the nested page tables,
and SPA is the system physical address space.

host. The host then executes until it resumes a guest usingvmrun.

Intercepts. Intercepts allow the host to intercept various CPU
events that occur during the execution of the guest. The host indi-
cates which events in the guest it wants to intercept by setting bits
in the VMCB. Through intercepts, the host executes at a higher
CPU privilege than the guests because it can control what opera-
tions the guests are allowed to perform. SVM defines four kinds
of intercepts: instruction intercepts, interrupt and exception inter-
cepts, IO intercepts, and MSR intercepts. Instruction intercepts al-
low the host to intercept the execution of various instructions. Inter-
rupts and exceptions delivered to the guest are intercepted by means
of the interrupt and exception intercepts. SVM has a mechanism
calledevent injection that allows the host to pass the intercepted
interrupts and exceptions to the guest. IO intercepts are used by
the host to intercept reads and writes of x86 IO ports by the guest.
Finally, the MSR intercepts allow the host to intercept guest reads
and writes to MSRs.

Device Exclusion Vectors (DEV). SVM provides support for a
limited IOMMU by modifying the memory controller to add DMA
read and write protection support for physical memory on a per
page basis. This protection is enabled through the use of Device
Exclusion Vectors (DEV), which are bit vectors with one bit for
each 4 Kbyte physical page. If the bit corresponding to a physical
page is set, the memory controller disallows any DMA reads from
or DMA writes to that page.

The DEV mechanism is controlled through a set of configura-
tion registers which are mapped to the Peripheral Component In-
terconnect (PCI) Configuration Space. Software can read and write
registers in the PCI Configuration Space using two I/O ports called
the Configuration Address Port and the Configuration Data Port.
Software writes the address of the register it wants to access to the
Configuration Address Port and reads or writes the register by read-
ing or writing the Configuration Data Port.

Nested page tables (NPT).Since the host virtualizes physical
memory, the physical addresses used by a guest could be differ-
ent from the physical addresses that are sent on the memory bus.
Therefore, the host needs to translate the guest’s physical addresses
to the physical addresses sent on the memory bus (hereafter called
the system physical addresses). SVM provides nested page tables
(NPT) for this purpose. That is, the NPT provide CPU-supported
physical memory virtualization. The NPT is maintained by the
host; the guest kernel maintains its own page tables to translate vir-
tual addresses to guest physical addresses. This two step translation
from virtual to system physical addresses is illustrated in Figure 4.
Note that the NPT is used only when the CPU is executing in guest
mode. When executing in host mode, the CPU will use the page
tables of the host since physical memory is not virtualized in host
mode.

Accesses to physical memory pages are subjected to permission
checks in both the NPT and guest kernel page tables. In particular,

a page is writable only if it is marked writable both in the kernel
page table and in the NPT. Similarly, the contents of a page are
executable only if the page is marked executable in both the kernel
page table and in the NPT. The CPU generates a Nested Page Fault
exception and exits to the host on any NPT protection violation.

The NPT mechanism also provides separate copies of the all con-
trol registers for the host and the guest. Thenested_cr3 register
contains the pointer to the NPT. The guest control registers control
the MMU configuration for address translation between virtual and
guest physical addresses and the host control registers control guest
physical to system physical address translation.

ASID support. SVM adds Address Space Identifier (ASID) bits
to the Translation Lookaside Buffer (TLB) entries in order to allow
the CPU to distinguish between the TLB entries of the different
address spaces (the host and guests) that can co-exist due to virtu-
alization. Tagging the TLB entries with the ASID eliminates the
need to flush the TLB when switching address spaces.

Late launch. Late launch is a capability of SVM that allows the
CPU to execute an arbitrary piece of code in isolation from all en-
tities on the system, but the CPU, the memory controller, and the
memory chips. A late launch can be invoked at any time during
the operation of the system. If the system has a Trusted Platform
Module (TPM) chip, late launch also allows an external verifier to
verify that the correct code was invoked for execution.

5. IMPLEMENTATION USING AMD SVM
In this section, we discuss how we realize the SecVisor design

described in Section 3 on a system that has an AMD CPU with
SVM extensions. We first describe how SecVisor protects its own
memory. Then we discuss physical memory virtualization in SecVi-
sor, followed by the protection of the DEV mechanism virtualiza-
tion. Finally, we describe how SecVisor handles kernel entry and
exit. An important thing to remember while reading this section is
that SecVisor is a hypervisor (and not a VMM) and supports only
one guest (hence the reference tothe kernel in what follows).

5.1 Allocating and Protecting SecVisor
Memory

SecVisor executes in SVM host mode while the kernel and ap-
plications execute in guest mode. Thereby SecVisor executes at a
higher CPU privilege level than the kernel. It intercepts events in
the kernel and applications to virtualize the MMU, the IOMMU,
and physical memory.

Using the host mode gives SecVisor its own address space, which
simplifies protection of SecVisor’s memory. SecVisor ensures that
its physical memory pages are never mapped into the Protection
Page Table. Since the Protection Page Table is maintained by SecVi-
sor it is simple to check that the above condition holds. Also,
SecVisor uses the DEV mechanism to protect its physical pages
against DMA writes by devices.

The question of which physical pages SecVisor should allocate
for its own use requires consideration. The main issue here is that
of handling DMA correctly. In a system with SecVisor, all DMA
transfers set up by the kernel use guest physical addresses to spec-
ify the source and destination. Since SecVisor virtualizes physical
memory, the guest physical addresses can be different from the sys-
tem physical addresses. Therefore, guest physical addresses of the
DMA transfers need to be translated to system physical addresses
for DMA transfers to work correctly. The ideal solution to this
problem is to use an IOMMU that will translate the guest physical
addresses used by a device during DMA to system physical ad-
dresses. SecVisor only needs to ensure that the IOMMU uses the



correct Protection Page Table. However, SVM currently does not
provide such an IOMMU facility. In the absence of hardware sup-
port, SecVisor could intercept all DMA transfer setup performed by
the kernel in order to translate between guest and system physical
addresses. However, intercepting DMA transfer setup is not sim-
ple. It depends heavily on the design of the kernel as it requires the
kernel to call SecVisor as part of each DMA transfer setup. Hence
we prefer not to use this method, given our desire to reduce the size
of SecVisor’s kernel interface and minimize the changes required
to port the kernel.

Instead, SecVisor circumvents the whole issue of translating ad-
dresses for DMA by making sure that the guest to system physical
address mapping is an identity map. To achieve the identity map-
ping, SecVisor allocates its physical memory starting from the top
of the installed RAM.2 The kernel uses all memory from address
zero to the start of SecVisor’s physical memory. SecVisor informs
the kernel of the reduction in physical memory available by passing
a command line parameter at kernel boot.

5.2 Virtualizing the MMU and Memory
We now discuss how SecVisor virtualizes the physical memory

to set page-table-based memory protections. The details depend
on whether we use a software or a hardware method to virtualize
physical memory. The software virtualization uses shadow page
tables (SPT) as the Protection Page Table, and the hardware virtu-
alization uses the SVM NPT. Even though the NPT offers better
performance, we also implement SPT support in SecVisor because
current x86 CPUs from AMD do not have support NPT. According
to AMD, suitable CPUs should be available in Fall 2007.

Hardware memory virtualization. SVM’s nested paging facil-
ity provides a second set of page tables (the NPT) that translate
guest physical addresses to system physical addresses (Figure 4).
The NPT is very well suited for setting page-table-based protec-
tions both from a performance and security perspective due to two
reasons.

First of all, the design of SVM ensures that access permissions
of a physical page are the more restrictive of those in the kernel’s
page tables and the NPT. Therefore, SecVisor uses the NPT to
set its memory protections, without any reference to the kernel’s
page tables. It is easy for SecVisor to isolate the NPT from ac-
cesses by the guest since the existence of the NPT is transparent to
the guest. SecVisor isolates the NPT by allocating physical pages
from its own memory for the NPT. Since SecVisor’s physical pages
are never accessible to the guest and they are protected against
DMA writes, the NPT is inaccessible to everything but SecVisor
and SecVisor’s TCB.

