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Abstract

One of the fundamental limitations of the Internet is the
inability of a packet flow recipient to halt disruptive flows
before they consume the recipient’s network link resources.
Critical infrastructures and businesses alike are vulnerable
to DoS attacks or flash-crowds that can incapacitate their
networks with traffic floods. Unfortunately, current mecha-
nisms require per-flow state at routers, ISP collaboration,
or the deployment of an overlay infrastructure to defend
against these events.

In this paper, we present SIFF, a Stateless Internet Flow
Filter, which allows an end-host to selectively stop indi-
vidual flows from reaching its network, without any of the
common assumptions listed above. We divide all network
traffic into two classes, privileged (prioritized packets sub-
ject to recipient control) and unprivileged (legacy traffic).
Privileged channels are established through a capability ex-
change handshake. Capabilities are dynamic and verified
statelessly by the routers in the network, and can be revoked
by quenching update messages to an offending host. SIFF is
transparent to legacy clients and servers, but only updated
hosts will enjoy the benefits of it.

1 Introduction

Despite a significant breadth of research into defenses,
Denial of Service (DoS) attacks remain a significant prob-
lem in the Internet today. The DoS phenomenon has
evolved rapidly over the last decade. DoS attacks were
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once caused by only a few attackers—often only a single
attacker—sending specially crafted packets designed to ex-
ploit flaws in the victim’s particular TCP/IP implementation
(e.g., the Teardrop or Land Attack), and sometimes using IP
spoofing [10] (the forging of the source IP address field in
the IP header to something other than the sending host’s IP
address) to hide their identity. DoS attacks are becoming an
increasing risk, as the sophistication of current attack tools
enables relatively inexperienced attackers to perform these
attacks.

As the number of systems connected to the Internet has
increased, the black-hat community has developed tools
(known as root-kits) that take advantage of security flaws
in operating system services to compromise computers. The
black-hat community has also written tools designed to con-
trol and coordinate these exploited machines (often called
zombies) on a large scale [13, 14]. These developments
have given rise to a new type of DoS classification: the dis-
tributed DoS attack (DDoS). These attacks tend to be dif-
ferent from simple DoS attacks in that the attacks are com-
posed of compromised hosts that are not easily traceable to
the machine controllers themselves. For this reason, DDoS
attackers are not concerned with spoofing as a disguising
tactic; they merely use it to bypass potential IP address fil-
ters or to involve unwitting third parties in the attack as traf-
fic amplifiers [34]. Furthermore, because of the sheer num-
ber of hosts involved, (there have been reports of groups
claiming over 140,000 compromised hosts under their con-
trol [11]), the attacks tend to work simply by flooding pack-
ets onto the network, which converge upstream from the
intended victim and disrupt the infrastructure, to prevent or
reduce legitimate access to the victim.

The DDoS flooding problem is particularly difficult to
defend against, because the very architecture that has fu-
eled the Internet’s growth—reliance on intelligent end-hosts
connected by a relatively simple network (the end-to-end
principle)—is used to the attacker’s advantage. In this net-
work architecture, any host in the network can send a packet



to any destination address (even if the destination does not
want to receive the packet), and the destination has no
way of stopping those packets before they reach it (or its
network). Although many innovative avenues of defense
against DoS and DDoS have been explored in the literature
(we review some of these in the next section), only a few
of the approaches even address the DDoS flooding prob-
lem. In this paper, we explore the design issues involved
in constructing a system from scratch that solves the DDoS
flooding problem by giving a packet receiver control over
which packets the network delivers to it.

1.1 Related Work

Several researchers have studied the frequency and na-
ture of Internet DoS attacks [16, 17, 21, 24, 31]. In this
section, we review related work in the area of Internet DoS
defenses. We distinguish the research into two general ar-
eas: defending against IP source address spoofing, and de-
fending against bandwidth flooding attacks.

We first discuss research in defenses against source IP
address spoofing. Ferguson and Senie propose to deploy
network ingress filtering to limit spoofing of the source IP
address [15]. Burch and Cheswick propose to use a lim-
ited form of DoS attack to probe which links are affected
by an attack and can thus trace back to the origin [8]. Park
and Lee propose a distributed packet filtering (DPF) mech-
anism against IP address spoofing [32]. DPF relies on BGP
routing information to detect spoofed IP addresses.

Bellovin et al. suggests adding a new type of ICMP mes-
sage for traceback [6], and Mankin et al. present an im-
provement to this scheme [28]. Several researchers propose
to embed traceback information within the IP packet [2, 12,
19, 26, 35, 38, 43]. Most of these schemes use the 16-bit IP
Identification field to hold traceback information. Routers
along the packet’s path probabilistically mark bits in the
IP Identification field in different ways. While traceback
schemes could be used to find the origins of the attacks,
they often require a large number of packets and cannot be
used to filter out packets on a per-packet basis.

Snoeren et al. propose a mechanism using router state to
track the path of a single packet [37]. Their approach en-
ables a victim to trace back a single packet by querying the
router state of upstream routers. In earlier work, we pro-
pose the Pi marking scheme to enable the victim to detect
packets with a spoofed source IP address [47]. Pi is not ef-
fective against bandwidth flooding attacks because it relies
on victim filtering of DDoS traffic and bandwidth flooding
typically causes damage (i.e., dropped packets) upstream
from the victim.

The IP traceback and spoofing defenses we discussed
so far, defend against DDoS at the victim of the attack.
The research most closely related with our work attempts

to defend against network flooding attacks in the network
itself. Stone proposes the CenterTrack mechanism, which
uses routers capable of input debugging (the ability to de-
termine through which router interface a particular packet
was received) that would be virtually connected through IP
tunnels to all border routers on a network [42]. When a node
in the network comes under attack, the overlay network is
activated, and all border routers channel traffic through the
overlay routers. These routers would use input debugging to
determine from which border router, and hence from which
neighbor network, the DDoS traffic is coming from. How-
ever, this technique requires that the ISP create the overlay
network and perform filtering, and may not be practical for
large attacks.

