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Abstract
Today’s smartphone operating systems frequently fail

to provide users with adequate control over and visibility
into how third-party applications use their private data.
We address these shortcomings with TaintDroid, an ef-
ficient, system-wide dynamic taint tracking and analy-
sis system capable of simultaneously tracking multiple
sources of sensitive data. TaintDroid provides realtime
analysis by leveraging Android’s virtualized execution
environment. TaintDroid incurs only 14% performance
overhead on a CPU-bound micro-benchmark and im-
poses negligible overhead on interactive third-party ap-
plications. Using TaintDroid to monitor the behavior of
30 popular third-party Android applications, we found
68 instances of potential misuse of users’ private infor-
mation across 20 applications. Monitoring sensitive data
with TaintDroid provides informed use of third-party ap-
plications for phone users and valuable input for smart-
phone security service firms seeking to identify misbe-
having applications.

1 Introduction
A key feature of modern smartphone platforms is a

centralized service for downloading third-party applica-
tions. The convenience to users and developers of such
“app stores” has made mobile devices more fun and use-
ful, and has led to an explosion of development. Apple’s
App Store alone served nearly 3 billion applications af-
ter only 18 months [4]. Many of these applications com-
bine data from remote cloud services with information
from local sensors such as a GPS receiver, camera, mi-
crophone, and accelerometer. Applications often have le-
gitimate reasons for accessing this privacy sensitive data,
but users would also like assurances that their data is used
properly. Incidents of developers relaying private infor-
mation back to the cloud [35, 12] and the privacy risks
posed by seemingly innocent sensors like accelerome-
ters [19] illustrate the danger.

Resolving the tension between the fun and utility of
running third-party mobile applications and the privacy
risks they pose is a critical challenge for smartphone plat-
forms. Mobile-phone operating systems currently pro-
vide only coarse-grained controls for regulating whether
an application can access private information, but pro-
vide little insight into how private information is actu-
ally used. For example, if a user allows an application
to access her location information, she has no way of
knowing if the application will send her location to a
location-based service, to advertisers, to the application
developer, or to any other entity. As a result, users must
blindly trust that applications will properly handle their
private data.

This paper describes TaintDroid, an extension to the
Android mobile-phone platform that tracks the flow of
privacy sensitive data through third-party applications.
TaintDroid assumes that downloaded, third-party appli-
cations are not trusted, and monitors–in realtime–how
these applications access and manipulate users’ personal
data. Our primary goals are to detect when sensitive data
leaves the system via untrusted applications and to facil-
itate analysis of applications by phone users or external
security services [33, 55].

Analysis of applications’ behavior requires sufficient
contextual information about what data leaves a device
and where it is sent. Thus, TaintDroid automatically
labels (taints) data from privacy-sensitive sources and
transitively applies labels as sensitive data propagates
through program variables, files, and interprocess mes-
sages. When tainted data are transmitted over the net-
work, or otherwise leave the system, TaintDroid logs the
data’s labels, the application responsible for transmitting
the data, and the data’s destination. Such realtime feed-
back gives users and security services greater insight into
what mobile applications are doing, and can potentially
identify misbehaving applications.

To be practical, the performance overhead of the Taint-
Droid runtime must be minimal. Unlike existing so-



lutions that rely on heavy-weight whole-system emula-
tion [7, 57], we leveraged Android’s virtualized archi-
tecture to integrate four granularities of taint propaga-
tion: variable-level, method-level, message-level, and
file-level. Though the individual techniques are not
new, our contributions lie in the integration of these
techniques and in identifying an appropriate trade-off
between performance and accuracy for resource con-
strained smartphones. Experiments with our prototype
for Android show that tracking incurs a runtime over-
head of less than 14% for a CPU-bound microbench-
mark. More importantly, interactive third-party applica-
tions can be monitored with negligible perceived latency.

We evaluated the accuracy of TaintDroid using 30 ran-
domly selected, popular Android applications that use lo-
cation, camera, or microphone data. TaintDroid correctly
flagged 105 instances in which these applications trans-
mitted tainted data; of the 105, we determined that 37
were clearly legitimate. TaintDroid also revealed that 15
of the 30 applications reported users’ locations to remote
advertising servers. Seven applications collected the de-
vice ID and, in some cases, the phone number and the
SIM card serial number. In all, two-thirds of the applica-
tions in our study used sensitive data suspiciously. Our
findings demonstrate that TaintDroid can help expose po-
tential misbehavior by third-party applications.

Like similar information-flow tracking systems [7,
57], a fundamental limitation of TaintDroid is that it can
be circumvented through leaks via implicit flows. The
use of implicit flows to avoid taint detection is, in and of
itself, an indicator of malicious intent, and may well be
detectable through other techniques such as automated
static code analysis [14, 46] as we discuss in Section 8.

The rest of this paper is organized as follows: Sec-
tion 2 provides a high-level overview of TaintDroid, Sec-
tion 3 describes background information on the Android
platform, Section 4 describes our TaintDroid design,
Section 5 describes the taint sources tracked by Taint-
Droid, Section 6 presents results from our Android ap-
plication study, Section 7 characterizes the performance
of our prototype implementation, Section 8 discusses the
limitations of our approach, Section 9 describes related
work, and Section 10 summarizes our conclusions.

2 Approach Overview
We seek to design a framework that allows users to

monitor how third-party smartphone applications handle
their private data in realtime. Many smartphone appli-
cations are closed-source, therefore, static source code
analysis is infeasible. Even if source code is available,
runtime events and configuration often dictate informa-
tion use; realtime monitoring accounts for these environ-
ment specific dependencies.

Monitoring network disclosure of privacy sensitive in-
formation on smartphones presents several challenges:

• Smartphones are resource constrained. The re-
source limitations of smartphones precludes the use
of heavyweight information tracking systems such
as Panorama [57].

• Third-party applications are entrusted with several
types of privacy sensitive information. The mon-
itoring system must distinguish multiple informa-
tion types, which requires additional computation
and storage.

• Context-based privacy sensitive information is dy-
namic and can be difficult to identify even when
sent in the clear. For example, geographic locations
are pairs of floating point numbers that frequently
change and are hard to predict.

• Applications can share information. Limiting the
monitoring system to a single application does not
account for flows via files and IPC between applica-
tions, including core system applications designed
to disseminate privacy sensitive information.

We use dynamic taint analysis [57, 44, 8, 61, 39] (also
called “taint tracking”) to monitor privacy sensitive in-
formation on smartphones. Sensitive information is first
identified at a taint source, where a taint marking indi-
cating the information type is assigned. Dynamic taint
analysis tracks how labeled data impacts other data in a
way that might leak the original sensitive information.
This tracking is often performed at the instruction level.
Finally, the impacted data is identified before it leaves
the system at a taint sink (usually the network interface).

Existing taint tracking approaches have several lim-
itations. First and foremost, approaches that rely on
instruction-level dynamic taint analysis using whole sys-
tem emulation [57, 7, 26] incur high performance penal-
ties. Instruction-level instrumentation incurs 2-20 times
slowdown [57, 7] in addition to the slowdown introduced
by emulation, which is not suitable for realtime analysis.
Second, developing accurate taint propagation logic has
proven challenging for the x86 instruction set [40, 48].
Implementations of instruction-level tracking can experi-
ence taint explosion if the stack pointer becomes falsely
tainted [49] and taint loss if complicated instructions
such as CMPXCHG, REP MOV are not instrumented
properly [61]. While most smartphones use the ARM
instruction set, similar false positives and false negatives
could arise.

