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Abstract
In this paper, we present Telex, a new approach to

resisting state-level Internet censorship. Rather than at-
tempting to win the cat-and-mouse game of finding open
proxies, we leverage censors’ unwillingness to completely
block day-to-day Internet access. In effect, Telex converts
innocuous, unblocked websites into proxies, without their
explicit collaboration. We envision that friendly ISPs
would deploy Telex stations on paths between censors’
networks and popular, uncensored Internet destinations.
Telex stations would monitor seemingly innocuous flows
for a special “tag” and transparently divert them to a for-
bidden website or service instead. We propose a new
cryptographic scheme based on elliptic curves for tagging
TLS handshakes such that the tag is visible to a Telex
station but not to a censor. In addition, we use our tagging
scheme to build a protocol that allows clients to connect
to Telex stations while resisting both passive and active at-
tacks. We also present a proof-of-concept implementation
that demonstrates the feasibility of our system.

1 Introduction

The events of the Arab Spring have vividly demonstrated
the Internet’s power to catalyze social change through
the free exchange of ideas, news, and other information.
The Internet poses such an existential threat to repressive
regimes that some have completely disconnected from
the global network during periods of intense political un-
rest, and many regimes are pursuing aggressive programs
of Internet censorship using increasingly sophisticated
techniques.

Today, the most widely-used tools for circumventing
Internet censorship take the form of encrypted tunnels
and proxies, such as Dynaweb [12], Instasurf [30], and
Tor [10]. While these designs can be quite effective at
sneaking client connections past the censor, these systems
inevitably lead to a cat-and-mouse game in which the

censor attempts to discover and block the services’ IP
addresses. For example, Tor has recently observed the
blocking of entry nodes and directory servers in China
and Iran [28]. Though Tor is used to skirt Internet censors
in these countries, it was not originally designed for that
application. While it may certainly achieve its original
goal of anonymity for its users, it appears that Tor and
proxies like it are ultimately not enough to circumvent
aggressive censorship.

To overcome this problem, we proposeTelex: an “end-
to-middle” proxy with no IP address, located within the
network infrastructure. Clients invoke the proxy by using
public-key steganography to “tag” otherwise ordinary
TLS sessions destined for uncensored websites. Its design
is unique in several respects:

Architecture Previous designs have assumed that anti-
censorship services would be provided by hosts at the
edge of the network, as the end-to-end principle requires.
We propose instead to provide these services in the core
infrastructure of the Internet, along paths between the
censor’s network and popular, nonblocked destinations.
We argue that this will provide both lower latency and
increased resistance to blocking.

Deployment Many systems attempt to combat state-
level censorship using resources provided primarily by
volunteers. Instead, we investigate a government-scale
response based on the view that state-level censorship
needs to be combated by state-level anticensorship.

Construction We show how a technique that the security
and privacy literature most frequently associates with
government surveillance—deep-packet inspection—can
provide the foundation for a robust anticensorship system.

We expect that these design choices will be somewhat
controversial, and we hope that they will lead to discus-
sion about the future development of anticensorship sys-
tems.



Contributions and roadmap We propose using “end-
to-middle” proxies built into the Internet’s network in-
frastructure as a novel approach to resisting state-level
censorship. We elaborate on this concept and sketch the
design of our system in Section 2, and we discuss its
relation to previous work in Section 3.

We develop a new steganographic tagging scheme
based on elliptic curve cryptography, and we use it to
construct a modified version of the TLS protocol that
allows clients to connect to our proxy. We describe the
tagging scheme in Section 4 and the protocol in Section 5.
We analyze the protocol’s security in Section 6.

We present a proof-of-concept implementation of our
approach and protocols, and we support its feasibility
through laboratory experiments and real-world tests. We
describe our implementation in Section 7, and we evaluate
its performance in Section 8.

Online resources For the most recent version of this
paper, prototype source code, and a live demonstration,
visit https://telex.cc.

2 Concept

Telex operates as what we term an “end-to-middle” proxy.
Whereas in traditional end-to-end proxying the client con-
nects to a server that relays data to a specified host, in
end-to-middle proxying an intermediary along the path
to a server redirects part of the connection payload to
an alternative destination. One example of this mode of
operation is Tor’s leaky-pipe circuit topology [10] fea-
ture, which allows traffic to exit from the middle of a
constructed Tor circuit rather than the end.

The Telex concept is to build end-to-middle proxying
capabilities into the Internet’s routing infrastructure. This
would let clients invoke proxying by establishing connec-
tions to normal, pre-existing servers. By applying this
idea to a widely used encrypted transport, such as TLS,
and carefully avoiding observable deviations from the
behavior of nonproxied connections, we can construct a
service that allows users to robustly bypass network-level
censorship without being detected.

In the remainder of this section, we define a threat
model and goals for the Telex system. We then give a
sketch of the design and discuss several practical consid-
erations.