Generalized network congestion control is related to
DDosS defense. loannidis et al. propose Aggregate Conges-
tion Control (ACC)/Pushback, which leverages router sup-
port to rate-limit groups of similar packets responsible for
congestion, and push filters upstream towards the sources
of those packets to preserve network bandwidth [22, 27].
ACC/Pushback requires non-negligible state at routers and
faces challenges in attack traffic identification and ISP inter-
operation. Stoica et al. propose a mechanism for State-
less Fair Queueing (SFQ) in the network core [40]. Their
scheme has edge routers maintain per-flow arrival-rate in-
formation. Edge routers label packets based on their flow’s
rate information, and core network routers use probabilis-
tic dropping based on the packet labels to fairly distribute
bandwidth among flows. SFQ requires that the malicious
flows’ edge routers implement the labeling, so that those
flows can be rate limited in the core.

Researchers recently investigated using overlay net-
works to mitigate the effect of DoS attacks. Keromytis et
al. designed the Secure Overlay Services (SOS) architec-
ture to proactively defend against DoS attacks [25]. SOS
uses an overlay network to authenticate users and installs
filters at the ISP level. Anderson generalizes the SOS ar-
chitecture by considering different filtering techniques and
overlay routing mechanisms and proposes Mayday [4]. Ad-
kins et al. propose the use of the Internet Indirection In-
frastructure (i3) [39] to enable the victim to stop individual
flows by removing the unique forwarding pointer that each
sender possesses [1]. An advantage of these techniques is
that they do not require changing the current Internet in-
frastructure. However, they assume presence of an overlay
infrastructure, they require per-flow state in the overlay net-
work, and they assume updated client and server software
and protocols.

Mirkovic et al. propose D-Ward, an automated system
that detects flooding attacks on a link and automatically in-
stalls filters [29]. In their system, the receiver has no control
over these filters, and so the receiver has no way of stop-
ping a widely distributed flooding attack or choosing flows



it wants to serve in case of a flash crowd [24]. Jamjoom
and Shin propose persistent dropping for dealing with flash
crowds [23]. Their drop policy preferentially drops TCP
SYN packets in favor of preserving ongoing TCP flows, but
does not deal with DoS attacks that may flood with traffic
other than TCP SYNSs.

Our SIFF protocol or a capability-based approach that
uses per-flow state can easily be implemented in a secure
active network environment [3].

Anderson et al. present a capability-based approach,
where a sender first needs to obtain a capability from the in-
frastructure to send traffic to a receiver [5]. Their approach
is similar to ours, but requires per-flow state at each router.

Gligor analyzes various mechanisms for filtering exces-
sive connection establishment requests [18]. Assuming that
the network connections are not saturated, he analyzes the
waiting time guarantees that various puzzle and client chal-
lenge techniques provide and comes to the intriguing con-
clusion that puzzles are not useful to provide any guarantees
of waiting time.

In contrast to these previous approaches, the mechanisms
we present in this paper provide the victim of a flooding at-
tack (or a server in the case of flash crowds) to select indi-
vidual traffic flows that it wants to stop, without requiring
per-flow state in the network (in fact, without contacting
any routers or ISPs), while still enabling legacy clients or
servers to communicate with updated servers or clients.

1.2 Organization

The remainder of our paper is composed as follows: in
Section 2 we define the properties and assumptions that we
make in designing SIFF. In Section 3 we present a detailed
design of the SIFF system and protocols. In Section 4 we
present a model, based on real Internet topologies, to ana-
lyze SIFF’s performance. In Section 5 we discuss several
possible modifications and extensions to SIFF. Finally, in
Section 6 we conclude the paper.

2 Problem Statement and Assumptions

Several researchers recently report that while the victim
is in the best position to detect flooding DDoS attacks, it
lacks the means to stop malicious flows in the current In-
ternet architecture [1, 5, 18]. Similarly, flash crowds ex-
haust the bandwidth on network links and TCP flows mutu-
ally prevent each other from achieving high bandwidth [24]
(the additive increase when there is no packet loss and
multiplicative decrease when there is packet loss causes
TCP connections to reduce their bandwidth to a very small
amount if packet loss exceeds 5%). Thus, there is the need
for a mechanism that enables the victim of a flooding attack
or the server of a flash crowd to be able to stop individual

flows before they saturate its network, to provide good per-
formance to the remaining flows. In this paper, we present
SIFF, a Stateless Internet Flow Filter that enables an end-
host to stop individual traffic flows from reaching it, with-
out keeping per-flow state in the network. Specifically, SIFF
provides the following properties:

e Client/Server privileged communication. SIFF al-
lows a client and server to establish a privileged chan-
nel over IP whose packets take precedence over non-
privileged packets.

e Recipient controlled privileged flows. SIFF gives the
receiving host of a privileged communication channel
the ability to tear-down that channel, and thus stop
the flow of packets on the channel from reaching its
network. Packets from that channel will get dropped
by a router close to the sender with, high probability,
and thus these packets will not take up bandwidth re-
sources on a link close to the receiver.

e Limited spoofing of source addresses. Equivalent
to ingress filtering—the receiving host of a privileged
communication channel can be sure, with high prob-
ability, that the packets arriving on that channel were
sent by a host on the same network as the host having
the source IP address in the packet.

e No end-host/ISP or inter-ISP cooperation. SIFF
does not require end-host signaling of routers or the
signaling of routers of one ISP by those of another ISP.

e No intra-1SP cooperation. SIFF does not require sig-
naling between a single ISP’s routers beyond that re-
quired for packet routing.