Figure 1 presents our approach to taint tracking on
smartphones. We leverage architectural features of vir-
tual machine-based smartphones (e.g., Android, Black-
Berry, and J2ME-based phones) to enable efficient,
system-wide taint tracking using fine-grained labels with
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Figure 1: Multi-level approach for performance efficient
taint tracking within a common smartphone architecture.

clear semantics. First, we instrument the VM interpreter
to provide variable-level tracking within untrusted ap-
plication code.1 Using variable semantics provided by
the interpreter provides valuable context for avoiding
the taint explosion observed in the x86 instruction set.
Additionally, by tracking variables, we maintain taint
markings only for data and not code. Second, we use
message-level tracking between applications. Tracking
taint on messages instead of data within messages mini-
mizes IPC overhead while extending the analysis system-
wide. Third, for system-provided native libraries, we use
method-level tracking. Here, we run native code with-
out instrumentation and patch the taint propagation on
return. These methods accompany the system and have
known information flow semantics. Finally, we use file-
level tracking to ensure persistent information conserva-
tively retains its taint markings.

To assign labels, we take advantage of the well-
defined interfaces through which applications access sen-
sitive data. For example, all information retrieved from
GPS hardware is location-sensitive, and all informa-
tion retrieved from an address book database is contact-
sensitive. This avoids relying on heuristics [10] or man-
ual specification [61] for labels. We expand on informa-
tion sources in Section 5.

In order to achieve this tracking at multiple granulari-
ties, our approach relies on the firmware’s integrity. The
taint tracking system’s trusted computing base includes
the virtual machine executing in userspace and any na-
tive system libraries loaded by the untrusted interpreted
application. However, this code is part of the firmware,
and is therefore trusted. Applications can only escape
the virtual machine by executing native methods. In our
target platform (Android), we modified the native library
loader to ensure that applications can only load native li-
braries from the firmware and not those downloaded by
the application. Note that an early 2010 survey of the top
50 most popular free applications in each category of the
Android Market [2] (1100 applications in total) revealed
that less than 4% included a .so file. A similar survey
conducted in mid 2010 revealed this fraction increased to
5%, which indicates there is growth in the number of ap-

plications using native third-party libraries, but that the
number of affected applications remains small.

In summary, we provide a novel, efficient, system-
wide, multiple-marking, taint tracking design by com-
bining multiple granularities of information tracking.
While some techniques such as variable tracking within
an interpreter have been previously proposed (see Sec-
tion 9), to our knowledge, our approach is the first to
extend such tracking system-wide. By choosing a mul-
tiple granularity approach, we balance performance and
accuracy. As we show in Sections 6 and 7, our system-
wide approach is both highly efficient (∼14% CPU over-
head and ∼4.4% memory overhead for simultaneously
tracking 32 taint markings per data unit) and accurately
detects many suspicious network packets.

3 Background: Android
Android [1] is a Linux-based, open source, mobile

phone platform. Most core phone functionality is imple-
mented as applications running on top of a customized
middleware. The middleware itself is written in Java
and C/C++. Applications are written in Java and com-
piled to a custom byte-code known as the Dalvik EXe-
cutable (DEX) byte-code format. Each application exe-
cutes within its Dalvik VM interpreter instance. Each in-
stance executes as unique UNIX user identities to isolate
applications within the Linux platform subsystem. Ap-
plications communicate via the binder IPC mechanism.
Binder provides transparent message passing based on
parcels. We now discuss topics necessary to understand
our tracking system.
Dalvik VM Interpreter: DEX is a register-based ma-
chine language, as opposed to Java byte-code, which is
stack-based. Each DEX method has its own predefined
number of virtual registers (which we frequently refer to
as simply “registers”). The Dalvik VM interpreter man-
ages method registers with an internal execution state
stack; the current method’s registers are always on the
top stack frame. These registers loosely correspond to
local variables in the Java method and store primitive
types and object references. All computation occurs
on registers, therefore values must be loaded from and
stored to class fields before use and after use. Note that
DEX uses class fields for all long term storage, unlike
hardware register-based machine languages (e.g., x86),
which store values in arbitrary memory locations.
Native Methods: The Android middleware provides ac-
cess to native libraries for performance optimization and
third-party libraries such as OpenGL and Webkit. An-
droid also uses Apache Harmony Java [3], which fre-
quently uses system libraries (e.g., math routines). Na-
tive methods are written in C/C++ and expose function-
ality provided by the underlying Linux kernel and ser-
vices. They can also access Java internals, and hence are
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Android contains two types of native methods: internal
VM methods and JNI methods. The internal VM methods
access interpreter specific structures and APIs, whereas
JNI methods conform to Java native interface standards
specifications [cite]. The specifications include passing Java
arguments to JNI methods as separate variables, which is
performed automatically by a call bridge in Dalvik. Internal
VM methods do not have this luxury and manually parse
arguments from a byte array of arguments created by the
interpreter.

Android’s middleware Java libraries make frequent use
of the Java Native Interface (JNI). The native methods are
written in C and C++ and expose the POSIX functionality
provided by the underlying Linux kernel and services. An-
droid uses the Apache Harmony implementation of Java [12]
for base Java functionality in the Dalvik VM. Portions of
the Apache Harmony implementation wraps system libraries
(e.g., math libraries) to provide functionality. The Android
binder and parcel interfaces also make use of JNI. Fur-
thermore, Android uses JNI to includes Java interfaces to
third party libraries such as OpenGL and Webkit. Finally,
Android provides the Native Development Toolkit (NDK)
to allow third party application developers to implement
and package native libraries with downloaded applications.
However, NDK use is strongly discouraged, as it impedes
application portability on a platform that runs on different
instruction set architectures, including ARM and x86. The
NDK is primarily seen as a means of providing better
runtime performance.

IV. TAINTDROID ARCHITECTURE

TaintDroid is a system that performs system-wide taint
tracking built upon Android. Figure 2 shows TaintDroid
architecture. TaintDroid propagates taint tags within an
application and between applications.

The goal of TaintDroid is to perform taint to tracking to
enforce security polices to untrusted third-party applications.
For correct taint tracking, TaintDroid’s trusted computing
base includes the firmware, including all system applica-
tions and libraries provided by the stock Android distribu-
tion. Similar assumptions are made by other taint tracking
systems, e.g., Panorama [4]. In addition, we assume all
downloaded (i.e., unknown) code executes within the Dalvik
VM. We do not allow execution of downloaded native code,
which do not propagate taint tags or may maliciously modify
taint tag storage.