Secondly, the nested paging facility eliminates the need for SecVi-
sor to intercept kernel writes to the MMU state. It provides the
guest and host with their own copies of the Control Registers, which
control MMU state. Since SecVisor only uses the NPT to set its
protections, it can allow the kernel (guest) to freely modify the
guest control registers. Put another way, with nested paging, SecVi-
sor can virtualize the MMU without intercepting kernel writes to
the control registers. Also, since the contents of the NPT are com-
pletely independent from those of the kernel’s page tables there is
no need for SecVisor to update the NPT when the kernel makes
changes to the kernel’s page tables. Clearly, both of these factors
result in better performance and decrease the code size of SecVisor.

The only drawback of using the NPT is that the kernel needs to

2The addresses at the very top of RAM are used by the ACPI code.
SecVisor allocates its space starting from just below the ACPI re-
gion.
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Figure 5: NPT based memory protections for user and kernel
modes. R, W, and X stand for read, write, and execute permis-
sions, respectively.

pass guest physical addresses rather than virtual addresses in its re-
quests to SecVisor to change memory permissions. However, this
requirement for address translation is unlikely to be a performance
bottleneck since this is not a frequent event (modification of mem-
ory permissions only needs to be done when kernel modules are
loaded or unloaded). Also, passing guest physical addresses does
not require any modifications to the Linux kernel since it already
has functions to translate between virtual and physical addresses.

As mentioned in Section 3.3, there are two tasks that SecVisor
accomplishes via page-table-based protections. One, it sets W⊕

X protections over kernel memory when executing in kernel mode.
Two, it modifies the execute permissions of user and kernel mem-
ory depending on whether the CPU executes in kernel or user mode.
Both tasks are easily accomplished using the NPT.

To set the W⊕ X protections, SecVisor maintains a list of guest
physical pages that contain approved code. The kernel can request
modifications to this list. Any requests to add new entries in the
list must be approved by the user-supplied approval policy. When
executing in kernel mode, SecVisor clears the no-execute (NX) per-
mission bit only for the NPT entries of guest physical pages in the
list (Figure 5).

Modifying execute permissions over user and kernel memory re-
quires SecVisor to know which guest physical pages contain the
kernel’s data segment and which are user pages. SecVisor could
maintain a list of guest physical pages that belong to the kernel’s
data segment similar to that for the kernel code. However, adopt-
ing this design is likely to degrade performance since the pages
frequently move between the kernel data segment and user space.
Therefore, we adopt a different design.

When the CPU executes in user mode, SecVisor marks all guest
physical pages except those containing approved code executable
in the NPT. Note that this does not open an avenue for attacks that
could execute kernel data segments in kernel mode since property
P1 guarantees that all control transfers to kernel mode will set the IP
to an address within approved code, and SecVisor satisfies property
P1 using a different mechanism than the NPT (by ensuring that the
entry pointers all point to approved code). Note that SecVisor still
makes the approved kernel code non-executable during user mode
execution so that all transitions from user mode to kernel mode can
be easily intercepted via nested page faults.

To keep the size of the NPT handling code small and to reduce
the latency of switches between user and kernel mode, SecVisor
maintains two NPTs, one for address translations during user mode
execution and the other for address translations during kernel mode



execution. These two NPTs set different permissions on user and
kernel memory as Figure 5 shows. The synchronization costs of
maintaining two NPTs are not high since the NPTs need to be mod-
ified only when kernel code is changed.

On each transition from user mode to kernel mode or vice versa,
SecVisor changes thenested_cr3 field in the VMCB to point to
the NPT of the mode that is going to execute next. In order to avoid
flushing the TLB as part of these transitions, SecVisor associates
the two NPTs with different ASIDs. The drawback of doing this
is increased data TLB pressure due to the fact that the translation
for the same virtual address could exist in the data TLB under two
different ASIDs. The instruction TLB does not suffer from this
problem since user mode will never execute kernel code and vice
versa. We use different ASIDs for the two NPTs under the assump-
tion that the performance benefits of not having to flush the TLB on
every transition between user and kernel modes should be greater
than the performance degradation due to the increased data TLB
pressure.

Software memory virtualization. We now describe SecVisor’s
software memory virtualization technique based on shadow page
tables (SPT). A SPT virtualizes memory by maintaining the map-
ping between virtual and system physical addresses. Therefore, the
SPT needs to be kept synchronized with the kernel’s page tables,
which translate virtual addresses to guest physical addresses. Using
an SPT-based approach incurs both a code size increase and perfor-
mance penalty compared to a NPT-based implementation, mainly
due to this synchronization requirement.

The SPT implementation in SecVisor uses a single SPT for both
user and kernel mode execution. As with the NPT, SecVisor pro-
tects the SPT by allocating physical pages for it from SecVisor’s
memory. SecVisor also keeps the SPT synchronized with the cur-
rent kernel page table. Having a single SPT increases the cost of
transitions between the user and kernel modes since execute per-
missions over user and kernel mode have to be modified on each
transition. In spite of this, we do not use an SPT each for user and
kernel mode due to fact that SPTs need to modified far more fre-
quently than NPTs. Unlike the NPTs which only need to modified
on changes to kernel code, the SPT needs to modified whenever the
kernel makes modifications to its current page table (for example,
on a page fault) or when it makes another page table current (as
part of a context switch). Having to synchronize two SPTs with
the kernel’s page table would double the number of memory writes
needed for the frequently used SPT synchronization operation.

Like the NPT, SecVisor performs two operations on the SPT:
sets W⊕ X protections over kernel memory and modifies execute
permissions over user and kernel memory on each mode transition.
Figure 6 shows how SecVisor sets protections in the SPT for user
and kernel mode execution. One point to note is that when SecVisor
uses shadow paging, the SPT are the only page tables used by the
CPU. Therefore, (unlike the NPT) the permissions that SecVisor
sets in the SPT must be the more restrictive of its own permissions
and those of the kernel.

SecVisor needs to modify execute permissions of user and kernel
memory so that all mode transitions cause page faults. To minimize
the overhead of modifying the execute permissions on each transi-
tion between user and kernel modes, SecVisor uses the NX bits in
the page table entries in the second level of the page table hierarchy
(the first level entries do not have NX bits). This optimization al-
lows SecVisor to switch execute permissions by changing the NX
bits in only the 4 second level page tables. Since each page table
is 4 Kbytes in size the maximum amount of data accessed by this
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Figure 6: SPT based memory protections for user and kernel
modes. R, W, and X stand for read, write, and execute permis-
sions, respectively. NA stands for Not Accessible. The permis-
sions shown correspond to the more restrictive of those set by
the kernel and by SecVisor.

operation will be 16 Kbytes.3

Figure 7 shows the different guest operations that SecVisor needs
to intercept in order to synchronize the SPT with the kernel’s page
tables. Thecr3 register holds the pointer to the page tables. There-
fore, the kernel will write tocr3 when it wants to use a new page
table. SecVisor intercepts this write and copies the new kernel page
table into the SPT. Theinvlpg instruction is used to invalidate a
single TLB entry. When the kernel modifies an existing page table
entry it must invalidate the corresponding TLB entry. Intercepting
the execution ofinvlpg enables SecVisor to synchronize the SPT
with modified kernel page table entry. Finally, when the kernel cre-
ates a new entry in its page tables, and attempts to use it, it will
cause a page fault since the corresponding entry will not exist in
the SPT. SecVisor uses suchshadow page faults to synchronize the
SPT by copying the newly created kernel page table entry.