e Small, constant state at routers. Routers implement-
ing SIFF need only keep a constant amount of state per
router interface, independent of the number of privi-
leged channels traversing that router. This is one of
the main features of SIFF, as other mechanisms we are
aware of require per-flow state at routers to achieve the
above properties.

e Small, per-packet processing at routers. A SIFF
router need only execute two equality checks for ev-
ery privileged packet, or a single hash computation
(which can be reduced to a table lookup) for every
unprivileged packet, that it forwards. These compu-
tations are independent of the number of privileged or
unprivileged channels traversing a router. The hashing
and equality checks can be done in parallel with the
routing table lookup, though in practice the equality
checks can serve as a packet filter to prevent extrane-
ous lookups.



e Backward Compatibility. Legacy clients and servers
do not break SIFF, and legacy clients can communicate
with updated servers and vice versa. However, both
clients and servers must be updated to take advantage
of the system’s benefits.

To construct a system with these properties, we begin
with the following assumptions, some of which we use for
simplicity of presentation and will relax or remove in Sec-
tion 5.2.

We first assume that a victim has the ability to determine
that it is under attack, and can differentiate between legiti-
mate client flows and malicious or misbehaving flows. We
do not require that this differentiation be on a per-packet ba-
sis, or that it be lightweight; only that it exist. 1 However,
the details of a traffic differentiation algorithm are applica-
tion specific and orthogonal to the focus of this paper, which
simply assumes their existence.

Secondly, we assume that clients, servers and routers
are redesigned and conform to a modified IP network layer
(non-updated clients and servers will still be able to com-
municate with updated clients and servers, but they will not
realize the benefits of the new system). Specifically:

e Marking space in the IP header. We assume that the
IP header has sufficient space to accommodate the in-
formation that routers mark in the packet.

e Routers mark every packet. We assume that SIFF
routers are capable of executing minor manipulations
of the marking field of every packet that they forward.
These manipulations can be done in parallel with a
routing table lookup. This assumption is minor, since
Internet routers must already decrement the TTL and
recalculate the IP Header Checksum of every packet
they forward.

e Short-term Route Stability. We assume that Inter-
net routes are stable on the order of the time of a
client/server transaction. Violation of this assumption
will not break our system outright, rather, the system’s
performance is likely to decrease with increasing route
instability below the time required for a client/server
transaction. Network routes are more likely to fluc-
tuate under DDoS attack, precisely when our system
requires their stability. However, SIFF will also mit-
igate the effect of DDoS on routers (as packet floods
are dropped early in the network), and is, in this way,
self-reinforcing. Unfortunately, it is difficult to model
the behavior of a system as complex as the Internet,
especially under DDoS attack, so verification of this
assumption is an open problem.

1Because our mechanism limits source address spoofing, it can make
malicious host identification easier.

Our approach divides all Internet traffic into two types,
privileged and unprivileged. Privileged packets are always
given priority over non-privileged ones when contending
for bandwidth. To establish a privileged channel, a client
must obtain a capability through a special handshake over
an unprivileged channel. Privileged channels consist of spe-
cially marked packets embedded with the capability ob-
tained through the unprivileged handshake.

The capabilities in SIFF are based on information in-
serted into all packets by the network en route to their desti-
nations. This mechanism is similar to that of P, proposed
by us in an earlier paper [47], except that in SIFF, the com-
putation process for markings is slightly more elaborate, as
packet markings change over time (as opposed to remaining
constant in P3), and are used by both routers and endhosts,
rather than just by endhosts. The capability is generated
piecemeal by each router and marked in a field of the packet
along the path to the packet’s destination. The pieces at
each router are generated entirely from packet header data
and local topology information.

SIFF provides the above benefits to the receiver of a priv-
ileged channel. When forwarding a privileged packet, a
router simply checks part of the embedded capability to see
if it matches the markings that the router would have added
to an unprivileged packet—if they match, then the packet is
forwarded,; if they do not, then the packet is dropped. The
capabilities themselves are based on the packet markings,
which change independently at each router with a certain
frequency. Routers maintain a window of valid markings
and signal a change of marking to a packet recipient by re-
placing old markings in the embedded capability with new
ones. Because the packet recipient, rather than the packet’s
sender, is receiving the capability updates, continued privi-
leged communication requires that the receiver periodically
update the sender’s capability. Thus, the receiver of a packet
flow has the option to halt that flow by simply refusing to
forward capability updates. Attackers can still flood using
unprivileged packets, but they will no longer disrupt ex-
isting privileged communications. Furthermore, during an
unprivileged flooding attack, a legitimate client and server
need only pass two packets (a total of one round trip) be-
tween themselves to establish a privileged channel and com-
municate, undisturbed, over privileged packets.

3 Design

The SIFF system provides a server with the ability to
establish privileged communication with whatever clients it
chooses by providing those clients with a capability token. 2

2For ease of presentation, we refer to a flow’s source as the client and a
flow’s destination as the server. This does not mean that privileged chan-
nels can only be established from clients to servers.



Privileged packets carry capabilities that are verified piece-
meal (and statelessly) by the routers in the network, and are
dropped when the verification fails. Routers implementing
SIFF are programmed to give preferential treatment to priv-
ileged packets, so that privileged packets are never dropped
in favor of unprivileged ones (legacy packets not conform-
ing to our scheme are treated as unprivileged packets). Priv-
ileged channel capabilities are time limited and require up-
dating by the server to remain valid. Because server coop-
eration is required for capability updates, a server can halt
the packets of a privileged channel by simply quenching its
capability update messages.