Figure 2 shows an example of taint tracking in TaintDroid.
Information is tainted (1) in a trusted application with
sufficient context (e.g., the location provider). The taint
interface invokes a native method (2) that interfaces with the

Trusted Application Untrusted Application

JNI Hook Binder Hook

DVM InterpreterDVM Intepreter

Binder Kernel Module

Virtual Taint Map Virtual Taint Map

Binder Hook

Trusted Library

JNI Hook

Taint Sink(1)

(2)

(3)
(4)

(5)
(6)

(7)

(8)

(9)

(10)

(11)









�

In
te

rp
re

te
d

C
o
d
e

U
se

rs
p
ac

e
K

er
n
el

Taint Source

Figure 2. TaintDroid Architecture

Dalvik VM interpreter, storing the specified taint marking(s)
in the virtual taint map. As the trusted application uses the
tainted information, the Dalvik VM propagates taint tags
(3) according to our data flow rules. When the trusted ap-
plication uses the tainted information in an IPC transaction,
the modified binder library (4) ensures the parcel message
carries a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently
through the kernel (5) and received by the remote untrusted
application. Note that the third-party interpreted code is
untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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Figure 2: TaintDroid architecture within Android.

included in our trusted computing base (see Section 2).
Android contains two types of native methods: inter-

nal VM methods and JNI methods. The internal VM
methods access interpreter-specific structures and APIs.
JNI methods conform to Java native interface standards
specifications [32], which requires Dalvik to separate
Java arguments into variables using a JNI call bridge.
Conversely, internal VM methods must manually parse
arguments from the interpreter’s byte array of arguments.
Binder IPC: All Android IPC occurs through binder.
Binder is a component-based processing and IPC frame-
work designed for BeOS, extended by Palm Inc., and
customized for Android by Google. Fundamental to
binder are parcels, which serialize both active and stan-
dard data objects. The former includes references to
binder objects, which allows the framework to manage
shared data objects between processes. A binder kernel
module passes parcel messages between processes.

4 TaintDroid
TaintDroid is a realization of our multiple granularity

taint tracking approach within Android. TaintDroid uses
variable-level tracking within the VM interpreter. Mul-
tiple taint markings are stored as one taint tag. When
applications execute native methods, variable taint tags
are patched on return. Finally, taint tags are assigned
to parcels and propagated through binder. Note that
the Technical Report [17] version of this paper contains
more implementation details.

Figure 2 depicts TaintDroid’s architecture. Informa-
tion is tainted (1) in a trusted application with sufficient
context (e.g., the location provider). The taint inter-
face invokes a native method (2) that interfaces with the
Dalvik VM interpreter, storing specified taint markings
in the virtual taint map. The Dalvik VM propagates taint
tags (3) according to data flow rules as the trusted ap-
plication uses the tainted information. Every interpreter
instance simultaneously propagates taint tags. When the
trusted application uses the tainted information in an IPC

transaction, the modified binder library (4) ensures the
parcel has a taint tag reflecting the combined taint mark-
ings of all contained data. The parcel is passed transpar-
ently through the kernel (5) and received by the remote
untrusted application. Note that only the interpreted code
is untrusted. The modified binder library retrieves the
taint tag from the parcel and assigns it to all values read
from it (6). The remote Dalvik VM instance propagates
taint tags (7) identically for the untrusted application.
When the untrusted application invokes a library spec-
ified as a taint sink (8), e.g., network send, the library
retrieves the taint tag for the data in question (9) and re-
ports the event.

Implementing this architecture requires addressing
several system challenges, including: a) taint tag stor-
age, b) interpreted code taint propagation, c) native code
taint propagation, d) IPC taint propagation, and e) sec-
ondary storage taint propagation. The remainder of this
section describes our design.

4.1 Taint Tag Storage
The choice of how to store taint tags influences per-

formance and memory overhead. Dynamic taint track-
ing systems commonly store tags for every data byte or
word [57, 7]. Tracked memory is unstructured and with-
out content semantics. Frequently taint tags are stored
in non-adjacent shadow memory [57] and tag maps [61].
TaintDroid uses variable semantics within the Dalvik in-
terpreter. We store taint tags adjacent to variables in
memory, providing spatial locality.

Dalvik has five variable types that require taint stor-
age: method local variables, method arguments, class
static fields, class instance fields, and arrays. In all cases,
we store a 32-bit bitvector with each variable to encode
the taint tag, allowing 32 different taint markings.

Dalvik stores method local variables and arguments
on an internal stack. When an application invokes a
method, a new stack frame is allocated for all local vari-
ables. Method arguments are also passed via the internal
stack. Before calling a method, the callee places the ar-
guments on the top of the stack such that they become
high numbered registers in the callee’s stack frame. We
allocate taint tag storage by doubling the size of the stack
frame allocation. Taint tags are interleaved between val-
ues such that register vi originally accessed via fp[i] is
accessed as fp[2 · i] after modification. Note that Dalvik
stores 64-bit variables as two adjacent 32-bit registers on
the internal stack. While the byte-code interprets these
adjacent registers as a single 64-bit value, the interpreter
manages these registers as separate values. Therefore,
our modified stack transparently stores and retrieves 64-
bit values to and from separate 32-bit registers (at fp[2·i]
and fp[2 · i + 2]). Finally, native method targets require
a slightly different stack frame organization for reasons
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Figure 3: Modified Stack Format. Taint tags are inter-
leaved between registers for interpreted method targets
and appended for native methods. Dark grayed boxes
represent taint tags.

discussed in Section 4.3. The modified stack format is
shown in Figure 3.

Taint tags are stored adjacent to class fields and ar-
rays inside the VM interpreter’s internal data structures.
TaintDroid stores only one taint tag per array to minimize
storage overhead. Per-value taint tag storage is severely
inefficient for Java String objects, as all characters have
the same tag. Unfortunately, storing one taint tag per ar-
ray may result in false positives during taint propagation.
For example, if untainted variable u is stored into array A
at index 0 (A[0]) and tainted variable t is stored into A[1],
then array A is tainted. Later, if variable v is assigned
to A[0], v will be tainted, even though u was untainted.
Fortunately, Java frequently uses objects, and object ref-
erences are infrequently tainted (see Section 4.2), there-
fore this coding practice leads to less false positives.

4.2 Interpreted Code Taint Propagation
Taint tracking granularity and flow semantics influ-

ence performance and accuracy. TaintDroid implements
variable-level taint tracking within the Dalvik VM in-
terpreter. Variables provide valuable semantics for taint
propagation, distinguishing data pointers from scalar val-
ues. TaintDroid primarily tracks primitive type variables
(e.g., int, float, etc); however, there are cases when object
references must become tainted to ensure taint propaga-
tion operates correctly; this section addresses why these
cases exist. However, first we present taint tracking in
the Dalvik machine language as a formal logic.

4.2.1 Taint Propagation Logic
The Dalvik VM operates on the unique DEX machine

language instruction set, therefore we must design an ap-

propriate propagation logic. We use a data flow logic, as
tracking implicit flows requires static analysis and causes
significant performance overhead and overestimation in
tracking [29] (see Section 8). We begin by defining taint
markings, taint tags, variables, and taint propagation. We
then present our logic rules for DEX.