The current SPT synchronization code of SecVisor uses a very
simple design that trades off performance for security and ease of
porting a kernel. For example, the synchronization code does not
try to aggressively batch the synchronization of the SPT in order to
amortize synchronization costs. On the other hand, we do not need
to make any modifications to the kernel’s page table handling code.

During SPT synchronization, SecVisor copies the kernel page ta-
ble entries into the SPT. The kernel page table entries can be mod-
ified by the attacker. The attacker’s modifications must not prop-
agate to the SPT fields that enforce approved kernel mode code
execution. To ensure this, SecVisor never copies the read/write,
and execute permission bits from the kernel page table during SPT
synchronization. Additionally, it performs to checks on the address
fields of the kernel page table entries.

First, SecVisor checks for and prevents virtual address aliasing
of approved code physical pages. If this check is not performed,
the attacker could modify the contents of approved code pages us-
ing the following attack. The attacker could create, in the kernel
page table, a writable virtual alias to a physical page containing
approved code. SecVisor’s SPT synchronization code, without an
aliasing check, will copy the attacker’s page table entry into the
SPT. The attacker could then modify the contents of the approved
code physical page by writing to it using virtual addresses corre-
sponding the writable virtual alias it created.

3Modifying NX permissions of the approved code pages alone does
not seem to benefit performance due to the extra state that has to be
maintained to do this.
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Figure 7: Design of SecVisor SPT synchronization code. Each
non-leaf node indicates an operation that the kernel can per-
form on its page tables. The leaf nodes (shaded) indicate the
guest event that SecVisor must intercept to learn of the corre-
sponding kernel operation. PT and PF stand for Page Table
and Page Fault respectively.

Second, SecVisor needs to check if the kernel page tables map
approved code virtual pages to physical pages containing approved
code. Without this check, the attacker could execute arbitrary code
in kernel mode. The attacker could do this by modifying the kernel
page table entries that translate the virtual addresses of approved
code to point to physical pages that contain the attacker’s code.
If SecVisor copied the kernel’s page table into the SPT without
checking the physical address contained in the entries that trans-
late virtual addresses of approved code, the CPU would would then
execute the attacker’s code instead of the approved code.

To perform the above two checks, SecVisor internally maintains
the list of virtual page to physical page translations for approved
code pages. When synchronizing the SPT with the kernel’s page
tables, SecVisor consults this list to detect if any entry in the ker-
nel’s page table is an alias of an approved code physical page. If
virtual address aliasing is detected, SecVisor does not copy alias-
ing kernel page entry. Instead it marks the corresponding SPT en-
try invalid. Also SecVisor does not copy the page table entries that
translate virtual addresses of approved code into the SPT from the
kernel page table. Instead, it sets these entries based on the entries
in its internal list of approved code pages.

The final issue that needs to be dealt with in regard to SecVisor’s
SPT implementation is how SecVisor controls kernel modifications
to the MMU state. In order to do this, SecVisor intercepts writes
to thecr0 andcr4 registers. These intercepts enable SecVisor to
prevent kernel writes to thepe, pg, wp, andpae bits.

5.3 Protecting the DEV Mechanism
As we mentioned in Section 4, SVM provides the DEV mech-

anism to control DMA access to physical memory pages. Guest
software and devices need to be prevented from modifying both
the DEV bit vector and the DEV configuration registers in the PCI
configuration space. SecVisor protects the DEV bit vector in the
same manner it protects the SPT and the NPT: by allocating phys-
ical pages for the bit vector from its own memory. By design, the
memory controller blocks all accesses from devices to the DEV
PCI configuration space. SecVisor protects the DEV configuration
registers against writes by guest software by virtualization.

The I/O intercept mechanism of SVM provides a convenient way
for SecVisor to virtualize the DEV configuration registers. SecVi-
sor intercepts all writes to the Configuration Data Port. The I/O
intercept handler in SecVisor figures the target of the write by look-
ing at the the address in the Configuration Address Port and blocks
any write by guest software to the DEV configuration registers. If

the write is going to any other PCI configuration register the I/O in-
tercept handler performs the write on behalf of the guest software.

5.4 Kernel Mode Entry and Exit
We now describe how SecVisor achieves properties P1 and P3

on the x86 architecture. Property P3 requires that all kernel mode
exits set the privilege level of the CPU to that of user mode. In the
case of Linux executing on a x86 CPU, user programs execute in
Ring 3. Then, on kernel exit SecVisor must set the privilege level
of the CPU to Ring 3. As we already pointed out in Section 3.4,
as far as all kernel entries set IP to approved code (property P1),
all kernel mode exits will cause a protection exception. As part of
handling this exception SecVisor sets the CPL field of the VMCB
to 3, thereby ensuring that when the guest resumes execution, the
CPU will execute in Ring 3.

SecVisor ensures that all CPU entries into kernel mode will sat-
isfy property P1 (IP will point to approved code at entry) by check-
ing that all entry pointers point to approved code. From Section 4.2,
we see that the entry pointers all exist in the GDT, the LDT, the
IDT, and some MSRs (forsyscall andsysenter). Then, from
Section 3.4, we need to maintain shadow copies of the three tables
and the relevant MSRs to satisfy property P1. By maintaining these
shadow copies SecVisor ensures that the entry pointers used by the
CPU all point to approved code. In the rest of this section, we de-
scribe how SecVisor maintains the shadow copies of the different
entry pointers on the x86.

Maintaining shadow copies of the MSRs is simple since SVM
provides facilities for intercepting read and write to each MSR.
SecVisor sets bits in the VMCB to intercept writes to the MSRs
msr_sysenter_cs, msr_sysenter_ip, and themsr_star. The
intercepts enable SecVisor to check whether the entry pointers the
kernel writes to these MSRs point to approved code.

Shadowing the GDT, LDT, and IDT is somewhat more involved
since our goal is to check and write-protect not only the CPU point-
ers to the GDT, LDT, and IDT (thegdtr, ldtr, andidtr) but
also the contents of the tables themselves. While SVM provides
facilities to intercept writes to thegdtr, ldtr, andidtr, the ta-
bles themselves exist in memory and need to be write-protected via
shadowing.

However, merely maintaining shadow copies of all entry pointers
is insufficient to guarantee property P1. To see why this is so, first
note that the entry pointers all contain virtual addresses. Then note
that the approved code itself is resident in physical pages. There-
fore the page tables must translate the virtual addresses of the en-
try pointers to physical addresses corresponding to approved code.
Otherwise the attacker could violate property P1 by having the vir-
tual addresses of the entry pointers point to physical pages of its
choice.

In view of the above, SecVisor needs to maintain shadow copies
of the GDT, LDT, and IDT to write-protect the virtual addresses
of the entry pointers. It also needs to check and write-protect the
page table entries that translate the virtual addresses of the entry
pointers to physical addresses. Also, note that the page table entries
that translate the virtual addresses present in thegdtr, ldtr, and
idtr also need to be similarly checked and write-protected.

In what follows, we first discuss how SecVisor synchronizes the
shadow copies of these tables with their kernel counterparts. Then,
we tackle the issue of checking and write-protecting the shadow
tables as well as the page table entries that translate the virtual ad-
dresses of the entry pointers, and the virtual addresses present in
thegdtr, ldtr, andidtr. In the discussion that follows, we call
these page table entries thecritical page table entries.