At a high level, the system works as follows: clients
and servers participate in a handshake (similar to the TCP
handshake, which can be carried on top of this handshake)
using a specific type of unprivileged packet known as an
EXPLORER (or EXP) packet. Routers insert path specific
information into EXP packets, who’s aggregate among all
the routers in the path is used as a capability token for a
privileged channel between the client and the server. Af-
ter the handshake, clients and servers communicate us-
ing privileged packets called DATA (or DTA) packets, into
which they insert the capabilities carried in the EXP pack-
ets. When routers forward a DTA packet, they first check
to see if part of its capability equals that information which
would have been inserted into the packet had it been an EXP
packet. If the markings match, then the packet is forwarded.
If not, then the packet is immediately dropped.

Our discussion assumes a new format for the IP header.
The following fields are assumed to be present:

e Flags field (3-bits). This field contains the follow-
ing 1-bit flags: the signalling flag (SF), used to in-
dicate that the packet is a non-legacy (either EXP or
DTA) packet; the packet type flag (PT), used to indi-
cate that the packet is either a DTA (set) or EXP (unset)
packet; and the capability update (CU) flag, set to indi-
cate that the optional capability reply field is present in
the header.

e Capability field. This field is used by routers to add
their marks to the packet en route to its destination.

e (Optional) Capability reply field. This field is used
by packet recipients to signal to the packet sender a
new (or updated) capability, and is only present when
the capability update flag is set.

We do not assume an exact length for the capability or ca-
pability reply fields, as their lengths will depend upon other
parameters (such as the bits marked per router and maxi-
mum path length). We assume the presence of a source and
destination address in the header, but not their exact length.
No other fields of the packet header are used in our scheme.

In the following subsections, we describe in detail the
handshake protocol, as well as the potential issues in its im-
plementation.

3.1 Handshake Protocol

Any client wishing to contact a server over a privileged
channel must first complete a handshake protocol to obtain a
capability to insert into its privileged packets, and vice versa
for server communication with the client. A single hand-
shake is sufficient to provide both sides of a communication
with their capabilities. Furthermore, handshake packets can
carry upper layer protocol data. The protocol is shown in
Figure 1.
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Figure 1. Handshake establishing a privileged
channel. Aclientsends an EXPLORER packet
to the server, which gets marked with mark-
ing a. The server responds with its own EX-
PLORER packet, with « enclosed in the ca-
pability reply field. The client sends its first
DATA packet with « in its capability field and
with 3, from the server's EXPLORER packet,
enclosed in the capability reply field.

The initiator of the handshake (the client) first sends out
an EXP packet with its Capabi | i ty field initialized to
0. A packet is marked as an EXP packet by setting the
signalling (SF) flag and leaving the packet type (PT) flag
unset. All routers along the path left shift z bits into the
Capabi i ty field the EXP packet (see Section 3.2 for a
description of how these markings are computed). The ex-
ception to this rule is that the first router in the path that sees
a marking field of all 0 bits inserts a 1 bit before its marking
(so that the actual capability in the field will consist of all
bits up to, but not including, the most significant 1 bit.). Re-
call from Section 2 that we assume that the marking field is
large enough to accommodate the markings from all of the
routers in the path plus the 1 bit inserted by the first router.
EXP packet marking is shown in Figure 2(a).
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(b) Authentication scheme for DATA packets. Routers check the marking in the least significant bits
of the capability field, and rotate it into the most significant bits, if it is equal to what the marking

would be for an EXPLORER packet.
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(c) Windowed authentication and marking for DATA packets. Routers check that the marking equals
one of the valid markings in its window and always rotate the newest marking in the window into the

capability field.

Figure 2. Marking and authentication schemes for EXPLORER and DATA packets.

When the EXP packet arrives at the server, the server cre-
ates a response packet. The response packet is also an EXP
packet, with the Capabi | i t y field initialized to zero, but
with the capability update (CU) flag set, and the Capabi | -
ity Reply field initialized to the contents of the Capa-
bi | i ty field of the EXP packet from the client. When the
server’s EXP packet arrives at the client, the client exam-
ines the Capabi | ity Repl y field, takes all the bits up
to— but not including— the most significant 1 bit in the
packet, splits them into groups of z bits and reverses the or-
der of the groups to obtain its capability. This capability is
inserted into the Capabi | i t y field of all subsequent priv-
ileged packets that the client sends. To complete the hand-
shake, the client must send the server its capability, marked

by the routers in the server’s EXP packet’s Capabi ity
field. The client creates a DTA packet, with the CU flag set
and the Capabi | i ty field from the server’s EXP packet
in the Capabi | ity Reply field; just as the server did
for the client.

The router behavior for marking and forwarding DTA
packets is different from that used for EXP packets. When
a router receives a DTA packet, it calculates a marking
as though the packet were an EXP packet, but then only
verifies that the marking it has calculated is equal to the
marking in the least significant bits of the Capabi lity
field. If the marking is not equal, then the packet is imme-
diately dropped. If the marking is equal, then the router
right shifts that marking into the most significant bits of



the Capabi | i ty field. This causes the markings for the
next hop router to occupy the least significant bits. DTA
packet marking is shown in Figure 2(b). A DTA packet
will only reach its destination if all the routers along its
path match their markings to the least significant bits of the
packet’s Capabi | i ty field. Once the client’s privileged
DTA packet arrives at the server, the server can compute its
capability in the same way that the client did and the hand-
shake is complete, as both hosts can now communicate over
privileged DTA packets.

3.2 Router Marking Calculation

As described in the previous section, each router must
calculate a marking for every packet that it forwards; it left-
shifts the marking into the packet in the case of an EXP
packet, or verifies and right-shifts the marking in the case of
a DTA packet. For a particular packet, the marking is cal-
culated as the last z bits of the output of a keyed hash func-
tion with the following parameters as input; the IP address
of the interface at which the packet arrived at the current
router, the last-hop router’s outgoing interface IP address 2,
and the source and destination IP addresses of the packet
being forwarded.