Let L be the universe of taint markings for a particular
system. A taint tag t is a set of taint markings, t ⊆ L.
Each variable has an associated taint tag. A variable is an
instance of one of the five types described in Section 4.1.
We use a different representation for each type. The local
and argument variables correspond to virtual registers,
denoted vx. Class field variables are denoted as fx to in-
dicate a field variable with class index x. Instance fields
require an instance object and are denoted vy(fx), where
vy is the instance object reference (note that both the ob-
ject reference and the dereferenced value are variables).
Static fields are denoted as fx alone, which is shorthand
for S(fx), where S() is the static scope. Finally, vx[·]
denotes an array, where vx is an array object reference
variable.

Our virtual taint map function is τ(·). τ(v) returns the
taint tag t for variable v. τ(v) is also used to assign a
taint tag to a variable. Retrieval and assignment are dis-
tinguished by the position of τ(·) w.r.t. the ← symbol.
When τ(v) appears on the right hand side of←, τ(v) re-
trieves the taint tag for v. When τ(v) appears on the left
hand side, τ(v) assigns the taint tag for v. For example,
τ(v1) ← τ(v2) copies the taint tag from v2 to v1.

Table 1 captures our propagation logic. The table enu-
merates abstracted versions of the byte-code instructions
specified in the DEX documentation. Register variables
and class fields are referenced by vX and fX , respec-
tively. R and E are the return and exception variables
maintained within the interpreter, respectively. A, B, and
C are constants in the byte-code. The table does not list
instructions that clear the taint tag of the destination reg-
ister. For example, we do not consider the array-length
instruction to return a tainted value even if the array is
tainted. Note that the array length is sometimes used to
aid direct control flow propagation (e.g., Vogt et al. [53]).

4.2.2 Tainting Object References

The propagation rules in Table 1 are straightforward
with two exceptions. First, taint propagation logics com-
monly include the taint tag of an array index during
lookup to handle translation tables (e.g., ASCII/UNI-
CODE or character case conversion). For example, con-
sider a translation table from lowercase to upper case
characters: if a tainted value “a” is used as an array index,
the resulting “A” value should be tainted even though the
“A” value in the array is not. Hence, the taint logic for
aget-op uses both the array and array index taint. Sec-
ond, when the array contains object references (e.g., an



Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vX and fX , respectively.
R and E are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description
const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB [vC ] ← vA τ(vB [·]) ← τ(vB [·]) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB [vC ] τ(vA) ← τ(vB [·]) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ(vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to field fC and object reference taint

public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i); }

return valueOfCache.CACHE [i+128];
}
static class valueOfCache {

static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {

CACHE[i+128] = new Integer(i); } }
}

Figure 4: Excerpt from Android’s Integer class illustrat-
ing the need for object reference taint propagation.

Integer array), the index taint tag is propagated to the ob-
ject reference and not the object value. Therefore, we
include the object reference taint tag in the instance get
(iget-op) rule.

The code listed in Figure 4 demonstrates a real in-
stance of where object reference tainting is needed. Here,
valueOf() returns an Integer object for a passed int. If the
int argument is between−128 and 127, valueOf() returns
reference to a statically defined Integer object. valueOf()
is implicitly called for conversion to an object. Consider
the following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1
and taint tag TAG. When intProxy() is passed tVal, TAG
is propagated to val. When intProxy() returns val, it
calls Integer.valueOf() to obtain an Integer instance cor-
responding to the scalar variable val. In this case, Inte-
ger.valueOf() returns a reference to the static Integer ob-
ject with value 1. The value field (of the Integer class) in
the object has taint tag of ∅; however, since the aget-op
propagation rule includes the taint of the index register,
the object reference has a taint tag of TAG. Therefore,

only by including the object reference taint tag when the
value field is read from the Integer (i.e., the iget-op prop-
agation rule), will the correct taint tag of TAG be assigned
to out.

4.3 Native Code Taint Propagation
Native code is unmonitored in TaintDroid. Ideally,

we achieve the same propagation semantics as the in-
terpreted counterpart. Hence, we define two necessary
postconditions for accurate taint tracking in the Java-
like environment: 1) all accessed external variables (i.e.,
class fields referenced by other methods) are assigned
taint tags according to data flow rules; and 2) the re-
turn value is assigned a taint tag according to data flow
rules. TaintDroid achieves these postconditions through
an assortment of manual instrumentation, heuristics, and
method profiles, depending on situational requirements.

Internal VM Methods: Internal VM methods are called
directly by interpreted code, passing a pointer to an ar-
ray of 32-bit register arguments and a pointer to a return
value. The stack augmentation shown in Figure 3 pro-
vides access to taint tags for both Java arguments and
the return value. As there are a relatively small number
of internal VM methods which are infrequently added
between versions,2 we manually inspected and patched
them for taint propagation as needed. We identified 185
internal VM methods in Android version 2.1; however,
only 5 required patching: the System.arraycopy() native
method for copying array contents, and several native
methods implementing Java reflection.

JNI Methods: JNI methods are invoked through the
JNI call bridge. The call bridge parses Java arguments
and assigns a return value using the method’s descriptor
string. We patched the call bridge to provide taint propa-
gation for all JNI methods. When a JNI method returns,
TaintDroid consults a method profile table for tag propa-



gation updates. A method profile is a list of (from, to)
pairs indicating flows between variables, which may be
method parameters, class variables, or return values.
Enumerating the information flows for all JNI methods
is a time consuming task best completed automatically
using source code analysis (a task we leave for future
work). We currently include an additional propagation
heuristic patch. The heuristic is conservative for JNI
methods that only operate on primitive and String ar-
guments and return values. It assigns the union of the
method argument taint tags to the taint tag of the return
value. While the heuristic has false negatives for meth-
ods using objects, it covers many existing methods.

We performed a survey of the JNI methods included
in the official Android source code (version 2.1) to de-
termine specific properties. We found 2,844 JNI meth-
ods with a Java interface and C or C++ implementation.3
Of these methods, 913 did not reference objects (as argu-
ments, return value, or method body) and hence are auto-
matically covered by our heuristic. The remaining meth-
ods may or may not have information flows that produce
false negatives. Currently, we define method profiles as
needed. For example, methods in the IBM NativeCon-
verter class require propagation for conversion between
character and byte arrays.

4.4 IPC Taint Propagation
Taint tags must propagate between applications when

they exchange data. The tracking granularity affects
performance and memory overhead. TaintDroid uses
message-level taint tracking. A message taint tag repre-
sents the upper bound of taint markings assigned to vari-
ables contained in the message. We use message-level
granularity to minimize performance and storage over-
head during IPC.

We chose to implement message-level over variable-
level taint propagation, because in a variable-level sys-
tem, a devious receiver could game the monitoring by
unpacking variables in a different way to acquire val-
ues without taint propagation. For example, if an IPC
parcel message contains a sequence of scalar values, the
receiver may unpack a string instead, thereby acquiring
values without propagating all the taint tags on scalar val-
ues in the sequence. Hence, to prevent applications from
removing taint tags in this way, the current implementa-
tion protects taint tags at the message-level.

Message-level taint propagation for IPC leads to false
positives. Similar to arrays, all data items in a parcel
share the same taint tag. For example, Section 8 dis-
cusses limitations for tracking the IMSI that results from
passing as portions the value as configuration parameters
in parcels. Future implementations will consider word-
level taint tags along with additional consistency checks
to ensure accurate propagation for unpacked variables.