2.1 Threat model

Our adversary, “the censor”, is a repressive state-level au-
thority that desires to inhibit online access to information
and communication of certain ideas. These desires are
realized by IP and DNS blacklists as well as heuristics for
blocking connections based on their observed content.

We note that the censor has some motivation for con-
necting to the Internet at all, such as the economic and
social benefits of connectivity. Thus, the censor bears
some cost from over-blocking. We assume that the cen-
sor follows a blacklist approach rather than a whitelist
approach in blocking, allowing traffic to pass through
unchanged unless it is explicitly banned.

Furthermore, we assume that the censor generally per-
mits widespread cryptographic protocols, such as TLS, ex-
cept when it has reason to believe a particular connection
is being used for skirting censorship. We further assume
that the censor is not subverting such protocols on a wide
scale, such as by requiring a cryptographic backdoor or
by issuing false TLS certificates using a country-wide CA.
We believe this is reasonable, as blocking or subverting
TLS on a wide scale would render most modern websites
unusably insecure. Subversion in particular would result
in an increased risk of large-scale fraud if the back door
were compromised or abused by corrupt insiders.

The censor controls the infrastructure of the network
within its jurisdiction (“the censor’s network”), and it
can potentially monitor, block, alter, and inject traffic
anywhere within this region. However, these abilities
are subject to realistic technical, economic, and political
constraints.

In general, the censor does not control end hosts within
its network, which operate under the direction of their
users. We believe this assumption is reasonable based
on the failure of recent attempts by national governments
to mandate client-side filtering software, such as China’s
Green Dam Youth Escort [33]. The censor might target
a small subset of users and seize control of their devices,
either through overt compulsion or covert technical at-
tacks. Protecting these users is beyond the scope of our
system. However, the censor’s targeting users on a wide
scale might have unacceptable political costs.

The censor has very limited abilities outside its network.
It does not control any external network infrastructure or
any popular external websites the client may use when
communicating with Telex stations. The censor can, of
course, buy or rent hosting outside its network, but its
use is largely subject to the policies of the provider and
jurisdiction.

Some governments may choose to deny their citizens
Internet connectivity altogether, or disconnect entirely
in times of crisis. These are outside our threat model;
the best approaches to censors like these likely involve
different approaches than ours, and entail much steeper
performance trade-offs. Instead, our goal is to make ac-
cess to any part of the global Internet sufficient to access
every part of it. In other words, we aim to make connect-
ing to the global Internet an all-or-nothing proposition for
national governments.

https://telex.cc
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Figure 1: Telex Concept — This figure shows an example user connecting to Telex. The client makes a tagged
connection to NotBlocked.com, which is passed by the censor’s filter. When the request reaches a friendly on-path
ISP, one of the ISP’s routers forwards the request to the Telex station connected to its tap interface. Telex deciphers
the tag, instructs the router to block the connection to NotBlocked.com. and diverts the connection to Blocked.com,
as the user secretly requested. If the connection were not tagged, Telex would not intervene, and it would proceed to
NotBlocked.com as normal.

2.2 Goals

Telex should satisfy the following properties:

Unblockable The censor should not be able to deny
service to Telex without incurring unacceptable costs. In
particular, we require that the censor cannot block Telex
without blocking a large, primarily legitimate category of
Internet traffic.

Confidential The censor should not be able to deter-
mine whether a user is using Telex or what content the
user is accessing through the system.

Easy to deploy The consequences of system failure
(or even normal operation) must not interfere with normal
network operation (e.g., non-Telex connections) in order
for deployment to be palatable to ISPs.

Transparent to users Using Telex should, possibly
after a small startup procedure, closely resemble using an
unfiltered Internet connection.

2.3 Design

To meet our goals and the constraints imposed by our
threat model, we propose the design shown in Figure 1.
As illustrated in the figure, a Telex connection proceeds
as follows:

1. The user’s client selects an appropriate website that
is not on the censor’s blacklist and unlikely to at-
tract attention, which we represent by the domain
NotBlocked.com.

2. The user connects to NotBlocked.com via HTTPS.
Her Telex client1 includes an invisible “tag,” which
looks like an expected random nonce to the censor,
but can be cryptographically verified by the Telex
station using its private key.

3. Somewhere along the route between the client and
NotBlocked.com, the connection traverses an ISP
that has agreed to attach a Telex station to one of its
routers. The connection is forwarded to the station
via a dedicated tap interface.

4. The station detects the tag and instructs the router to
block the connection from passing through it, while
still forwarding packets to the station through its
dedicated tap. (Unlike a deployment based on trans-
parent proxying, this configuration fails open: it
tolerates the failure of the entire Telex system and so
meets our goal of being easy to deploy.)

5. The Telex station diverts the flow to Blocked.com as

1We anticipate that client software will be distributed out of band,
perhaps by sneakernet, among mutually trusting individuals within the
censor’s domain.



the user requested; it continues to actively forward
packets from the client to Blocked.com and vice
versa until one side terminates the connection. If the
connection were untagged, it would pass through the
ISP’s router as normal.