The use of the source IP address as a hash input has the
effect of tying a capability to a particular host and elimi-
nates the effect of source address spoofing. If the attacker
is on a shared medium network with a legitimate client and
observes a capability transmitted to that client, the attacker
is limited to spoofing the client’s IP address when flooding
using that client’s capability. The server will revoke the ca-
pability (using a mechanism we introduce in Section 3.2.1)
and all packets using the client’s capability will be dropped
from the network. Although this results in a DoS on the
client, the attacker can presumably accomplish the same
goal by simply ignoring the transmission control mecha-
nism of the shared medium it occupies.

The use of the destination IP address as a hash input pre-
vents attackers from generating “marking maps” by sending
EXP packets from one attacker to another and observing the
marks that result. Any marks learned in this fashion will be
invalid when used to flood DTA packets to a different ma-
chine. 4

For SIFF to effectively stop forged privileged packet
floods, a router must be able to calculate its marking faster
than it can perform a route lookup. Otherwise, attackers
could simply flood a router with illegitimate DTA packets,

3The last-hop router’s IP address is used to improve the entropy of the
marking [47].

4A more serious vulnerability for a server would be to have a colluding
or unwitting host on its network respond to EXP packets, thus providing an
attacker with a capability that can be used to flood privileged DTA packets
to the server’s network. However, this problem can be avoided by careful
administration of the victim’s network.

causing the router to either overload its route-lookup capa-
bility or fill its buffer with DTA packets, and start drop-
ping potentially legitimate DTA packets indiscriminately.
To meet this performance goal, the router must be able to
calculate the hash function in hardware. Alternatively, the
router could select a random subset of bits of the source
and destination IP addresses to use in its hash function (it
is assumed that 7P;_; and I P; change infrequently), and
precalculate the hash results using all possible permutations
of these input bits. Of course, the bits of the addresses used
for the hash calculation would have to change periodically
to avoid attacker’s identification of them, perhaps as part of
the mechanism described in Section 3.2.1.

EXP—or legacy—packet floods do not interfere with
DTA packets, because of the priority given to DTA traffic.
However, even under these floods of packets the overall per-
formance of the router need not suffer, because the marking
calculation (or precalculated marking lookup table) can be
executed in parallel with the routing lookup in the router
because the marking does not depend on any routing deci-
sions.

3.2.1 Key Switching

Thus far, the router information inserted into packets has
been treated as static and unchanging. If this were the case,
than an attacker could simply obtain a capability through a
seemingly legitimate request, and then use that capability to
flood the server with privileged traffic. To meet the design
goal of allowing a server to stop a malicious flow that is
already in progress, we introduce the router key switching
mechanism.

To prevent an attacker from abusing a legitimately ac-
quired capability, we require that the capabilities in our sys-
tem change over time. This is accomplished by having the
routers change their markings periodically, by changing the
keys to the hash functions they use to compute the mark-
ings. However, rather than invalidate an entire capability
and force the client and server to execute another hand-
shake simply because one router changes its key, routers
keep a window of z keys as valid at any one time, where
x > 1. When a privileged packet with an old marking
(i.e. one still present in the router’s window, but not the
most recently computed one) arrives at the router, the router
shifts the most recent marking into the packet, thus pro-
viding the server with an updated capability. The server
can then signal its client of the updated capability using the
CUand Capabi l ity Reply mechanism, if the client is
well-behaved. ® Figure 2(c) shows window verification and

5A server in our scheme can be implemented with or without state. A
stateless receiver does not need to keep track of the capability for each
client and would simply reply to any packet by setting the CU flag and
filling in the Capabi | i ty Repl y field with the value in the latest privi-
leged packet’s Capabi | i ty field from that client. If the client is deemed



marking of privileged packets.

4 Analysis
4.1 Privileged Packet Flooding

SIFF mitigates the impact of flooding (or bandwidth
starvation) DoS attacks by isolating and protecting estab-
lished privileged communication from unprivileged com-
munication and enabling the receiver to downgrade priv-
ilege. In this section, we analyze the robustness of our
scheme against floods of privileged packets with forged ca-
pabilities.

First, we derive the probability that an unauthorized
router or end-host will be able to forge (by guessing) the
appropriate capability to allow its packets to reach a poten-
tial victim. Recall from Section 3 the two parameters: =z,
the number of markings each router maintains in its win-
dow; and z, the number of bits per router marking. The
probability that a randomly guessed capability will pass a
particular router is given by:

P (1 A)

and the probability that a randomly guessed capability will
pass all d routers in a path is simply P(z, z)?.

Recall from Section 3 that the capability field must be
large enough to accommaodate the markings of all routers in
the path (plus an additional 1 bit to indicate the first marking
in the field), or else the markings of some routers will be
pushed out of the field, and the capability (when used by
the sender of that packet) will not pass the inspection of
those routers whose markings were dropped. Table 1 shows
P(z, z), the probability of successfully forging a capability
to pass a single router, for reasonable values of 2 and z.

r=2 r=3 r=4 r=5
z=1 1] 0.7500 | 0.8750 | 0.9375 | 0.9688
z=2 | 04375 | 0.5781 | 0.6836 | 0.7627
2=3 | 0.2344 | 0.3301 | 0.4138 | 0.4871
z=4 1 0.1211 | 0.1760 | 0.2275 | 0.2758

Table 1. Evaluation of P(z, z) (the probability
to pass one router with a forged probability),
for common values of z and z.