To deal with the synchronization issue, we observe that the shadow



copies of these tables only need to control execution in user mode
since property P1 deals with transition from user mode to kernel
mode. In other words, during kernel mode execution the CPU
can use the kernel’s GDT, LDT, and IDT. This observation enables
two simplifications. One, we can implement alazy synchronization
scheme to maintain shadow copies of the GDT, LDT, and IDT. This
lazy synchronization scheme only synchronizes the shadow tables
when the CPU transitions from kernel to user mode. Since all legit-
imate modifications to these tables can only occur in kernel mode,
the lazy synchronization allows SecVisor to batch all its updates to
the shadow copies. As part of the synchronization, SecVisor checks
that all entry pointers in the shadow GDT, LDT, and IDT contain
virtual addresses of approved code. Two, SecVisor does not needto
intercept writes to thegdtr, ldtr, andidtr. Since the shadow
tables needs to be in control of execution only in user mode, SecVi-
sor can set these registers to point to the shadow copies as part of
the kernel mode to user mode transition. This it does by changing
the corresponding values in the VMCB as part of handling a ker-
nel to user mode transition. Any attempt by the user programs to
modify any of these registers will result in the CPU throwing an
exception. Since the corresponding entry pointer is pointing to ap-
proved code, this exception will cause approved kernel code to be
invoked, satisfying property P1.

From the description of our lazy synchronization scheme and
from the requirement that kernel exits throw exceptions, it can be
seen that a circular dependency exists. The lazy synchronization
scheme requires each exit from kernel mode to cause an exception
so that the shadow GDT, LDT, and IDT can be synchronized with
the corresponding tables in the kernel. On the other hand, ensuring
that an exception will occur on kernel mode exit requires that the
shadow GDT, LDT, and IDT contain valid entry pointers since user
mode will be marked non-executable only if the control returns to
approved code on kernel entry. We break this circular dependency
by setting up an initial condition. We note that at system start-up
the kernel executes before user programs. SecVisor sets protec-
tions at system start-up that make all user memory non-executable.
Thereby, the first exit from kernel mode will axiomatically cause a
CPU exception. As part of handling this exception SecVisor syn-
chronizes the initial shadow GDT, LDT, and IDT with the corre-
sponding tables in the kernel.

We now take up the issue of write-protecting the shadow tables
and the critical page table entries, starting with the shadow tables.
Note that, due to our lazy synchronization scheme, the shadow ta-
bles only need to be write-protected when the CPU executes in user
mode. The simplest way to do this seems to be to not map the
shadow tables into the guest’s address space at all (like we do for
the SPT and the NPT). However, not mapping the shadow tables
into the guest’s address space increases the code size and complex-
ity of SecVisor and also decreases performance. The preceding
claim can be justified by the observation that if the shadow tables
are not mapped into the guest’s virtual address space then SecVisor
will have to simulate every one of the many CPU events in user
space that access these tables. For example, hardware interrupts re-
quire the CPU to read the address of the interrupt handler from the
IDT. If the IDT is not mapped into the guest’s virtual address space,
the CPU will generate a page fault. SecVisor could intercept this
page fault to learn of the occurrence of the interrupt. Then, it would
have simulate the delivery of the interrupt to the guest increasing
the complexity and code size of SecVisor.

To simplify the design of SecVisor, we keep the shadow tables
mapped in the guest’s virtual address space. SecVisor needs a con-
tiguous range of virtual addresses in the guest’s virtual address
space in order to perform the this mapping. When the kernel boots,

SecVisor requests it to permanently allocate 256 Kbytes of contigu-
ous virtual addresses within kernel memory for holding the shadow
tables and to statically map this range of addresses of a contiguous
range of guest physical addresses. In the discussion that follows,
we call this region theshadow table area. SecVisor maintains
the shadow GDT, LDT, and IDT in shadow table area and write-
protects this area to prevent writes when the CPU executes in user
mode. The exact method SecVisor uses to write-protect the shadow
table area depends upon whether it uses shadow paging or nested
paging to virtualize physical memory.

The critical page entries that need to be write-protected depend
on whether shadow or nested paging is used to virtualize physical
memory. With shadow paging, the SPT are the only page tables
used by the CPU. Therefore, SecVisor only needs to check the crit-
ical page table entries in the SPT since the SPT is inaccessible to
the guest. With nested paging, the CPU uses both the kernel page
tables and the NPT for address translation, as shown in Figure 8. In
this case then, the critical page tables entries exist both in the ker-
nel page tables and in the NPT. In what follows, we first describe
how SecVisor write-protects the shadow area and the critical page
table entries with shadow paging. Then, we describe how SecVisor
handles the case of nested paging.

Using shadow Page Tables.With shadow paging, write-protecting
the shadow area is straightforward: SecVisor sets up read-only
mappings in the SPT entries that map the virtual address of the
shadow table area to system physical addresses. Recall from Sec-
tion 5.1 that the guest to system physical address mapping is the
identity map. Therefore, SecVisor fills the address field of the SPT
entries mapping the shadow table area with the guest physical ad-
dresses of the shadow table area. Since the virtual and guest phys-
ical addresses of the shadow table area do not change during the
system lifetime, the SPT entries for the shadow table area need to
be set only once.

Protecting the critical page table entries is also simple since the
SPT is inaccessible to the guest. SecVisor only needs to check if the
critical page table entries are set up correctly in the SPT. In other
words, SecVisor needs to check that all entry pointers translate to
physical pages containing approved code and that virtual addresses
of thegdtr, ldtr, andidtr to be used in user mode translate to
physical addresses of the shadow tables in the shadow area. SecVi-
sor performs this check as part of its lazy synchronization scheme
that synchronizes the shadow tables with the kernel’s copies.

Using nested Page Tables.When using nested paging, SecVisor
can write-protect the shadow table area by marking the correspond-
ing guest physical pages read-only in the NPT and by checking and
protecting all the critical page table entries. In this case, the crit-
ical page table entries exist both in the kernel page tables and in
the NPT. Since the NPT exists in SecVisor’s memory and guest to
system physical address mapping is an identity map, validating and
write-protecting the critical page table entries in the NPT is trivial.

To see how SecVisor protects the critical page table entries in
the kernel’s page table, observe that the CPU accesses the kernel’s
page tables using guest physical addresses. Then, the kernel’s page
table could be protected from writes by guest user mode software
by simply removing the write permissions in the NPT entries for
the guest physical addresses of the kernel’s page tables. Also, the
DEV bit vector needs to protect the physical pages that contain
the kernel’s page table from DMA writes. Adopting this approach
potentially requires that the NPT used for user mode execution and
the DEV bit vector be modified on each context switch since the
page tables of each user process could use different physical pages.
Modifying the NPT will require the TLB to be flushed. Modifying
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Figure 8: Sequence of address translations required to access
the shadow GDT, LDT, and IDT (SGDT, SLDT, and SIDT
in the figure) using the virtual addresses stored in thegdtr,
ldtr, and idtr. KPT and NPT are the kernel and nested page
tables respectively. SP refers to system physical address space
and GP to guest physical address space.

the DEV bit vector will require the invalidation of DEV cache in
the memory controller. This invalidation requires software to set a
bit in the DEV configuration registers and monitor the bit until it
is cleared by the hardware. The clearing of the bit indicates that
the hardware has invalidated the DEV cache. For performance, we
would like to avoid performing several memory writes to the NPT,
a TLB flush, and a DEV bit vector modification in SecVisor on each
context switch.

Alternately, we could copy the critical entries in the kernel’s page
table into the shadow table area. Since the shadow table area exists
at the same guest physical address, and hence system physical ad-
dress, for the entire lifetime of the system both the NPT and DEV
bit vector protections need to be set only once. However, this so-
lution might also requires several memory writes due to the multi-
level page table hierarchy of the x86. In view of the multi-level
page table hierarchy, SecVisor needs to protect the page tables at
all levels of the hierarchy that translate the virtual addresses of the
shadow table area or the entry pointers to physical addresses. This
could require several page tables to be copied into the shadow ta-
ble area to write-protect all critical page table entries. Note that we
need not copy the entire kernel page table. To understand why this
is true, observe that a page table describes a function between vir-
tual and physical addresses. Therefore, given virtual address cor-
responds to exactly one entry in a page table at each level of the
page table hierarchy. Copying and protecting these page tables is
sufficient to protect the critical page table entries.