We simplified the discussion above in an important
point: we need to specify what protocol is to be used over
the encrypted tunnel between the Telex client and the
Telex station and how the client communicates its choice
of Blocked.com. Layering IP atop the tunnel might seem
to be a natural choice, yielding a country-wide VPN of
sorts, but even a passive attacker may be able to differen-
tiate VPN traffic patterns from those of a normal HTTPS
connection. As a result, we primarily envision using Telex
for protocols whose session behavior resembles that of
HTTPS. For example, an HTTP or SOCKS proxy would
be a useful application, or perhaps even a simple server
that presented a list of entry points for another anticen-
sorship system such as Tor [10]. In the remainder of this
paper, we assume that the application is an HTTP proxy.

The precise placement of Telex stations is a second
issue. Clearly, a chief objective of deployment is to cover
as many paths between the censor and popular Internet
destinations as possible so as to provide a large selection
of sites to play the role of NotBlocked.com. We might ac-
complish this either by surrounding the censor with Telex
stations or by placing them close to clusters of popular
uncensored destinations. In the latter case, care should
be taken not to reduce the size of the cluster such that the
censor would only need to block a small number of other-
wise desirable sites to render the station useless. Which
precise method of deployment would be most effective
and efficient is, in part, a geopolitical question.

A problem faced by existing anticensorship systems
is providing sufficient incentives for deployment [6].
Whereas systems that require cooperation of uncensored
websites create a risk that such sites might be blocked
by censors in retaliation, our system requires no such
participation. We envision that ISPs will willingly deploy
Telex stations for a number of reasons, including idealism,
goodwill, public relations, or financial incentives (e.g.,
tax credits) provided by governments. At worst, the con-
sequences to ISPs for participation would be depeering,
but depeering a large ISP would have a greater impact
on overall network performance than blocking a single
website.

Discovery of Telex stations is a third issue. With wide
enough deployment, clients could pick HTTPS servers
at random. However, this behavior might divulge clients’
usage of Telex, because real users don’t actually visit
HTTPS sites randomly. A better approach would be to
opportunistically discover Telex stations by tagging flows
during the course of the user’s normal browsing. When a
station is eventually discovered, it could provide a more

comprehensive map of popular sites (where popularity is
as measured with data from other Telex users) such that a
Telex station is likely to be on the path between the user
and the site. Even with only partial deployment, users
would almost certainly discover a Telex station eventually.

3 Previous Work

There is a rich literature on anonymous and censorship-
resistant communication, going back three decades [7].
One of the first systems explicitly proposed for combating
wide-scale censorship was Infranet [13], where participat-
ing websites would discreetly provide censored content in
response to steganographic requests. Infranet’s designers
dismissed the use of TLS because, at the time, it was not
widely deployed and would be easily blocked. We observe
that this aspect of Internet use has substantially changed
since 2002. Unlike Infranet, Telex does not require the
cooperation of unblocked websites—a significant imped-
iment to deployment—which participate in our system
only as oblivious cover destinations.

A variety of systems provide low-latency censorship
resistance through VPNs or encrypted tunnels to proxies.
These systems rely on servers at the edge of the network,
which censors constantly try to find and block (via IP). By
far, the best studied of these systems is Tor [10], which
also attempts to make strong anonymity guarantees by
establishing a multi-hop encrypted tunnel. Traditionally,
users connect to Tor via a limited set of “entry nodes,”
which provide an obvious target for censors. In response,
Tor has implemented bridges [27], which are a variation
on Feamster et al.’s keyspace hopping [14], in which each
client is told only a small subset of addresses of available
proxies. While bridges provide an extra layer of protec-
tion, the arms race remains: Chinese censors now learn
and block a large fraction of bridge nodes [9], possibly by
using a Sybil attack [11] against the bridge address distri-
bution system. Like Telex, Tor adopts a pragmatic threat
model that emphasizes performance; it wraps connections
using TLS and does not strongly protect against traffic
analysis and end-to-end timing attacks [22]. Unlike Tor,
we separate the problem of censorship resistance from
that of anonymous communication and concentrate on re-
sisting blocking; users who require increased anonymity
can use Telex as a gateway to the Tor network.

The most widely-used anticensorship tools today are
also among those that make the fewest security promises.
Pragmatic systems such as Dynaweb [12] and Ultra-
surf [30] that employ simple encrypted tunnels with large
numbers of entry points are popular, and, so far, have man-
aged to stay one step ahead of many censors. However,
we worry that such systems will not be able to withstand
continued research and development on the part of cen-
sors (e.g., Sybil attacks for proxy IP discovery). We aim
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Figure 2: Tag creation and detection — Telex intercepts TLS connections that contain a steganographic tag in the
ClientHello message’s nonce field (normally a uniformly random string). The Telex client generates the tag using public
parameters (shown above), but it can only be recognized by using the private key r embedded in the Telex station.

to provide similar or better performance by adopting a
single-hop tunnel and locating proxies in the middle of
the network, where they are not susceptible to IP-based
blocking.