However, this additional complexity will negatively im-
pact IPC performance.

4.5 Secondary Storage Taint Propagation
Taint tags may be lost when data is written to a file.

Our design stores one taint tag per file. The taint tag
is updated on file write and propagated to data on file
read. TaintDroid stores file taint tags in the file sys-
tem’s extended attributes. To do this, we implemented
extended attribute support for Android’s host file system
(YAFFS2) and formatted the removable SDcard with the
ext2 file system. As with arrays and IPC, storing one
taint tag per file leads to false positives and limits the
granularity of taint markings for information databases
(see Section 5). Alternatively, we could track taint tags
at a finer granularity at the expense of added memory and
performance overhead.

4.6 Taint Interface Library
Taint sources and sinks defined within the virtualized

environment must communicate taint tags with the track-
ing system. We abstract the taint source and sink logic
into a single taint interface library. The interface per-
forms two functions: 1) add taint markings to variables;
and 2) retrieve taint markings from variables. The library
only provides the ability to add and not set or clear taint
tags, as such functionality could be used by untrusted
Java code to remove taint markings.

Adding taint tags to arrays and strings via internal VM
methods is straightforward, as both are stored in data ob-
jects. Primitive type variables, on the other hand, are
stored on the interpreter’s internal stack and disappear
after a method is called. Therefore, the taint library uses
the method return value as a means of tainting primitive
type variables. The developer passes a value or variable
into the appropriate add taint method (e.g., addTaintInt())
and the returned variable has the same value but addition-
ally has the specified taint tag. Note that the stack storage
does not pose complications for taint tag retrieval.

5 Privacy Hook Placement
Using TaintDroid for privacy analysis requires iden-

tifying privacy sensitive sources and instrumenting taint
sources within the operating system. Historically, dy-
namic taint analysis systems assume taint source and sink
placement is trivial. However, complex operating sys-
tems such as Android provide applications information
in a variety of ways, e.g., direct access, and service inter-
face. Each potential type of privacy sensitive information
must be studied carefully to determine the best method of
defining the taint source.

Taint sources can only add taint tags to memory for
which TaintDroid provides tag storage. Currently, taint
source and sink placement is limited to variables in in-



terpreted code, IPC messages, and files. This section
discusses how valuable taint sources and sinks can be im-
plemented within these restrictions. We generalize such
taint sources based on information characteristics.

Low-bandwidth Sensors: A variety of privacy sensitive
information types are acquired through low-bandwidth
sensors, e.g., location and accelerometer. Such informa-
tion often changes frequently and is simultaneously used
by multiple applications. Therefore, it is common for
a smartphone OS to multiplex access to low-bandwidth
sensors using a manager. This sensor manager represents
an ideal point for taint source hook placement. For our
analysis, we placed hooks in Android’s LocationMan-
ager and SensorManager applications.

High-bandwidth Sensors: Privacy sensitive informa-
tion sources such as the microphone and camera are
high-bandwidth. Each request from the sensor frequently
returns a large amount of data that is only used by one
application. Therefore, the smartphone OS may share
sensor information via large data buffers, files, or both.
When sensor information is shared via files, the file must
be tainted with the appropriate tag. Due to flexible APIs,
we placed hooks for both data buffer and file tainting for
tracking microphone and camera information.

Information Databases: Shared information such as ad-
dress books and SMS messages are often stored in file-
based databases. This organization provides a useful un-
ambiguous taint source similar to hardware sensors. By
adding a taint tag to such database files, all informa-
tion read from the file will be automatically tainted. We
used this technique for tracking address book informa-
tion. Note that while TaintDroid’s file-level granularity
was appropriate for these valuable information sources,
others may exist for which files are too coarse grained.
However, we have not yet encountered such sources.

Device Identifiers: Information that uniquely identifies
the phone or the user is privacy sensitive. Not all per-
sonally identifiable information can be easily tainted.
However, the phone contains several easily tainted iden-
tifiers: the phone number, SIM card identifiers (IMSI,
ICC-ID), and device identifier (IMEI) are all accessed
through well-defined APIs. We instrumented the APIs
for the phone number, ICC-ID, and IMEI. An IMSI taint
source has inherent limitations discussed in Section 8.

Network Taint Sink: Our privacy analysis identifies
when tainted information transmits out the network in-
terface. The VM interpreter-based approach requires the
taint sink to be placed within interpreted code. Hence,
we instrumented the Java framework libraries at the point
the native socket library is invoked.

6 Application Study
This section reports on an application study that uses

TaintDroid to analyze how 30 popular third-party An-
droid applications use privacy sensitive user data. Exist-
ing applications acquire a variety of user data along with
permissions to access the Internet. Our study finds that
two thirds of these applications expose detailed location
data, the phone’s unique ID, and the phone number using
the combination of the seemingly innocuous access per-
missions granted at install. This finding was made possi-
ble by TaintDroid’s ability to monitor runtime access of
sensitive user data and to precisely relate the monitored
accesses with the data exposure by applications.

6.1 Experimental Setup
An early 2010 survey of the 50 most popular free ap-

plications in each category of the Android Market [2]
(1,100 applications, in total) revealed that roughly a third
of the applications (358 of the 1,100 applications) re-
quire Internet permissions along with permissions to ac-
cess either location, camera, or audio data. From this set,
we randomly selected 30 popular applications (an 8.4%
sample size), which span twelve categories. Table 2 enu-
merates these applications along with permissions they
request at install time. Note that this does not reflect ac-
tual access or use of sensitive data.

We studied each of the thirty downloaded applica-
tions by starting the application, performing any initial-
ization or registration that was required, and then man-
ually exercising the functionality offered by the appli-
cation. We recorded system logs including detailed in-
formation from TaintDroid: tainted binder messages,
tainted file output, and tainted network messages with
the remote address. The overall experiment (conducted
in May 2010) lasted slightly over 100 minutes, generat-
ing 22,594 packets (8.6MB) and 1,130 TCP connections.
To verify our results, we also logged the network traffic
using tcpdump on the WiFi interface and repeated exper-
iments on multiple Nexus One phones, running the same
version of TaintDroid built on Android 2.1. Though the
phones used for experiments had a valid SIM card in-
stalled, the SIM card was inactivate, forcing all the pack-
ets to be transmitted via the WiFi interface. The packet
trace was used only to verify the exposure of tainted data
flagged by TaintDroid.

In addition to the network trace, we also noted whether
applications acquired user consent (either explicit or im-
plicit) for exporting sensitive information. This provides
additional context information to identify possible pri-
vacy violations. For example, by selecting the “use my
location” option in a weather application, the user im-
plicitly consents to disclosing geographic coordinates to
the weather server.



Table 2: Applications grouped by the requested permissions (L: location, C: camera, A: audio, P: phone state). Android
Market categories are indicated in parenthesis, showing the diversity of the studied applications.