For the Linux kernel, entry pointers point into the main kernel
code segment. The main kernel code segment is mapped using
pages that are 2MB or 4MB in size, depending upon whether or
not PAE mode is being used. In non-PAE mode, the CPU uses a
two level page table hierarchy. A 4MB page is mapped by a single
entry in the first level page table. Therefore, in non-PAE mode the
amount of data that needs to be copied into the shadow table area to
protect the critical page table entries reduces to the first level page
table (4K) and one second level page table that translates the virtual
addresses of the shadow table area (4K). Then the total amount of
data copied in non-PAE mode comes to 8K. Note that the second
number assumes that the shadow table area, which is 256K in size,
will be mapped by one second level page table. In non-PAE mode
paging a second level page table can map up to 4MB of memory.
As far as the start address of the shadow table area is aligned so
that it occupies only addresses translated entirely by one second
level page table, copying one page table at the second level should
be sufficient. The Linux kernel allocates memory for the shadow
table area with this restriction in mind.

In PAE-mode, the CPU uses a three level page table hierarchy.
The main Linux kernel mode segment is mapped using a 2MB

page. This mapping uses two first two levels of page tables. The
shadow table area uses all three levels of page tables. Then, in worst
case, the amount of data to be copied to protect the critical page ta-
ble entries in PAE-mode is the first level page table (32 bytes) and
the second level page table (4K) for the entry pointers, and one
second level page table and one third level page table (4K). The
worst case total in this case is 12K + 32 bytes. Note that as with
the non-PAE case this assumes that the shadow table area will be
mapped by a single third level page table. Since a third level page
table in PAE mode can map up to 2MB of memory this assumption
is justified.

In summary, to protect the critical page table entries in the ker-
nel’s page tables, SecVisor copies the relevant page tables in all
levels of the page table hierarchy into the shadow table area. The
guest physical addresses of the shadow table area are marked read-
only in the NPT and the system physical pages of the shadow table
area are protected from DMA writes. SecVisor also modifies the
guest’scr3 for user mode execution to point to the top-level page
table in the shadow table area and modifies the pointers in the page
table entries at all levels of the page table hierarchy to to use the
copies in the shadow table area. Note that, only a few pointers per
level of the page table hierarchy need to be modified.

Now that it is guaranteed that the kernel’s page table will cor-
rectly the virtual addresses of the shadow table area and the virtual
addresses of the entry pointers to guest physical addresses of the
shadow table area and the guest physical addresses of the approved
code pages respectively, and the guest physical addresses of the
shadow table area are marked read-only in the NPT, and the system
physical pages of the shadow table area are protected against DMA
writes, the shadow GDT, LDT, and IDT cannot be modified during
user mode execution. Recall that SecVisor’s lazy synchronization
code sets thegdtr, ldtr, andidtr to the virtual addresses of
the shadow tables and that the MSR-based entry pointers contain
the correct virtual addresses. This means that all entry pointers will
correctly refer to physical pages containing approved code during
user mode execution, thereby satisfying property P1.

6. PORTING THE LINUX KERNEL
In this section we discuss how we port the Linux kernel to SecVi-

sor, by illustrating how SecVisor handles the two kinds of code that
can be loaded into kernel memory: the main Linux kernel which is
loaded at bootstrap, and the kernel modules which are dynamically
loaded and unloaded during the lifetime of the system.

6.1 Main kernel
The main kernel makes calls to the Basic Input and Output Sys-

tem (BIOS) as part of its initialization. Since the BIOS executes
in Ring 0, SecVisor would have approve the BIOS code. However,
approving the BIOS code is not simple because of the diversity and
complexity of the BIOS subsystem. For example, some BIOS only
map a part of the Flash chip containing the BIOS image into the
physical address space of the CPU. Others map their code into sev-
eral different regions of physical memory whose locations might
differ from system to system. Approving the BIOS could add con-
siderably to the code size and complexity of SecVisor.

Fortunately, the Linux kernel is designed so that after its initial-
ization, it does not make any more calls to the BIOS. Even more
conveniently, the main kernel’s code is divided into two parts: the
bootstrap part which contains all the calls to the BIOS and the run-
time. In view of this, all we need to do is launch SecVisor after
the bootstrap finishes execution and SecVisor does not have to deal
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Figure 9: Modifying Linux’s bootstrap. decompress_kernel in-
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with the BIOS at all!4

Figure 9 shows the normal bootstrap sequence of Linux. The
bootloader loads the kernel into memory and jumps to the kernel’s
bootstrap code. The kernel’s bootstrap code consists of two parts: a
setup function and adecompress_kernel function. Thesetup
function executes first and initializes the hardware with calls to the
BIOS. It then jumps to thedecompress_kernel function, which
performs further hardware initialization, decompresses the runtime,
and jumps to start address of the runtime.

We modify this boot sequence to makedecompress_kernel
invoke SecVisor via theskinit instruction (the bootloader loads
SecVisor into memory along with the kernel) as shown in Fig-
ure 9. The late launch feature ofskinit ensures that SecVisor
will now execute untampered by any entity on the system.decom-

press_kernel also passes the start and end addresses of the run-
time’s code segment as parameters to SecVisor. SecVisor then per-
forms its initialization and passes the runtime image to the approval
policy for approval. In our current implementation, we use an ap-
proval policy based on a whitelist of cryptographic hashes. Our
approval policy computes a SHA-1 [12] hash of the kernel runtime,
and approves the runtime if the hash exists in the whitelist. Upon
approval, SecVisor creates a VMCB whose CPU state is set to the
state of the CPU at the time when the runtime starts executing dur-
ing a normal bootstrap. Finally, SecVisor sets memory protections
over the runtime code, and transfers control to the runtime using
thevmrun instruction.

We need to address a few additional issues in the above imple-
mentation. One is the issue of validating the start and end addresses
of the main kernel code image passed by thedecompress_kernel

function. This can be simply handled by noting that if the start
and end addresses passed to SecVisor are different from their cor-
rect values, then the main kernel code image should differ from its
expected value, and should be rejected by the approval policy.

The second issue is that it is impossible, under the W⊕ X pro-
tection scheme, to set suitable protections for pages that contain
both code and data. To address this issue, we modify the kernel
linker script to ensure that start addresses of all data segments of
the runtime are page aligned.

6.2 Kernel modules
The main issue with modules is that the module loading code

in the kernel relocates the module executable to link it with the
kernel. The module image will look different after the relocation
than before. Since the load address of a module can vary each

4This is not the whole story. A System Management Interrupt
(SMI) could still invoke the BIOS. However, SVM provides a way
to invoke the System Management Mode (SMM) handler under the
control of the host. A description of how we can use this feature of
SVM to safely handle SMI is given in Section 8.
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Figure 10: Layout of different modules sections in memory. In
the figure we assume that the Init Region and Runtime Region
are both less than one page in size. Both regions start at page
aligned addresses and there is empty space between the end of
the code and the end of the page.

time it is loaded and can vary between systems, it is impractical to
create an approval policy to deal with all possible load addresses of
all possible modules on every system. It is also not safe to approve
the module code image before relocation by the kernel. Now the
kernel will modify the module code image after approval and it is
difficult to verify that the kernel’s writes are not malicious.

Our solution to the above conundrum is to have SecVisor per-
form the relocation after subjecting the module to approval by the
approval policy. The kernel informs SecVisor of the virtual ad-
dresses from which the module will execute. As we show in Sec-
tion 7, the increase in SecVisor’s code size due to the addition of
the relocation code is small.

Kernel modules can be loaded and unloaded dynamically. There-
fore, SecVisor needs to set protections over module code on a mod-
ule load and remove these protections on a module unload.