4 Tagging

In this section, we describe how we implement the invis-
ible tag for TLS connections, which only Telex stations
can recognize. We present an overview here, while the
details and a security argument appear in Appendix A.
Figure 2 depicts the tagging scheme.

Our tags must have two properties: they must be short,
and they must be indistinguishable from a uniformly ran-
dom string to anyone without the private key. Someone
with the private key should be able to examine a random-
looking value and efficiently decide whether the tag is
present; if so, a shared secret key is derived for use later
in the protocol.

The structure of the Telex tagging system is based on
Diffie-Hellman: there is a generator g of a group of prime
order. Telex has a private key r and publishes a pub-
lic key α = gr. The system uses two cryptographically
secure hash functions H1 and H2, each salted by the cur-
rent context string χ (see Section 5). To construct a tag,
the client picks a random private key s, and computes
gs and αs = grs. If ‖ denotes concatenation, the tag is
then gs‖H1(grs‖χ), and the derived shared secret key is
H2(grs‖χ).

Diffie-Hellman can be implemented in many different
groups, but in order to keep the tags both short and secure,
we must use elliptic curve groups. Then we must ensure
that, in whatever bit representation we use to transmit
group elements gs, they are indistinguishable from uni-

formly random strings of the same size. This turns out to
be quite tricky, for three reasons:

• First, it is easy to tell whether a given (x,y) is a point
on a (public) elliptic curve. Most random strings will
not appear to be such a point. To work around this,
we only transmit the x-coordinates of the elliptic
curve points.

• Second, it is the case that these x-coordinates are
taken modulo a prime p. Valid tags will never con-
tain an x-coordinate larger than p, so we must ensure
that random strings of the same length as p are ex-
tremely unlikely to represent a value larger than p.
To accomplish this, we select a value of p that is
only slightly less than a power of 2.

• Finally, it turns out that for any given elliptic
curve, only about half of the numbers mod p are
x-coordinates of points on the curve. This is unde-
sirable, as no purported tag with an x-coordinate not
corresponding to a curve point can possibly be valid.
(Conversely, if a given client is observed using only
x-coordinates corresponding to curve points, it is
very likely using Telex.) To solve this, we use two
elliptic curves: the original curve and a related one
called the “twist”. These curves have the property
that every number mod p is the x-coordinate of a
point on either the original curve or the twist. We
will now need two generators: g0 for the original
curve, and g1 for the twist, along with the corre-
sponding public keys α0 = gr

0 and α1 = gr
1. Clients

pick one pair (gb,αb) uniformly at random when
constructing tags.

When Telex receives a candidate tag, it divides it into
two parts as β‖h, according to the fixed lengths of group
elements and hashes. It also determines the current con-
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Figure 3: TLS Handshake — The client and server ex-
change messages to establish a shared master_secret, from
which they derive cipher and MAC keys. The handshake
ends with each side sending a Finished message, en-
crypted with the negotiated keys, that includes an integrity
check on the entire handshake. The ServerKeyExchange
message may be omitted, depending on the key exchange
method in use.

text string χ . If this is a valid tag, β will be gs
b and h

will be H1(grs
b ‖χ) for some s and b. If this is not a valid

tag, β and h will both be random. Thus, Telex simply
checks whether h ?

= H1(β
r‖χ). This will always be true

for valid tags, and will be true only with probability 2−`H1

for invalid tags, where `H1 is the bit length of the outputs
of H1. If it is true, Telex computes the shared secret key
as H2(β

r‖χ).

5 Protocol

In this section, we briefly describe the Transport Layer
Security (TLS) protocol [8] and then we explain our mod-
ifications to it.

5.1 Overview of TLS

TLS provides a secure channel between a client and a
server, and consists of two sub-protocols: the handshake
protocol and the record protocol. The handshake protocol
provides a mechanism for establishing a secure channel
and its parameters, including shared secret generation
and authentication. The record protocol provides a se-
cure channel based on parameters established from the
handshake protocol.

During the TLS handshake, the client and server agree
on a cipher suite they will use to communicate, the server
authenticates itself to the client using asymmetric certifi-
cates (such as RSA), and cryptographic parameters are
shared between the server and client by means of a key
exchange algorithm. While TLS supports several key
exchange algorithms, in this paper, we will focus on the
Diffie-Hellman key exchange.