Applications∗ # Permissions†
L C A P

The Weather Channel (News & Weather); Cestos, Solitaire (Game); Movies (Entertainment);
Babble (Social); Manga Browser (Comics)

6 x

Bump, Wertago (Social); Antivirus (Communication); ABC — Animals, Traffic Jam, Hearts,
Blackjack, (Games); Horoscope (Lifestyle); Yellow Pages (Reference); 3001 Wisdom Quotes
Lite, Dastelefonbuch, Astrid (Productivity), BBC News Live Stream (News & Weather); Ring-
tones (Entertainment)

14 x x

Layar (Lifestyle); Knocking (Social); Coupons (Shopping); Trapster (Travel); Spongebob Slide
(Game); ProBasketBall (Sports)

6 x x x

MySpace (Social); Barcode Scanner, ixMAT (Shopping) 3 x
Evernote (Productivity) 1 x x x
∗ Listed names correspond to the name displayed on the phone and not necessarily the name listed in the Android Market.
† All listed applications also require access to the Internet.

Table 3: Potential privacy violations by 20 of the studied applications. Note that three applications had multiple
violations, one of which had a violation in all three categories.

Observed Behavior (# of apps) Details
Phone Information to Content Servers (2) 2 apps sent out the phone number, IMSI, and ICC-ID along with the

geo-coordinates to the app’s content server.
Device ID to Content Servers (7)∗ 2 Social, 1 Shopping, 1 Reference and three other apps transmitted

the IMEI number to the app’s content server.
Location to Advertisement Servers (15) 5 apps sent geo-coordinates to ad.qwapi.com, 5 apps to admob.com,

2 apps to ads.mobclix.com (1 sent location both to admob.com and
ads.mobclix.com) and 4 apps sent location† to data.flurry.com.

∗ TaintDroid flagged nine applications in this category, but only seven transmitted the raw IMEI without mentioning such practice in the EULA.
†To the best of our knowledge, the binary messages contained tainted location data (see the discussion below).

6.2 Findings
Table 3 summarizes our findings. TaintDroid flagged

105 TCP connections as containing tainted privacy sen-
sitive information. We manually labeled each mes-
sage based on available context, including remote server
names and temporally relevant application log messages.
We used remote hostnames as an indication of whether
data was being sent to a server providing application
functionality or to a third party. Frequently, messages
contained plaintext that aided categorization, e.g., an
HTTP GET request containing geographic coordinates.
However, 21 flagged messages contained binary data.
Our investigation indicates these messages were gen-
erated by the Google Maps for Mobile [21] and Flur-
ryAgent [20] APIs and contained tainted privacy sensi-
tive data. These conclusions are supported by message
transmissions immediately after the application received
a tainted parcel from the system location manager. We
now expand on our findings for each category and reflect
on potential privacy violations.

Phone Information: Table 2 shows that 21 out of the
30 applications require permissions to read phone state
and the Internet. We found that 2 of the 21 applications
transmitted to their server (1) the device’s phone num-

ber, (2) the IMSI which is a unique 15-digit code used to
identify an individual user on a GSM network, and (3)
the ICC-ID number which is a unique SIM card serial
number. We verified messages were flagged correctly by
inspecting the plaintext payload.4 In neither case was the
user informed that this information was transmitted off
the phone.

This finding demonstrates that Android’s coarse-
grained access control provides insufficient protection
against third-party applications seeking to collect sensi-
tive data. Moreover, we found that one application trans-
mits the phone information every time the phone boots.
While this application displays a terms of use on first use,
the terms of use does not specify collection of this highly
sensitive data. Surprisingly, this application transmits the
phone data immediately after install, before first use.

Device Unique ID: The device’s IMEI was also exposed
by applications. The IMEI uniquely identifies a specific
mobile phone and is used to prevent a stolen handset
from accessing the cellular network. TaintDroid flags
indicated that nine applications transmitted the IMEI.
Seven out of the nine applications either do not present
an End User License Agreement (EULA) or do not spec-
ify IMEI collection in the EULA. One of the seven ap-



plications is a popular social networking application and
another is a location-based search application. Further-
more, we found two of the seven applications include the
IMEI when transmitting the device’s geographic coordi-
nates to their content server, potentially repurposing the
IMEI as a client ID.

In comparison, two of the nine applications treat the
IMEI with more care, thus we do not classify them as
potential privacy violators. One application displays a
privacy statement that clearly indicates that the applica-
tion collects the device ID. The other uses the hash of
the IMEI instead of the number itself. We verified this
practice by comparing results from two different phones.
Location Data to Advertisement Servers: Half of the
studied applications exposed location data to third-party
advertisement servers without requiring implicit or ex-
plicit user consent. Of the fifteen applications, only two
presented a EULA on first run; however neither EULA
indicated this practice. Exposure of location informa-
tion occurred both in plaintext and in binary format.
The latter highlights TaintDroid’s advantages over sim-
ple pattern-based packet scanning. Applications sent lo-
cation data in plaintext to admob.com, ad.qwapi.com,
ads.mobclix.com (11 applications) and in binary format
to FlurryAgent (4 applications). The plaintext location
exposure to AdMob occurred in the HTTP GET string:

...&s=a14a4a93f1e4c68&..&t=062A1CB1D476DE85
B717D9195A6722A9&d%5Bcoord%5D=47.6612278900
00006%2C-122.31589477&...

Investigating the AdMob SDK revealed the s= parameter
is an identifier unique to an application publisher, and the
coord= parameter provides the geographic coordinates.

For FlurryAgent, we confirmed location exposure by
the following sequence of events. First, a component
named “FlurryAgent” registers with the location man-
ager to receive location updates. Then, TaintDroid log
messages show the application receiving a tainted par-
cel from the location manager. Finally, the application
reports “sending report to http://data.flurry.
com/aar.do” after receiving the tainted parcel.

Our experimentation indicates these fifteen applica-
tions collect location data and send it to advertisement
servers. In some cases, location data was transmitted
to advertisement servers even when no advertisement
was displayed in the application. However, we note that
TaintDroid helped us verify that three of the studied ap-
plications (not included in the Table 3) only transmitted
location data per user’s request to pull localized content
from their servers. This finding demonstrates the impor-
tance of monitoring exercised functionality of an appli-
cation that reflects how the application actually uses or
abuses the granted permissions.
Legitimate Flags: Out of 105 connections flagged by

TaintDroid, 37 were deemed clearly legitimate use. The
flags resulted from four applications and the OS itself
while using the Google Maps for Mobile (GMM) API.
The TaintDroid logs indicate an HTTP request with the
“User-Agent: GMM . . . ” header, but a binary pay-
load. Given that GMM functionality includes download-
ing maps based on geographic coordinates, it is obvious
that TaintDroid correctly identified location information
in the payload. Our manual inspection of each message
along with the network packet trace confirmed that there
were no false positives. We note that there is a possibil-
ity of false negatives, which is difficult to verify with the
lack of the source code of the third-party applications.
Summary: Our study of 30 popular applications shows
the effectiveness of the TaintDroid system in accu-
rately tracking applications’ use of privacy sensitive data.
While monitoring these applications, TaintDroid gener-
ated no false positives (with the exception of the IMSI
taint source which we disabled for experiments, see Sec-
tion 8). The flags raised by TaintDroid helped to identify
potential privacy violations by the tested applications.
Half of the studied applications share location data with
advertisement servers. Approximately one third of the
applications expose the device ID, sometimes with the
phone number and the SIM card serial number. The anal-
ysis was simplified by the taint tag provided by Taint-
Droid that precisely describes which privacy relevant
data is included in the payload, especially for binary pay-
loads. We also note that there was almost no perceived
latency while running experiments with TaintDroid.