Choosing a value for z (the maximum number of keys
that are valid at any one time on a router) presents a trade-

malicious, the automatic reply can be stopped. Although always respond-
ing with a capability update wastes bandwidth, we present this mechanism
for those concerned with maintaining IP as stateless at the endhosts. A
stateful implementation of this system is straightforward, and preferred.

off. Aswe show in Section 3.2.1, x must be at least 2, other-
wise every key change would force an additional handshake
between the client and server. Because a valid capability is
one that matches any of the x capabilities in the router’s
window, small values of x provide the smallest probability
that a randomly chosen capability will pass through a router.
(Table 1 shows this effect). The value of z also affects the
validity time of a capability. The minimum validity time
(ming,) is min,, = (r — 1) - Tk, where T denotes the
time a key (marking) is active (valid). The maximum valid-
ity time (max,,) is maz,, = x-Txk. ldeally, we would like
to get a small interval for the validity time, so that we can
tightly control the validity period, so we would like large
values of x to minimize the difference between min,,, and
maz.,. We can determine z from min,,, and maz,,,:

MaAL,
= MATyy, — MMy,

Because capabilities are only updated when the client and
server send packets to each other, the min,, metric should
be set just low enough so that all handshakes and most
packet traffic should be able to go back and forth from client
to server within that time period. The max,,, metric defines
the longest amount of time that a connection can remain idle
and still have a valid capability. Put in another way, max,,
defines the maximum amount of time that an attacker can
flood privileged packets with a particular capability, before
that capability is rejected by the network. We leave the ex-
act timing decisions to the community, and simply assume
in our experiments that « is likely to be from two to five.

20000 I ‘ I
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Figure 3. Path length distribution for three
CAIDA skitter monitors.

In Figure 3 we show the plots of the path lengths of the
Internet maps generated at three different CAIDA skitter
monitors [9]. To analyze the performance of our scheme
in filtering floods of forged privileged packets, we select
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Figure 4. Packet filtering performance for varying bits per router (z) and window sizes (z).

attackers at random from our map, and have them send a
number of packets with randomly forged capabilities. The
number of attackers and the number of packets per attacker
do not affect the outcome of our experiment, in which we
simply drop a certain percentage of attack packets at each
hop. We show the results of our experiments only from the
f-root skitter monitor; which are the most pessimistic be-
cause of the high concentration of paths close to the victim
relative to the other two monitors’ path distributions.

Figure 4(a) shows the ratio of total attack traffic at each
hop from the victim for varying values of z. As expected,
without filtering of any kind, eventually all attack pack-
ets arrive at the victim. Furthermore, with ideal filtering
(routers automatically drop all attack packets) we see a
curve that matches the path distribution, since the attackers’
packets are immediately dropped after one hop. The SIFF
scheme performs excellently, filtering out 97.14% of the at-
tack traffic using only a one bit marking per router (z=1),
and filtering out 100% of the attack traffic (six nines) with
a marking scheme of four bits per router (z=4).

Figure 4(b) shows the same experiment with a constant
z and a varying x. As expected (and suggested by Table 1)
the effect on filtering performance caused by varying z is
far greater than that caused by varying . Furthermore, al-
though not shown in the figure, it is intuitive that the effect
of varying x decreases as z increases.

4.2 Privileged Channel Establishment Under Un-
privileged Packet Flooding

As shown in the previous section, attacker flooding of
privileged packets has little effect on the victim, because so

few of the forged packets reach destinations even close to
the victim’s network. In this section, we analyze a different
attack approach, which is to flood with unprivileged pack-
ets for an extended period of time with the goal of stop-
ping all new connection establishments. However, unlike
the current Internet infrastructure, in which established TCP
flows can still be affected by IP packet floods, SIFF’s priv-
ileged flows are unaffected by unprivileged traffic conges-
tion. Thus, a client and server only need to exchange two
packets within min,,, time, the least amount of time that a
capability is valid (defined in the previous section), before
the privileged channel between them is established and they
can communicate from then on, unaffected by the ongoing
attack.

We assume that unprivileged traffic is causing conges-
tion at the last 7 hops of the network, and that the proba-
bility of getting dropped at any one of those routers is ;.
We ignore the probability of the server getting its outbound
packets dropped, because congestion in the routers during
flooding attacks is typically experienced by inbound packets
only. Because the drop probabilities at routers are indepen-
dent Bernoulli trials, the probability that a client and server
will be able to establish a privileged channel after one try
(by exchanging two packets is): P(connect after 1 try) =
(1 — Ei)l.

The probability that the client can connect after & tries
is:

P( connect after k tries)
=1— (1 — P(connect after 1 try))*
=1 (1 (1—&))*

For a given desired connection probability, P(connect)



the required number of connection attempts is:

_ log(1 — P(connect))
log(1 — (1 —¢)?)

A nice feature of this formula is that the expected number
of connection attempts depends logarithmically on the con-
nection probability, which indicates that even for large e,
a determined client can get a connection after a moderate
waiting time.

5 Discussion

In this section, we discuss some limitations, practical is-
sues and extensions to SIFF. We first discuss several classes
of bandwidth starvation attacks against which SIFF does not
completely defend. We also discuss a high-level approach
for implementing SIFF in an IPv4 environment, the combi-
nation of SIFF with puzzle auctions, the possibility of multi-
ple capabilities with different validity lengths, and the effect
of route stability on our scheme.

5.1 Limitations

We have identified several types of bandwidth attacks
that SIFF does not defend well against. We briefly describe
them in this section.

Although SIFF binds a source IP address to a particu-
lar capability (thus limiting the possibility of spoofing in
privileged flows to the same as ubiquitous ingress filtering),
without a mechanism to identify malicious traffic, it is still
possible for an attacker to rotate the active machines in its
attack. Presumably, when a subset of attacking machines
are blacklisted the attacker would activate a different subset
to request (and abuse) new capabilities. However, depend-
ing on the size of the victim’s blacklist, the attacker will be
limited in the number of active machines used at any one
time in the attack.