Figure 3 provides an outline of the TLS handshake. We
describe each of these messages in detail below:
ClientHello contains a 32-byte nonce, a session identifier
(0 if a session is not being resumed), and a list of sup-
ported cipher suites. The nonce consists of a 4-byte Unix
timestamp, followed by a 28-byte random value.
ServerHello contains a 32-byte nonce formed identically
to that in the ClientHello as well as the server’s choice of
one of the client’s listed cipher suites.
Certificate contains the X.509 certificate chain of the
server, and authenticates the server to the client.
ServerKeyExchange provides the parameters for the
Diffie-Hellman key exchange. These parameters include
a generator g, a large prime modulus pDH , a server pub-
lic key, and a signature. As per the Diffie-Hellman key
exchange, the server public key is generated by comput-
ing gspriv mod pDH , where spriv is a large random number
generated by the server. The signature consists of the
RSA signature (using the server’s certificate private key)
over the MD5 and SHA-1 hashes of the client and server
nonces, and previous Diffie-Hellman parameters.
ServerHelloDone is an empty record, used to update the
TLS state on the receiving (i.e., client) end.
ClientKeyExchange contains the client’s Diffie-Hellman
parameter (the client public key generated by gcpriv mod
pDH ).
ChangeCipherSpec alerts the server that the client’s
records will now be encrypted using the agreed upon
shared secret. The client finishes its half of the handshake
protocol with an encrypted Finished message, which veri-
fies the cipher spec change worked by encrypting a hash
of all previous handshake messages.

5.2 Telex handshake

The Telex handshake has two main goals: first, the censor
should not be able to distinguish it from a normal TLS
handshake; second, it should position the Telex station as
a man-in-the-middle on the secure channel. We now de-
scribe how the Telex handshake deviates from a standard
TLS handshake.
Client setup The client selects an uncensored HTTPS
server located outside the censor’s network (canonically,
https://NotBlocked.com) and resolves its hostname to find
server_ip. This server may be completely oblivious to
the anticensorship system. The client refers to its database
of Telex stations’ public keys to select the appropriate key
P = (α0,α1) for this session. We leave the details of
selecting the server and public key for future work.
ClientHello message The client generates a fresh
tag τ by applying the algorithm specified in Section 4,
using public key P and a context string composed
of server_ip‖UNIX_timestamp‖TLS_session_id.



This yields a 224-bit tag τ and a 128-bit shared secret key
ksh. The client initiates a TCP connection to server_ip
and starts the TLS handshake. As in normal TLS, the
client sends a ClientHello message, but, in place of the
224-bit random value, it sends τ .

(Briefly, the tag construction ensures that the Telex
station can use its private key to efficiently recognize τ

as a valid tag and derive the shared secret key ksh, and
that, without the private key, the distribution of τ values
is indistinguishable from uniform; see Section 4.)

If the path from the client to server_ip passes through
a link that a Telex station is monitoring, the station ob-
serves the TCP handshake and ClientHello message. It
extracts the nonce and applies the tag detection algorithm
specified in Section 4 using the same context string and
its private key. If the nonce is a genuine tag created with
the correct key and context string, the Telex station learns
ksh and continues to monitor the handshake. Otherwise,
with overwhelming probability, it rejects the tag and stops
observing the connection.
Certificate validation The server responds by send-
ing its X.509 certificate and, if necessary, key exchange
values. The client verifies the certificate using the CA
certificates trusted by the user’s browser. It addition-
ally checks the CA at the root of the certificate chain
against a whitelist of CAs trusted by the anticensorship
service. If the certificate is invalid or the root CA is not on
the whitelist, the client proceeds with the handshake but
aborts its Telex invocation by strictly following the TLS
specification and sending an innocuous application-layer
request (e.g., GET / HTTP/1.1 for HTTPS).2

Key exchange At this point in the handshake, the client
participates in the key exchange to compute a master se-
cret shared with the server. We modify the key exchange
in order to “leak” the negotiated key to the Telex station.
Several key exchange algorithms are available. For exam-
ple, in RSA key exchange, the client generates a random
46-byte master key and encrypts it using the server’s pub-
lic key. Alternatively, the client and server can participate
in a Diffie-Hellman key exchange to derive the master
secret.

The Telex client, rather than generating its key ex-
change values at random, seeds a secure PRG with ksh
and uses its output for whatever randomness is required
in the key exchange algorithm (e.g., the Diffie-Hellman
exponent). If a Telex station has been monitoring the
connection to this point, it will know all the inputs to the
client’s key exchange procedure: it will have observed
the server’s key exchange parameter and computed the
client’s PRG seed ksh. Using this information, the Telex

2Both the additional root CA whitelist and the browser list need to be
checked; the censor may control a CA that is commonly whitelisted by
browsers, and the root CA whitelist may contain entries that are trusted
by one browser but not another.

station simulates the client and simultaneously derives the
same master secret.

Handshake completion If a Telex station is listening,
it attempts to decrypt each side’s Finished message. The
station should be able to use the master secret to decrypt
them correctly and verify that the hashes match its obser-
vations of the handshake. If either hash is incorrect, the
Telex station stops observing the connection. Otherwise,
it switches roles from a passive observer to a man-in-the-
middle. It forges a TCP RST packet from the client to
NotBlocked.com, blocks subsequent messages from ei-
ther side from reaching the remote end of the connection,
and assumes the server’s role in the unbroken TCP/TLS
connection with the client.