7 Performance Evaluation
We now study TaintDroid’s taint tracking overhead.

Experiments were performed on a Google Nexus One
running Android OS version 2.1 modified for TaintDroid.
Within the interpreted environment, TaintDroid incurs
the same performance and memory overhead regardless
of the existence of taint markings. Hence, we only need
to ensure file access includes appropriate taint tags.

7.1 Macrobenchmarks
During the application study, we anecdotally observed

limited performance overhead. We hypothesize that this
is because: 1) most applications are primarily in a “wait
state,” and 2) heavyweight operations (e.g., screen up-
dates and webpage rendering) occur in unmonitored na-
tive libraries.

To gain further insight into perceived overhead, we
devised five macrobenchmarks for common high-level
smartphone operations. Each experiment was measured
50 times and observed 95% confidence intervals at least
an order of magnitude less than the mean. In each case,
we excluded the first run to remove unrelated initializa-
tion costs. Experimental results are shown in Table 4.

http://data.flurry.com/aar.do
http://data.flurry.com/aar.do


Table 4: Macrobenchmark Results
Android TaintDroid

App Load Time 63 ms 65 ms
Address Book (create) 348 ms 367 ms
Address Book (read) 101 ms 119 ms
Phone Call 96 ms 106 ms
Take Picture 1718 ms 2216 ms

Application Load Time: The application load time
measures from when Android’s Activity Manager re-
ceives a command to start an activity component to the
time the activity thread is displayed. This time includes
application resolution by the Activity Manager, IPC, and
graphical display. TaintDroid adds only 3% overhead, as
the operation is dominated by native graphics libraries.
Address Book: We built a custom application to create,
read, and delete entries for the phone’s address book, ex-
ercising both file read and write. Create used three SQL
transactions while read used two SQL transactions. The
subsequent delete operation was lazy, returning in 0 ms,
and hence was excluded from our results. TaintDroid
adds approximately 5.5% and 18% overhead for address
book entry creates and reads, respectively. The addi-
tional overhead for reads can be attributed to file taint
propagation. The data is not tainted before create, hence
no file propagation is needed. Note that the user experi-
ences less than 20 ms overhead when creating or viewing
a contact.
Phone Call: The phone call benchmark measured the
time from pressing “dial” to the point at which the audio
hardware was reconfigured to “in call” mode. TaintDroid
only adds 10 ms per phone call setup (∼10% overhead),
which is significantly less than call setup in the network,
which takes on the order of seconds.
Take Picture: The picture benchmark measures from
the time the user presses the “take picture” button un-
til the preview display is re-enabled. This measurement
includes the time to capture a picture from the camera
and save the file to the SDcard. TaintDroid adds 498 ms
to the 1718 ms needed by Android to take a picture (an
overhead of 29%). A portion of this overhead can be at-
tributed to to additional file operations required for taint
propagation (one getxattr/setxattr pair per written data
buffer). Note that some of this overhead can be reduced
by eliminating redundant taint propagation. That is, only
the taint tag for the first data buffer written to file needs to
be propagated. For example, the current taint tag could
be associated with the file descriptor.

7.2 Java Microbenchmark
Figure 5 shows the execution time results of a Java mi-

crobenchmark. We used an Android port of the standard
CaffeineMark 3.0 [43]. CaffeineMark uses an internal
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Figure 5: Microbenchmark of Java overhead. Error bars
indicate 95% confidence intervals.

scoring metric only useful for relative comparisons.
The results are consistent with implementation-

specific expectations. The overhead incurred by Taint-
Droid is smallest for the benchmarks dominated by arith-
metic and logic operations. The taint propagation for
these operations is simple, consisting of an additional
copy of spatially local memory. The string benchmark,
on the other hand, experiences the greatest overhead.
This is most likely due to the additional memory com-
parisons that occur when the JNI propagation heuristic
checks for string objects in method prototypes.

The “overall” results indicate cumulative score across
individual benchmarks. CaffeineMark documentation
states that scores roughly correspond to the number of
Java instructions executed per second. Here, the unmod-
ified Android system had an average score of 1121, and
TaintDroid measured 967. TaintDroid has a 14% over-
head with respect to the unmodified system.

We also measured memory consumption during the
CaffeineMark benchmark. The benchmark consumed
21.28 MB on the unmodified system and 22.21 MB while
running on TaintDroid, indicating a 4.4% memory over-
head. Note that much of an Android process’s memory
is used by the zygote runtime environment. These na-
tive library memory pages are shared between applica-
tions to reduce the overall system memory footprint and
require taint tracking. Given that TaintDroid stores 32
taint markings (4 bytes) for each 32-bit variable in the
interpreted environment (regardless of taint state), this
overhead is expected.

7.3 IPC Microbenchmark
The IPC benchmark considers overhead due to the par-

cel modifications. For this experiment, we developed
client and service applications that perform binder trans-
actions as fast as possible. The service manipulates ac-



Table 5: IPC Throughput Test (10,000 msgs).
Android TaintDroid

Time (s) 8.58 10.89
Memory (client) 21.06MB 21.88MB

Memory (service) 18.92MB 19.48MB

count objects (a username string and a balance integer)
and provides two interfaces: setAccount() and getAc-
count(). The experiment measures the time for the client
to invoke each interface pair 10,000 times.

Table 5 summarizes the results of the IPC benchmark.
TaintDroid was 27% slower than Android. TaintDroid
only adds four bytes to each IPC object, therefore over-
head due to data size is unlikely. The more likely cause of
the overhead is the continual copying of taint tags as val-
ues are marshalled into and out of the parcel byte buffer.
Finally, TaintDroid used 3.5% more memory than An-
droid, which is comparable to the consumption observed
during the CaffeineMark benchmarks.

8 Discussion
Approach Limitations: TaintDroid only tracks data
flows (i.e., explicit flows) and does not track control
flows (i.e., implicit flows) to minimize performance over-
head. Section 6 shows that TaintDroid can track applica-
tions’ expected data exposure and also reveal suspicious
actions. However, applications that are truly malicious
can game our system and exfiltrate privacy sensitive in-
formation through control flows. Fully tracking control
flow requires static analysis [14, 37], which is not appli-
cable to analyzing third-party applications whose source
code is unavailable. Direct control flows can be tracked
dynamically if a taint scope can be determined [53];
however, DEX does not maintain branch structures that
TaintDroid can leverage. On-demand static analysis to
determine method control flow graphs (CFGs) provides
this context [39]; however, TaintDroid does not currently
perform such analysis in order to avoid false positives
and significant performance overhead. Our data flow
taint propagation logic is consistent with existing, well
known, taint tracking systems [7, 57]. Finally, once in-
formation leaves the phone, it may return in a network
reply. TaintDroid cannot track such information.
Implementation Limitations: Android uses the Apache
Harmony [3] implementation of Java with a few custom
modifications. This implementation includes support for
the PlatformAddress class, which contains a native ad-
dress and is used by DirectBuffer objects. The file and
network IO APIs include write and read “direct” vari-
ants that consume the native address from a DirectBuffer.
TaintDroid does not currently track taint tags on Direct-
Buffer objects, because the data is stored in opaque native
data structures. Currently, TaintDroid logs when a read