In a topology where not all routers implement SIFF, it
may be possible for a carefully placed bandwidth attack
to disrupt privileged communication. If the attacker pin-
points a link where a router does not implement SIFF, then
by flooding that link with unprivileged traffic he can cause
privileged traffic to be dropped, because the router at that
link will not give priority to privileged traffic. To prevent
this attack, it is sufficient that the router on the attacked link
implement the preferential treatment of privileged packets,
rather than the whole SIFF protocol.

The case of colluding attackers is difficult to solve in
SIFF. As mentioned in Section 3.2, a colluding attacker
node on or near the victim’s network can return capabilities
to attacking nodes outside the network. In general, collud-
ing attackers on either side of a transit network may sim-
ply grant each other capabilities and flood the network with
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privileged traffic, causing other privileged traffic traversing
that network to experience congested links. A possible so-
lution to this attack would be to have routers rate-limit in-
dividual capabilities, similar to the Aggregate Congestion
Control/Pushback mechanism [27].

Itis also important to note that, as designed in this paper,
SIFF is a layer-3 (IP) mechanism. As such, SIFF can grant
capabilities only at the granularity of hosts (i.e., single IP
addresses). For example, a SSH server cannot give privilege
to an SSH client without also granting privilege to any other
connection from that host.

5.2 Deployment in the Current Internet

The limited space in the IPv4 packet header and the
limited deployment that any routing infrastructure change
is likely to achieve makes it necessary to redesign SIFF.
Fortunately, both of these constraints can be satisfied by a
single approach: rather than constructing a system where
forged privileged flows are dropped anywhere in the net-
work we focus on hardening individual ISP’s against such
traffic flows. We assume two possible deployment models:
full ISP deployment and border ISP deployment. In the full
ISP deployment model, all routers under the control of a
particular ISP are upgraded with our scheme, whereas bor-
der ISP deployment requires only that all of an ISP’s border
routers be upgraded. The intuition behind both approaches
is that by limiting the number of marking routers (to just the
routers of the packet’s destination), each router can mark
more bits in the available marking space and forged priv-
ileged flows can still be stopped, albeit only once they ar-
rive at the victim’s ISP’s domain. Note that end-hosts, both
clients and servers, will still need to be modified to take ad-
vantage of these schemes.

SIFF requires some available space for marking in the
IPv4 packet header. We require one bit of the IP header
that is currently reserved (set to zero by all end-hosts) to
act as the signalling flag (SF) which, as mentioned in Sec-
tion 3, will differentiate legacy traffic from all traffic used
in our scheme. We do not assume any particular location
for the remaining markings, although of course, any loca-
tion chosen should avoid interaction with legacy protocols
(we offer some insight into how to avoid interaction with
fragmentation when marking the IP Identification field in
Appendix A). Furthermore, we remove the capability up-
date (CU) flag and assume that half of our available mark-
ing space is used for capability replies in every packet. The
packet type (PT) flag remains unchanged. Thus, if we as-
sume x bits available in the IPv4 packet, then £=2 bits are

2
used for capability marking, £>2 bits are used for capability

2
replies, and 2 bits are used for flags. We show SIFF’s per-
formance for varying numbers of marking bits in Figure 5.

The figure shows a significant reduction in the percent of



total attack traffic arriving at the victim, ranging from 25%
to 98.7%, depending on the number of marking bits used.

Finally, we address a security hole in the border ISP de-
ployment method. An attacker could determine its capa-
bility by simply sending a packet designed to produce an
ICMP error message at a router between the victim and the
ISPs border routers (for example, a TTL expiration). The
ICMP error packet sent by the router will include in its pay-
load the IP header and the first 8 bytes of the payload of the
original packet, thus returning to the attacker the capabil-
ity that will bypass the ISPs border routers. An approach
to prevent this attack is to have all the border routers of
the ISP’s network monitor outbound ICMP error messages
and remove the contents of the marking field in messages
that contain EXP packets. Although this may degrade per-
formance on border routers, ICMP has a simple header, so
packet inspection can be implemented in hardware. ICMP
attacks are not a problem for full-ISP deployment because
capability enabled routers can be programmed to mask out
the marking field of all EXP packets before they are encap-
sulated in ICMP error packets. Border ISP deployment is
also subject to the legacy router bandwidth attack described
in Section 5.1.
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Figure 5. Percentage of attack packets in the
last 5 hops to the victim for different marking
sizes and deployment methods.

5.3 Puzzle Auctions

SIFF can be combined with Wang and Reiter’s puzzle
auctions [46], to minimize the assumption that a server
needs to differentiate between legitimate and malicious
clients. The intuition behind puzzle auctions is that a client
makes a bid as to the difficulty of the puzzle it is willing
to solve in order to receive a capability. Presumably, com-
promised machines are unwilling (due to the chance that
their users would discover the compromise) or unable (due
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to the high frequency of their capability requests) to devote
as many resources to solving a puzzle as a legitimate client.

In a combined scheme, a client would transmit a value
2 in its initial EXP packet representing the difficulty of
the puzzle it wishes to solve. The server will receive
the capability y of [ bits in length and respond with
Yi—(z+1)|(y)z—0 (Where h(y).—o is the least significant x
bits of the hash of the capability y, and | is concatenation).
The client must perform 22— hash operations, on average,
before finding the correct pre-image of the last « bits of the
capability. This scheme could be used without adding any
fields beyond those already assumed in Section 3.

Puzzle auctions, in this context, have the disadvantage
that they reduce the search space for an attacker trying to
forge valid capabilities. Furthermore, there is a limit to the
difficulty of the puzzle given to the client, because the ca-
pability contained within the puzzle may expire while the
client is solving it.