Session resumption Once a client and server have es-
tablished a session, TLS allows them to quickly resume
or duplicate the connection using an abbreviated hand-
shake. Our protocol can support this too, allowing the
Telex station to continue its role as a man-in-the-middle.

The station remembers key and session_id by the
server, for sessions it successfully joined. A client at-
tempts to resume the session on a new connection by send-
ing a ClientHello message containing the session_id
and a fresh tag τ ′, which Telex can observe and verify if
it is present. If the server agrees to resume the session,
it responds with a ServerHello message and a Finished
message encrypted with the original master secret. The
client then sends its own Finished message encrypted in
the same way, which confirms that it knows the original
master secret. The Telex station checks that it can decrypt
and verify these messages correctly, then switches into a
man-in-the-middle role again.

6 Security Analysis

In this section, we analyze Telex’s security under the
threat model described in Section 2.1.

6.1 Passive attacks

First, we consider a passive censor who is able to ob-
serve arbitrary traffic within its network. For this censor
to detect that a client is using Telex, it must be able to
distinguish normal TLS flows from Telex flows.

Telex deviates from a normal TLS handshake in the
client’s nonce (sent in the ClientHello message) and in
the client’s key exchange parameters. In Section 4, we
showed that an attacker cannot distinguish a Telex tag
from a truly random string with more than a negligible
advantage. This means that a client’s tagged nonce (using
Telex) is indistinguishable from a normal TLS random
nonce. Likewise, the Telex-generated key exchange pa-
rameters are the output of a secure PRG; they are not



distinguishable from truly random strings as a direct re-
sult of the security of the PRG.

During the TLS record protocol, symmetric cryptogra-
phy is used between the Telex station and the client. A
censor will be unable to determine the contents of this
encrypted channel, as in normal TLS, and will thus be un-
able to distinguish between a Telex session and a normal
TLS session from the cryptographic payload alone.

Stream cipher weakness TLS supports several stream
cipher modes for encrypting data sent over the connec-
tion. Normally, the key stream is used once per session, to
avoid vulnerability to a reused key attack. However, the
Telex station and NotBlocked.com use the same shared
secret when sending data to the client, so the same key
stream is used to encrypt two different plaintexts. An
attacker (possibly different from the censor) with the abil-
ity to receive both of the resulting ciphertexts can simply
XOR them together to obtain the equivalent of the plain-
texts XORed together. To mitigate this issue, Telex sends
a TCP RST to NotBlocked.com to quickly stop it from
returning data. In addition, our implementation uses a
block cipher in CBC mode, for which TLS helps mitigate
these issues further by providing for the communication
of a random per-record IV.

We note that an adversary in position to carry out this
attack (such as one surrounding the Telex station) already
has the ability to detect the client’s usage of Telex, as
well as the contents of the connection from Telex to
Blocked.com.

Traffic analysis A sophisticated adversary might at-
tempt to detect a use of Telex by detecting anomalous
patterns in connection count, packet size, and timing. Pre-
vious work shows how these characteristics can be used to
fingerprint and identify specific websites being retrieved
over TLS [18]. However, this kind of attack would be
well beyond the level of sophistication observed in current
censors [16]. We outline a possible defense against traffic
analysis in Section 9.

6.2 Active attacks

Our threat model also allows the censor to attempt a vari-
ety of active attacks against Telex. The system provides
strong defenses against the most practical of these attacks.

Traffic manipulation The censor might attempt to
modify messages between the client and the Telex sta-
tion, but Telex inherits defenses against this from TLS.
For example, if the attacker modifies any of the param-
eters in the handshake messages, the client and Telex
station will each detect this when they check the MACs in
the Finished messages, which are protected by the shared
secret of the TLS connection. Telex will then not intercept
the connection, and the NotBlocked.com server will re-
spond with a TLS error. Widescale manipulation of TLS

handshakes or payloads would disrupt Telex; however, it
would also interfere with the normal operation of TLS
websites.

Tag replay The censor might attempt to use various
replay attacks to detect Telex usage. The most basic of
these attacks is for the censor to initiate its own Telex
connection and reuse the nonce from a suspect connec-
tion; if this connection receives Telex service, the censor
can conclude that the nonce was tagged and the original
connection was a Telex request.

Our protocol prevents this by requiring the client to
prove to the Telex station that it knows the shared secret
associated with the tagged nonce. We achieve this by
using the shared secret to derive the key exchange param-
eter, as described in Section 5. In particular, consider
the encrypted Finished message that terminates the TLS
handshake. This message must be encrypted using the
freshly negotiated key (or else the TLS server will hang
up), so it cannot simply be replayed. Second, the key
exchange parameter in use must match the shared secret
in the tagged nonce, or the Telex station will not be able
to verify the MAC on the Finished message. Together,
these requirements imply that the client must know the
shared secret.