Module loading. Linux kernel module files on disk are relocat-
able object files in the Executable and Linkable Format (ELF) for-
mat. All module code is contained in three ELF sections:.text,
.init.text, and.exit.text. From the kernel source code, we
find that it puts.init.text in one memory region and.text
and.exit.text contiguously in another memory region. For the
purposes of this description, we call the first memory region the
init region and the second memory region theruntime region. Fig-
ure 10 shows how the module code is laid out. The figure shows
the two regions as being contiguous pages in memory but this need
not always be true. Finally, the kernel relocates the module code
using the addresses of the two regions as inputs.

We modify the control flow of the kernel’s module loading code
in the functionload_module, so that it invokes SecVisor via a hy-
percall, after copying the module’s code into the init and runtime
regions. The arguments to the hypercall are the start and end ad-
dresses of the init and runtime regions (virtual addresses in shadow
paging, and virtual and guest physical addresses in nested paging).
On receiving the hypercall, SecVisor first calls the approval policy
to check the module code. As with the main kernel any incorrect
arguments to the hypercall will cause the approval check to fail. If
the check passes, SecVisor relocates the module based on the argu-
ments of the hypercall. Finally, SecVisor fills the empty space in
the init and runtime regions withno-op instructions, sets memory
protections over the two regions and returns.

Module unloading. Unloading a module allows the kernel to re-
claim the memory used. We modify thefree_module function in
the kernel to invoke SecVisor via a hypercall. SecVisor makes the
pages occupied by the code pages of the module writable by the
CPU and peripheral devices and removes their execute permission.



Debug
Initialization Header Files Runtime

SPT NPT Code Declarations SPT NPT SHA-1 Module Reloc

Lines of code 469
C 538 C 599

376 922
C 1236 C 609

294 81
Asm 130 Asm 130 Asm 46 Asm 46

Table 1: Lines of code in SecVisor. SPT and NPT stand for the shadowpaging based and nested paging based implementations
respectively. For parts of the code that are a mix of C and assembly, we report the counts separately.

This prevents any further execution of the module code.

7. EVALUATION
In this section we evaluate our SecVisor prototype using two

metrics: compliance with design requirements and performance.

7.1 Design Requirements Compliance
As we mentioned in Section 1 we have three design goals for

SecVisor: (1) small code size, (2) minimal kernel interface, and (3)
ease of porting OS kernels. The first two goals aid in achieving
better security, and the third goal simplifies deployment. We now
discuss how our prototype complies with our design goals.

Code size. We use D.A. Wheeler’ssloc program to count the
number of lines of source code in our SecVisor prototype. The re-
sults are presented in Table 1. For the purpose of measurement, we
divide SecVisor’s code into four parts. The initialization code ini-
tializes the CPU state and SecVisor’s runtime state after SecVisor
is invoked by thedecompress_kernel function using theskinit
instruction. The memory occupied by this code is made available
for use by the kernel once the SecVisor runtime code gains control.
The debug code provides aprintf function, which is not required
on a production system. The C language header files have both
declarations as well as code in the form of preprocessor macros
and functions. Finally, the runtime code is responsible for provid-
ing the guarantee of approved kernel code execution. We report
the code sizes for shadow paging and nested paging implementa-
tions separately. Also shown in Table 1 are the code sizes of the
SHA-1 function SecVisor uses for its approval policy, and the ELF
relocation code for the kernel modules.

As can be observed from Table 1, the total size of the nested pag-
ing implementation of SecVisor is 3526 lines of C and assembler
code. Of this, the security-sensitive runtime code and the header
files measure 2328 lines. When the declarations (which mainly
consist of various constants and largestruct declarations) in the
header files are removed from the previous count, the code size
comes out to 1406 lines. For the shadow paging implementation,
the total code size is 4092 lines of C and assembler code, with the
security-sensitive runtime code and header files measuring 2955
lines. Upon removing the declarations from the count we are left
with 2033 lines of code. These code sizes should put SecVisor
within the reach of formal verification and manual audit techniques.

Kernel interface. SecVisor’s interface to the kernel consists of
only 2 hypercalls. The first hypercall is used by the kernel to re-
quest changes to its code (such as loading and unloading modules),
while the second hypercall is used by the kernel during its initializa-
tion to pass the virtual and guest physical addresses of the shadow
table area. The hypercall interface is small which reduces the attack
surface available to the attacker through the kernel. Also, the pa-
rameters passed in each hypercall are well-defined, making it pos-
sible for SecVisor to ensure the validity of these arguments.

Effort required to port a kernel. SecVisor’s design makes very
few assumptions about the kernel which it protects. We now enu-

merate the changes we had to make to the Linux kernel to port it to
SecVisor. Then we point out the kernel specific assumptions that
SecVisor makes and discuss how those assumptions affect the effort
required to port a new kernel.

We made three changes to the Linux kernel version 2.6.20 to
port it to SecVisor. First, thedecompress_kernel function in-
vokes SecVisor using theskinit instruction instead of jumping
to the decompressed kernel. Second, during its initialization, the
kernel passes the addresses of the shadow table area to SecVisor
using a hypercall. Finally, we changed the control flow of the
load_module and thefree_module function. As part of changing
the control flow of these functions, we removed the ELF relocation
code from theload_module function and added hypercalls to both
functions. In all, the three changes added a total of 12 lines of code
to the kernel and deleted 81.

SecVisor makes three assumptions about the kernel it protects.
First, it assumes that the user and kernel mode share address spaces.
If a kernel design uses separate address spaces for user and kernel
modes, then the design of the shadow paging and nested paging
code in SecVisor would need to be adapted. However, the changes
are relatively small since we would only need to maintain separate
page tables for user mode and kernel mode, and handle the page
faults that arise when the kernel tries to access user memory. Sec-
ond, SecVisor assumes that the kernel’s binary does not have pages
that contain both code and data. Even if a kernel binary does not
satisfy this requirement, it should be relatively easy to fix by appro-
priately modifying the linking of the kernel. Third, in order to not
deal with the BIOS, SecVisor requires that the kernel not make any
BIOS calls after its initialization. Kernels that do not satisfy this
assumption will be relatively difficult to port to SecVisor without
adding support in SecVisor for dealing with the BIOS.

7.2 Performance Measurements
We now report the performance of the SPT-based SecVisor im-

plementation and compare it to Xen and the Linux kernel. We can-
not evaluate the NPT version of SecVisor on real hardware since
suitable CPUs are not available at this time. While we have im-
plemented and tested the NPT version of SecVisor using AMD’s
SimNow simulator, we do not report performance measurements
since SimNow is not a cycle accurate simulator.

Experiment setup. Our experimental platform is the HP Compaq
dc5750 Microtower PC. This PC uses an AMD Athlon64 X2 dual-
core CPU running at 2200 MHz, and has 2 GB RAM. SecVisor
allocates 1536 MB of RAM to the kernel in our experiments. The
PC runs the i386 version of the Fedora Core 6 Linux distribution.
We use the uniprocessor versions of Linux kernel 2.6.20 and Xen
3.0.4. All our Xen experiments execute in dom0. Our experiments
consist of kernel microbenchmarks and application benchmarks.

lmbench microbenchmarks. We use thelmbench benchmark-
ing suite [15] to measure overheads of different kernel operations
when using SecVisor. SecVisor adds overhead to kernel operations
in three ways: (1) by modifying execute permissions in the SPT
on each transition between user and kernel mode, (2) by synchro-
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Figure 11: SPECint 2006 performance comparison between SecVisor and Xen, relative to native Linux.

nizing the SPT with the kernel’s page table, and (3) by shadowing
the GDT, LDT, and IDT. We use a subset of the process, memory,
and context switch microbenchmarks fromlmbench to study these
overheads.

Host Null Call Fork Exec Prot Fault PF
Linux (UP) 0.10 139 410 0.248 1.71
Xen (UP) 0.17 415 1047 0.565 3.71
SecVisor 25.6 2274 6203 27.3 35.1

Table 2: Execution times oflmbench process and memory mi-
crobenchmarks. All times are in µs. PF stands for page fault
and UP for uniprocessor.