5.4 Path Stability Effects

In Section 2 we assume Internet route stability (on the
order of a client transaction). If a route changes mid-flow,
then a client’s privileged packets will be dropped by the new
routers in the path (with high probability), and it will force
the client to renegotiate the SIFF handshake before being
able to send further privileged packets.

Route instability can be caused by multiple path effects.
Teixeira et al. analyze the CAIDA skitter topologies to show
that at least half of the endpoints in the Internet have more
than 2 partially-disjoint paths (where there are no common
routers between the source and destination ASes) [44].
However, this result is orthogonal to our system’s perfor-
mance as long as routing decisions between multiple equal-
cost paths are implemented in a flow preserving way (eg.
by hashing the flow fields of the TCP/IP packet headers) as
suggested by RFC2992 [20]. Furthermore, large-scale route
flapping has been shown to be detrimental to TCP perfor-
mance due to the difficulty in estimating path characteristics
such as round trip time [33]. Localized load-balancing does
not hurt TCP performance, but we assume that local load
balancing nodes can be manually configured to produce the
same markings.

An alternative SIFF forwarding policy may mitigate the
effect of mid-flow route changes. Rather than dropping
a privileged packet whose capability fails the verification
test, a router can simply demote the privileged packet to
unprivileged status. Furthermore, if unprivileged packets
were marked in the same way as privileged packets (with
markings pushed into the MSB of the capability field) then
this mechanism would allow the demoted packet to carry
the updated capability to the server in the same way that a
privileged packet would. Using this scheme, route changes



would only effect privileged connectivity when the server is
under DDoS.

5.5 Multiple Capability Classes

In order to better accommodate sessions with different
packet frequencies, routers can have multiple valid capa-
bilities which change at different frequencies. The routers
would decide which capability to insert (or verify) in the
packet based on a special TOS-like field that would be ini-
tialized by the client based on its session requirements. The
server is, of course, at liberty to refuse to respond to a client
requesting a long-lived capability. However, a server may
also delay the transmission of a long lived capability, to
minimize its useful validity time at the client.

6 Conclusion

Today’s Internet is susceptible to DDoS flooding and
flash crowds, where network links are saturated upstream
from a victim, causing the victim’s service to become un-
available to its clients. TCP services are particularly vulner-
able to such flooding attacks, as the TCP exponential back-
off mechanism causes a severe reduction in performance
if packet loss is above 5%. These flooding vulnerabilities
are possible in part because of the end-to-end principle, in
which the network is modeled simply as a transit mecha-
nism for packets, and all interpretation of those packets is
meant to take place at the packet’s destination. However,
packet floods disable the network as they converge on links
upstream of a victim, and there is no “intelligence” in the
network to filter them out.

Some research has been done into DDoS flooding coun-
termeasures, however these solutions often require per-flow
state on routers, inter-ISP collaboration, an overlay infras-
tructure, or extensive router processing.

In this paper, we present SIFF, a novel design that ad-
dresses the DDoS flooding problem in a future Internet set-
ting, without relying on any of the above assumptions. Us-
ing this design as a basis, we also present a countermea-
sure that may be deployed in the current Internet, assuming
that client and server software is updated. SIFF does not
require any of the above assumptions of previous counter-
measures. In SIFF, all network traffic is separated into priv-
ileged and unprivileged packets, with the goal of protecting
privileged packets from unprivileged packet flooding, and
allowing packet receivers to selectively terminate individual
privileged flows and have their packets be dropped deep in
the network, before arriving near the victim. Those clients
and servers who deploy our protocol will see significant im-
munity to packet flooding, provided that their ISP deploys
updated routers with our technology.
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assumptions such as no packet reordering or loss). De-
spite the fact that fragmented traffic represents only between
0.25% and 0.75% of packets in the Internet [36, 41], we
consider a mechanism to allow packet marking to coexist
with fragmentation.

We offer the solution that routers only mark packets that
will never get fragmented and that are not fragments them-
selves. The latter class is simple to identify, as these pack-
ets will have a non-zero Fr agnment O f set field in their
header or a mor e fragment s flag which is set. Deter-
mining which packets will never get fragmented is more
challenging. The simplest classification is those IP pack-
ets that have the Do Not Fragnent (DF) bit set in the
Fl ags field of the IP header. This classification is ade-
quate for servers with a majority of TCP traffic — as most
modern TCP implementations set the DF bit by default [45],
as specified by the Path MTU Discovery standard in RFC
1191 [30]. Packets that do not match this predicate are
ineligible for being EXP packets. DTA packets could be
fragmented, provided that all the fragments follow the same
path through the network, and that the fragmenting router
doesn’t reset any of the reserved bits that are normally set
in a DTA packet.

Unfortunately, the DF classification is inadequate for
UDP traffic, of which a much smaller percent of traffic has
the DF bit set. Without the DF bit, classifying packets that
will never be fragmented is no longer 100% accurate. An
alternative method would be to only mark UDP traffic that
is smaller than the smallest Maximum Transmission Unit
(MTU) for common Internet traffic links. A widely ac-
cepted value for this is 576 bytes [7], however, lower MTU
links are possible and perhaps likely, with the expected pro-
liferation of web-enabled phones. We show the percent of
markable traffic from a 31 day trace of packets from the
Lawrence Berkeley Lab DMZ in Table 2. In either case,
the networking community will need to agree on a specific
value for a minimum MTU before we can execute our hand-
shake algorithm over non-DF or UDP specific services.

Packet Classification Percent markable
TCP with DF 98.24%
UDP with DF 26.69%

UDP <576b or DF Set 87.12%
UDP <250b or DF Set 79.06%
UDP <100b or DF Set 64.75%

Table 2. Percent of packets that can be
marked by classification. Average over 31
days of traffic from Lawrence Berkeley Lab
DMZ, May 1-31, 2003.