or write “direct” variant is used, which anecdotally oc-
curred with minimal frequency. Similar implementation
limitations exist with the sun.misc.Unsafe class, which
also operates on native addresses.
Taint Source Limitations: While TaintDroid is very ef-
fective for tracking sensitive information, it causes sig-
nificant false positives when the tracked information con-
tains configuration identifiers. For example, the IMSI nu-
meric string consists of a Mobile Country Code (MCC),
Mobile Network Code (MNC), and Mobile Station Iden-
tifier Number (MSIN), which are all tainted together.5
Android uses the MCC and MNC extensively as con-
figuration parameters when communicating other data.
This causes all information in a parcel to become tainted,
eventually resulting in an explosion of tainted informa-
tion. Thus, for taint sources that contain configuration
parameters, tainting individual variables within parcels
is more appropriate. However, as our analysis results in
Section 6 show, message-level taint tracking is effective
for the majority of our taint sources.

9 Related Work
Mobile phone host security is a growing concern.

OS-level protections such as Kirin [18], Saint [42],
and Security-by-Contract [15] provide enhanced security
mechanisms for Android and Windows Mobile. These
approaches prevent access to sensitive information; how-
ever, once information enters the application, no addi-
tional mediation occurs. In systems with larger displays,
a graphical widget [27] can help users visualize sensor
access policies. Mulliner et al. [36] provide information
tracking by labeling smartphone processes based on the
interfaces they access, effectively limiting access to fu-
ture interfaces based on acquired labels.

Decentralized information flow control (DIFC) en-
hanced operating systems such as Asbestos [52] and HiS-
tar [60] label processes and enforce access control based
on Denning’s lattice model for information flow secu-
rity [13]. Flume [30] provides similar enhancements for
legacy OS abstractions. DEFCon [34] uses a logic simi-
lar to these DIFC OSes, but focuses on events and modi-
fies a Java runtime with lightweight isolation. Related to
these system-level approaches, PRECIP [54] labels both
processes and shared kernel objects such as the clipboard
and display buffer. However, these process-level infor-
mation flow models are coarse grained and cannot track
sensitive information within untrusted applications.

Tools that analyze applications for privacy sensi-
tive information leaks include Privacy Oracle [28] and
TightLip [59]. These tools investigate applications while
treating them as a black box, thus enabling analysis of
off-the-shelf applications. However, this black-box anal-
ysis tool becomes ineffective when applications use en-
cryption prior to releasing sensitive information.



Language-based information flow security [46] ex-
tends existing programming languages by labeling vari-
ables with security attributes. Compilers use the secu-
rity labels to generate security proofs, e.g., Jif [37, 38]
and SLam [24]. Laminar [45] provides DIFC guarantees
based on programmer defined security regions. However,
these languages require careful development and are of-
ten incompatible with legacy software designs [25].

Dynamic taint analysis provides information track-
ing for legacy programs. The approach has been used
to enhance system integrity (e.g., defend against soft-
ware attacks [41, 44, 8]) and confidentiality (e.g., dis-
cover privacy exposure [57, 16, 61]), as well as track
Internet worms [9]. Dynamic tracking approaches
range from whole-system analysis using hardware exten-
sions [51, 11, 50] and emulation environments [7, 57]
to per-process tracking using dynamic binary transla-
tion (DBT) [6, 44, 8, 61]. The performance and mem-
ory overhead associated with dynamic tracking has re-
sulted in an array of optimizations, including optimizing
context switches [44], on-demand tracking [26] based
on hypervisor introspection, and function summaries for
code with known information flow properties [61]. If
source code is available, significant performance im-
provements can be achieved by automatically instru-
menting legacy programs with dynamic tracking func-
tionality [56, 31]. Automatic instrumentation has also
been performed on x86 binaries [47], providing a com-
promise between source code translation and DBT. Our
TaintDroid design was inspired by these prior works, but
addressed different challenges unique to mobile phones.
To our knowledge, TaintDroid is the first taint tracking
system for a mobile phone and is the first dynamic taint
analysis system to achieve practical system-wide analy-
sis through the integration of tracking multiple data ob-
ject granularities.

Finally, dynamic taint analysis has been applied to vir-
tual machines and interpreters. Haldar et al. [22] in-
strument the Java String class with taint tracking to pre-
vent SQL injection attacks. WASP [23] has similar mo-
tivations; however, it uses positive tainting of individ-
ual characters to ensure the SQL query contains only
high-integrity substrings. Chandra and Franz [5] pro-
pose fine-grained information flow tracking within the
JVM and instrument Java byte-code to aid control flow
analysis. Similarly, Nair et al. [39] instrument the Kaffe
JVM. Vogt et al. [53] instrument a Javascript interpreter
to prevent cross-site scripting attacks. Xu et al. [56] au-
tomatically instrument the PHP interpreter source code
with dynamic information tracking to prevent SQL in-
jection attacks. Finally, the Resin [58] environment for
PHP and Python uses data flow tracking to prevent an as-
sortment of Web application attacks. When data leaves
the interpreted environment, Resin implements filters

for files and SQL databases to serialize and de-serialize
objects and policy with byte-level granularity. Taint-
Droid’s interpreted code taint propagation bears similar-
ity to some of these works. However, TaintDroid im-
plements system-wide information flow tracking, seam-
lessly connecting interpreter taint tracking with a range
of operating system sharing mechanisms.

10 Conclusions
While some mobile phone operating systems allow

users to control applications’ access to sensitive informa-
tion, such as location sensors, camera images, and con-
tact lists, users lack visibility into how applications use
their private data. To address this, we present TaintDroid,
an efficient, system-wide information flow tracking tool
that can simultaneously track multiple sources of sensi-
tive data. A key design goal of TaintDroid is efficiency,
and TaintDroid achieves this by integrating four gran-
ularities of taint propagation (variable-level, message-
level, method-level, and file-level) to achieve a 14% per-
formance overhead on a CPU-bound microbenchmark.

We also used our TaintDroid implementation to study
the behavior of 30 popular third-party applications, cho-
sen at random from the Android Marketplace. Our study
revealed that two-thirds of the applications in our study
exhibit suspicious handling of sensitive data, and that 15
of the 30 applications reported users’ locations to remote
advertising servers. Our findings demonstrate the effec-
tiveness and value of enhancing smartphone platforms
with monitoring tools such as TaintDroid.
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Notes
1A similar approach can be applied to just-in-time compilation by

inserting tracking code within the generated binary.
2Only 11 internal VM methods were added between versions 1.5

and 2.1 (primarily for debugging and profiling)
3There was a relatively small number of JNI methods that did not

either have a Java interface or C/C++ implementation. These unusable
methods were excluded from our survey.

4Because of the limitation of the IMSI taint source as discussed in
Section 8, we disabled the IMSI taint source for experiments. Nonethe-
less, TaintDroid’s flag of the ICC-ID and the phone number led us to
find the IMSI contained in the same payload.

5Regardless of the string separation, the MCC and MNC are identi-
fiers that warrant taint sources.
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