Table 2 shows the results of our experiments. TheNull Call

shows the overhead of a round trip between user and kernel mode
and back, i.e., it shows the overhead of (1) and (3) above. The
Prot Fault indicates the time taken by the kernel to process a
write access violation. The overhead is quite close to that ofNull

Call since it also only involves a round trip from user to kernel
mode and back, from the perspective of SecVisor. The overhead
of Page Fault is higher than that ofProt Fault since handling
a page fault requires a round trip from user mode to kernel mode
and back, in which the kernel updates its page table, followed by a
round trip from user mode to SecVisor and back, in which SecVisor
synchronizes the SPT with the kernel’s page table. TheFork and
Exec microbenchmarks incur all three sources of overhead.

Source Null Call Fork Exec Prot Fault PF
SPT 0.10 1275 3043 2.289 14.6
SPT + Perm 21.8 2148 5816 22.5 32.9

Table 3: Breakdown of the SecVisor overheads in thelmbench
process and memory microbenchmarks. All times are inµs.
PF stands for Page Fault, SPT for shadow page tables, Perm
for modifying execute permissions on user and kernel memory.

In order to obtain an understanding of how much each of the
three sources of overhead contribute to the overall overhead, we

conduct further experiments. For these experiments, we implement
two additional versions of SecVisor: one that only virtualizes phys-
ical memory using the SPT, and the other that modifies the execute
permissions of user and kernel memory in addition to virtualizing
physical memory. These implementations allow us to isolate the
overheads of the three sources.

Table 3 shows our results. From comparing the first and second
rows of this table it is clear that modifying the execute permissions
for user and kernel memory drastically increases the overhead in
all benchmarks. Also, by comparing the last row of Table 3 with
the last row of Table 2 is it obvious that shadowing the GDT, LDT,
and IDT is a much lower overhead operation than modifying the
execute permissions.

Host 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K
Linux (UP) 0.56 0.64 3.19 1.48 12.9
Xen (UP) 2.61 2.42 5.16 4.07 17.1
SecVisor 54.3 52.7 53.6 63.3 75.8

Table 4: Execution times of lmbench context switch mi-
crobenchmarks. All times are in µs. UP stands for unipro-
cessor.

Table 4 shows the results of runninglmbench context switch mi-
crobenchmarks. The context switch incurs the overhead of all three
sources, leading to significant slowdown in SecVisor compared to
the native Linux kernel and Xen.

Application benchmarks. We hypothesize that when SecVisor is
used, the overhead of an application will be directly proportional
to both the number of times the application calls the kernel and the
rate of change of the application’s working set. Kernel calls and re-
turns will impose the overhead of switching execute permissions in
the SPT and shadowing the GDT, LDT, and IDT, while a change of
the working set will impose the overhead of SPT synchronization.
Based on our hypothesis, compute-bound applications that have a
stable working set throughout their lifetime will have the lowest
overhead. On the other hand, I/O bound applications with highly
variable working sets will be the pathological cases.
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Figure 12: Application performance comparison between
SecVisor and Xen, relative to native Linux.

To test our hypothesis, we execute both compute-bound and I/O
bound applications with SecVisor. For our compute-bound appli-
cations we choose benchmarks from the SPECint 2006 suite. Our
I/O bound applications consist of the gcc benchmark from SPECint
2006, the Linux kernel compile, unzipping and untarring the Linux
kernel sources, and Postmark.

In the Linux kernel compile, we compile the sources of the ker-
nel version 2.6.20 by executing “make” in the top-level source di-
rectory. For unzipping and untarring the kernel source we execute
“tar xfvz” on the source tarball of the version 2.6.20 of the Linux
kernel. For Postmark, we choose 20000 files, 100000 transactions,
and 100 subdirectories, and all other parameters are set at their de-
fault values. For comparison purposes, we also execute SPECint
2006 and each of these applications on the native Linux kernel and
on Xen. We run each of these applications five times on each of the
Linux kernel, Xen, and SecVisor.

Our results are presented in Figure 11 and Figure 12. The results
are in line with our predictions: the compute-bound SPEC bench-
marks have a low overhead while the gcc SPEC benchmark, ker-
nel compile, and Postmark which are I/O bound and have rapidly
changing working sets have the highest overheads.

8. LIMITATIONS AND FUTURE WORK
We now discuss the limitations of SecVisor, our future imple-

mentation plans, and two additional applications of SecVisor.

8.1 Limitations
SecVisor guarantees integrity of the code that executes in kernel

mode, but not the integrity of the control flow. Consequently, a
“return-to-libc” style attack within the kernel is possible, where an
attacker can cause areturn instruction in the kernel code to pass
control to a kernel function of its choosing by overwriting the return
address stored on the stack. Another attack that manipulates the
control flow of a program is described by Shacham. This attack
constructs arbitrary instruction sequences by adequately combining
existing instruction sequences [21]. However, such attacks can be
mitigated by combining SecVisor with techniques that guarantee
control flow integrity [6,14].

Besides manipulating the control flow to perform attacks, the
attacker could also modify kernel data in order to indirectly influ-
ence the control flow within kernel code. For example, the attacker

could change the predicate of a conditional. Attacks of this kind
are discussed by Chen et al. in the context of user applications [4].

8.2 Future Implementation
We now present our future extensions to the SecVisor prototype,

presented in their expected order of their implementation.

Multi-CPU support. With the trend towards multi-core CPUs, it
becomes necessary for SecVisor to support multiple CPUs. Imple-
menting this support requires SecVisor to intercept the attempt by
the kernel’s initialization code to switch from uniprocessor to mul-
tiprocessor operation. Also, SecVisor needs to implement locking
primitives to synchronize access to its global data. Finally, SecVi-
sor needs to set up CPU data structures such as the GDT, IDT, and
VMCB for each CPU in the system.

On a multi-CPU AMD x86 system, one CPU is elected as the
bootstrap processor (BSP) each time the system is powered up. All
other CPUs become application processors (AP). Theskinit in-
struction can only be executed by the BSP. All the APs must be put
into a halted state by the code that invokesskinit. The APs will
remain in the halted state until they are woken up by code executing
on the BSP using an interprocessor interrupt (IPI).

Thedecompress_kernel function starts SecVisor by invoking
skinit. SecVisor then executes on the BSP, and starts the kernel’s
runtime by executing thevmrun instruction. The kernel’s runtime
initially executes on the BSP. Sometime during its initialization, the
kernel switches to multiprocessor mode by waking up all the APs
via an IPI. SecVisor can intercept the kernel’s attempt to send this
IPI, and perform the AP wake up. Then it can set up a VMCB for
each AP, and execute thevmrun instruction on each of them. This
causes all the APs to begin executing the kernel’s runtime, thereby
simulating the effect of the kernel’s IPI.

SecVisor’s locking primitives can be simple since the amount
of global state in SecVisor is small. We plan to usespinlocks as
SecVisor’s locking primitive.

Handling SMI. The System Management Mode (SMM) is a spe-
cial operating mode of an x86 CPU that is entered when the CPU
receives a System Management Interrupt (SMI). SMM is designed
to be transparent to all software executing on the system. It is nor-
mally used by the BIOS to perform power management tasks or to
fix hardware bugs. For example, closing the lid of a laptop gener-
ates an SMI that causes the SMM handler in the BIOS (in conjunc-
tion with the OS) to suspend the laptop.

The SMM handler executes at the highest CPU privilege so that it
can perform its tasks transparently to the rest of the system. This is
not desirable from SecVisor’s point of view since it now has to trust
the BIOS code. However, SVM provides a way to address this is-
sue. SecVisor can intercept the SMI and execute the SMM handler
in guest mode. Then SecVisor can prevent the SMM handler from
modifying CPU and memory state that are necessary to guarantee
kernel code integrity. We expect that this restriction will not affect
the execution of the SMM handler since SecVisor will only prevent
the SMM handler from modifying memory pages of SecVisor and
those of the kernel code, the MSRs containing entry pointers, and
the DEV mechanism configuration registers. Another option is to
use a BIOS without SMM code, such as LinuxBIOS [16].