Handshake replay This property of proving knowl-
edge of the shared secret is only valid if the server pro-
vides fresh key exchange parameters. An attacker may
circumvent this protection by replaying traffic in both di-
rections across the Telex station. This attack will cause a
visible difference in the first ApplicationData message re-
ceived at the client, provided that either 1) Blocked.com’s
response is not completely static (e.g., it sets a session
cookie) or 2) the original connection being replayed was
an unsuccessful Telex connection. In either case, the
new ApplicationData message will be fresh data from
Blocked.com.

A partial defense against this attack is to enforce fresh-
ness of the timestamps used in both halves of the TLS
handshake and prohibit nonce reuse within the window
of acceptable timestamps. However, this defense fails
in the case where the original connection being replayed
was an unsuccessful attempt to initiate a Telex connec-
tion, because the Telex station did not see the first use
of the nonce. As a further defense, we note that Not-
Blocked.com will likely not accept replayed packets, and
the Telex station can implement measures to detect at-
tempts to prevent replayed packets from reaching Not-
Blocked.com.

Ciphertext comparison The attacker is able to detect
the use of Telex if they are able to receive the unaltered
traffic from NotBlocked.com, in addition to the traffic
they forward to the client. Though they will not be able
to decrypt either of the messages, they will be able to see



that the ciphertexts differ, and from this conclude that a
client is using Telex. Normally, Telex blocks the traffic
between NotBlocked.com and the client after the TLS
handshake to prevent this type of attack.

However, it is possible for an attacker to use DNS hi-
jacking for this purpose. The attacker hijacks the DNS en-
try for NotBlocked.com to point to an attacker-controlled
host. The client’s path to this host passes through Telex,
and the attacker simply forwards traffic from this host to
NotBlocked.com. Thus, the attacker is able to observe the
ciphertext traffic on both sides of the Telex station, and
therefore able to determine when it modifies the traffic.

Should censors actually implement this attack, we can
modify Telex stations in the following way to help detect
DNS hijacking until DNSSEC is widely adopted. When
it observes a tagged connection to a particular server IP,
the station performs a DNS lookup based on the common
name observed in the X.509 certificate. This DNS lookup
returns a list of IP addresses. If the server IP for the
tagged connection appears in this list, the Telex station
will respond to the client and proxy the connection. Oth-
erwise, the station will not deviate from the TLS protocol,
as it is possible that the censor is hijacking DNS. This
may lead to false negatives, as DNS is not globally con-
sistent for many sites, but as long as the censor has not
compromised the DNS chain that the station uses, there
will be no false positives. For popular sites, we could also
add a whitelisted cache of IP addresses.

Since the censor controls part of the network between
the client and the Telex station, it could also try to redirect
the connection by other means, such as transparently prox-
ying the connection to a censor-controlled host. In these
cases, the destination IP address observed by Telex will
be different from the one specified by the client. Thus,
the context strings constructed by the client and Telex
will differ, and Telex will not recognize the connection
as tagged. This attack offers the adversary an expensive
denial of service attack, but it does not allow the attacker
to detect attempted use of Telex.

Denial of service A censor may attempt to deny service
from Telex in two ways. First, it may attempt to exhaust
Telex’s bandwidth to proxy to Blocked.com. Second, it
may attempt to exhaust a Telex station’s tag detection
capabilities by creating a large amount of ClientHello
messages for the station to check. Both methods are overt
attacks that may cause unwanted political backlash on the
censor or even provoke an international incident. To com-
bat the first attack, we can implement a client puzzle [20],
where Telex issues a computationally intensive puzzle
the client must solve before we allow proxy service. The
client puzzle should be outsourced [32] to avoid addi-
tional latency that might distinguish Telex handshakes
from normal TLS handshakes. To combat the second
attack, we can implement our tag checking in hardware

to increase throughput if necessary.

7 Implementation

To demonstrate the feasibility of Telex, we implemented
a proof-of-concept client and station. While we believe
these prototypes are useful models for research and exper-
imentation, we emphasize that they may not provide the
performance or security of a more polished production
implementation, and should be used accordingly.

7.1 Client

Our prototype client program, which we refer to as
telex_client, is designed to allow any program that
uses TCP sockets to connect to the Telex service without
modification. It is written in approximately 1200 lines of
C (including 500 lines of shared TLS utility code) and
uses libevent to manage multiple connections. The user
initializes telex_client by specifying a local port and
a remote TLS server that is not blocked by the censor (e.g.
NotBlocked.com). Once telex_client launches, it be-
gins by listening on the specified local TCP socket. Each
time a program connects to this socket, telex_client
initiates a TLS connection to the unblocked server spec-
ified previously. Following the Telex-TLS handshake
protocol (see Section 5.2), telex_client inserts a tag,
generated using the scheme described in Section 4, into
the ClientHello nonce. We modified OpenSSL to accept
supplied values for the nonce as well as the client’s Diffie-
Hellman exponent. We supply this 1024-bit value as the
output of a secure pseudorandom generator with input
ksh associated with the previously generated tag. These
changes required us to modify fewer than 20 lines of code
in OpenSSL 1.0.0.