Self-modifying code. SecVisor can detect the kernel’s use of self-
modifying code through write faults. When such a write fault oc-
curs SecVisor can perform the write on behalf of the kernel. SecVi-
sor then calls the approval policy to approve the modification to the
kernel code. Approving the write requires determining if the write
is genuine or was initiated by an attacker. The difficulty can be
somewhat mitigated, if the approval policy is aware of the reason



for the code alteration. For example, a kernel might fix compiler
or CPU bugs by modifying its code at bootstrap. Since the list of
such bugs is well known, the approval policy can check if the mod-
ification being performed to the kernel code is a bug fix. In general,
however, supporting self-modifying code is likely to complicate the
approval policy of SecVisor.

Porting to Intel TXT and Windows XP. Intel’s Trusted Execu-
tion Technology (TXT) is a CPU-based virtualization and security
technology present in recent CPUs from Intel [10]. It provides fa-
cilities that are semantically similar to those of AMD SVM. There-
fore it should be possible to port SecVisor to systems with TXT
support. We also plan to port the Windows XP kernel to SecVisor.

8.3 Additional Applications
Protecting user programs. SecVisor should be naturally appli-
cable to protecting the code of user programs as well. Preventing
code injection attacks against user programs should help mitigate
the threat from several current generation worms that use code in-
jection as their method of attack. Also, it can prevent attackers from
creating bots by exploiting vulnerabilities in user programs to inject
the bot code. However, the overhead of providing user code protec-
tion in SecVisor is likely to be higher than that of protecting kernel
code since allocation of user memory pages between code and data
changes more often (for example, on every context switch).

Kernel code attestation. SecVisor can implement an approval
policy for kernel code attestation. Such an approval policy can
compute and store cryptographic hashes of all code that is loaded
into kernel memory from the time the kernel is started. The attes-
tation offered by SecVisor does not suffer from a time-of-check-to-
time-of-use (TOCTTOU) problem since SecVisor will not permit
kernel code to be modified without re-hashing the new code.

9. RELATED WORK
In this section, we survey proposed techniques for ensuring ker-

nel code integrity, small virtual machine monitors, and kernel rootkit
detection.

9.1 Kernel Code Integrity Protection
The common approach followed by all mainstream OSes to en-

sure kernel code integrity is through kernel access control mech-
anisms, such as file system protections (to prevent unauthorized
alterations of kernel and module binaries, and configuration files)
and kernel-enforced restrictions on module loading. Unfortunately,
these approaches cannot protect against kernel vulnerabilities.

The IBM 4758 secure coprocessor provides special hardware
support for a “ratchet” mechanism, which locks OS memory and
loaded modules after the ratchet mechanism has been incremented
[7, 22]. The 4758 hardware support offers a high level of security
thanks to the hardware-enforced mechanism, but is inflexible since
it prevents dynamic changes the kernel code, and would not be ap-
plicable to mainstream OSes.

Program Shepherding attempts to provide code integrity and con-
trol flow integrity for application programs [14]. It uses a dynamic
optimization framework to check that every control transfer in the
program satisfies the specified security policy and also checks the
origin to the program’s executable code. SecVisor can be used
to protect the dynamic optimization framework used by Program
Shepherding, thereby achieving stronger security guarantees.

Livewire is a host-based Intrusion Detection System (IDS) built
into a VMM [9]. It detects intrusions by observing the state of
the kernel executing in a VM. To prevent an attacker from injecting
malicious code into the kernel to manipulate its state, Livewire uses

the VMM to make the kernel code segments read-only. However,
since Livewire does not address properties P1 and P3, there is no
guarantee that the CPU will not execute code outside the kernel’s
code segments in kernel mode.

Recently, Criswell et al. have proposed the Secure Virtual Ar-
chitecture (SVA), which uses programming language techniques to
provide memory safety and control-flow integrity for commodity
kernels [6]. Analogous with Program Shepherding, SVA can be
combined with SecVisor to achieve stronger security guarantees by
using SecVisor to protect SVA’s runtime environment.

9.2 Small Virtual Machine Monitors
There have been several efforts to build small VMMs [8,13,18].

The aim of these VMMs is to minimize code size until it is small
enough for formal verification or manual audit. Such VMMs could
be adapted to provide properties similar to SecVisor.

However, the security properties of SecVisor will be better than
those of VMMs because of two reasons. First, the code size of
SecVisor will be smaller than that of a full VMM for two reasons.
One, SecVisor only virtualizes the MMU, the IOMMU, and the
physical memory whereas a VMM has to virtualize the entire sys-
tem. Two, unlike a VMM, SecVisor does not need to support mul-
tiple Virtual Machines (VM). This reduces the code size by elim-
inating certain features such as context switching, scheduling, and
interrupt handling. Also, the memory, MMU and IOMMU virtu-
alization code of SecVisor will be smaller than the corresponding
code in a VMM. Second, in addition to code size, the size of SecVi-
sor’s external interface will also be smaller than that of a VMM
(for example, VMMs need to provide interfaces for administering
VMs).

9.3 Kernel Rootkit Detection
Various techniques have been proposed to detect malicious code

in the OS kernel (also called rootkits). As far as we are aware,
SecVisor is the only technique that provides the stronger property
of preventing code injection attacks against OS kernels. Rootkit de-
tection techniques can be classified into two categories: software-
based and hardware-based. Attacks exist against both hardware and
software-based rootkit detection techniques.

Software-based kernel rootkit detection. Rootkit detection tech-
niques that rely on the integrity of one or more parts of the kernel
can be defeated by an attacker that compromises the parts of the
kernel whose integrity is relied on by the rootkit detector [5,11,24].
Even rootkit detectors that do not rely on the integrity of any soft-
ware executing on a machine can be defeated by placing the rootkit
in the OS’s data segment or heap whose integrity is difficult to
check since it is not practical to determine in advance what the
“known good” value of dynamic segments of memory will be [20].
Rootkit detection techniques that rely on differences in file system
scans cannot detect rootkits that do not modify the file system [25].

Hardware-based rootkit detection. Hardware-based rootkit de-
tection techniques work by attaching specialized peripheral devices
to a system. These devices check the integrity of one or more
regions of the kernel memory to detect the presence of malicious
code. Recently, Rutkowska demonstrated a generic attack against
hardware-based rootkit detectors that relies on the dichotomy of the
CPU’s view of physical memory and the devices’ view of physical
memory [19]. We mention a generic version of the same attack
against Copilot [17] in our earlier work [20].

10. CONCLUSION
With the general observation that the number of security vul-



nerabilities increases exponentially with complexity and size, it is
no surprise that critical vulnerabilities are frequently discovered in
mainstream kernels.

In this context, we asked: what is the minimal change we can
introduce to significantly enhance the security of legacy kernels?
Leveraging the features of the next generation of commodity CPUs,
we design SecVisor, a tiny hypervisor that protects the code in-
tegrity of kernels during the system lifetime, and ensures that only
approved code can execute in kernel mode. SecVisor protects the
kernel against a variety of well-known and unpublished attacks, in-
cluding code injection through buffer overruns, kernel-level rootk-
its, and malicious devices with DMA access. So far, the majority
of approaches to secure OSes follow adetection approach, which
detect and mitigate attacks. SecVisor takes a more direct approach,
which is toprevent a large class of attacks altogether.

While SecVisor does not prevent against control-flow attacks, it
can be combined with approaches that do provide additional protec-
tions. Moreover, SecVisor will ensure code integrity and memory
protection for such additional security mechanisms.
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