7.2 Station

Our prototype Telex station uses a modular design to pro-
vide a basis for scaling the system to high-speed links and
to ensure reliability. In particular, it fails safely: simple
failures of the components will not impact non-Telex TLS
traffic. The implementation is divided into three compo-
nents, which are responsible for diversion, recognition,
and proxying of network flows.

Diversion The first component consists of a router at
the ISP hosting the Telex station. It is configured to allow
the Telex station to passively monitor TLS packets (e.g.,
TCP port 443) via a tap interface. Normally, the router
will also forward the packets towards their destination,
but the recognition and relay components can selectively
command it to not forward traffic for particular flows.
This allows the other components to selectively manipu-
late packets and then reinject them into the network. In



our implementation, the router is a Linux system that uses
the iptables and ipset [19] utilities for flow blocking.
Recognition During the TLS handshake, the Telex
station recognizes tagged connections by inspecting the
ClientHello nonces. In our implementation, the recog-
nition subsystem reconstructs the TCP connection using
the Bro Network Intrusion Detection System [23]. Bro
reconstructs the application-layer stream and provides
an event-based framework for processing packets. We
used the Bro scripting language for packet processing
(approximately 300 lines), and we added new Bro built-in
functions using C++ (approximately 450 lines).

When the Bro script recognizes a TLS ClientHello
message, it checks the client nonce to see whether it is
tagged. (The tag checking logic is a C implementation
of the algorithm described in Section 4.) If the nonce
is tagged, we extract the shared secret associated with
the tag and create an entry for the connection in a table
indexed by flow. All future event handlers test whether
the flow triggering the event is contained in this table, and
do nothing if it is not.

The Bro script then instructs the diversion component
(via a persistent TCP connection) to block the associated
flow. As this does not affect the tap, our script still re-
ceives the associated packets, and the script is responsible
for actively forwarding them until the TLS Finished mes-
sages are observed. This allows the Bro script to inspect
each packet before forwarding it, while ensuring that any
delays in processing will not cause a packet that should
be blocked to make it through the router (e.g., a TLS Ap-
plicationData packet from NotBlocked.com to the client).
To derive the TLS shared secret from the key exchange,
our Bro script also stores the necessary parameters from
the TLS ServerKeyExchange message in the connection
table.

Once it observes the server’s TLS Finished handshake
message, our Bro script stops forwarding packets between
the client and the server (thus atomically severing traf-
fic flow between them) and sends the connection state,
which includes the TCP-level state (sequence number,
TCP options, windows, etc.), the key exchange parame-
ters, and the shared secret ksh to the proxy service compo-
nent. Our proof-of-concept implementation handles only
the TCP timestamp, selective acknowledgements (SACK),
and window scaling options, but other options could be
handled similarly. Likewise, we currently only support
TLS’s Diffie-Hellman key exchange, but RSA and other
key exchange methods could also be supported.
Proxy service The proxy service component plays the
role of the TLS server and connects the client to blocked
websites. Our implementation consists of a user space
process called telex_relay and an associated kernel
module, which are responsible for decapsulating TLS
connection data and passing it to a local Squid proxy [25].

The telex_relay process is responsible for relaying
data from the client to the Squid proxy, in effect spoofing
the server side of the connection. We defer forwarding
of the last TLS Finished message until telex_relay has
initialized its connection state in order to ensure that all
application data is observed. We implement this delay by
including the packet containing TLS Finished message in
the state sent from our Bro script and leaving the task of
forwarding the packet to its destination to telex_relay,
thus avoiding further synchronization between the com-
ponents.

Similarly to telex_client, telex_relay is written
in about 1250 lines of C (again including shared TLS
utility code) and uses libevent to manage multiple connec-
tions. It reuses our modifications to OpenSSL in order to
substitute our shared secret for OpenSSL’s shared secret.
We implement relaying of packets between the client and
the Telex service straightforwardly, by registering event
handlers to read from one party and write to the other
using the usual send and recv system calls on the one
hand and SSL_read and SSL_write on the other.

To avoid easy detection, the relay’s TCP implementa-
tion must appear similar to that of the original TLS server.
Ideally, telex_relay would simply bind(2) to the ad-
dress of the original server and set the IP_TRANSPARENT
socket option, which, in conjunction with appropriate
firewall and routing rules for transparent proxying [29],
would cause its socket to function normally despite be-
ing bound to a non-local address. This would cause the
relay’s TCP implementation to be identical to that of the
operating system that hosts it. However, the TCP hand-
shake has already happened by the time our Bro script
redirects the connection to telex_relay, so we need a
method of communicating the state negotiated during the
handshake to the TCP implementation. Accordingly, we
modified the Linux 2.6.37 kernel to add a fake_accept
ioctl that allows a userspace application to create a seem-
ingly connected socket with arbitrary TCP state, including
endpoint addresses, ports, sequence numbers, timestamps,
and windows.

8 Evaluation

In this section, we evaluate the feasibility of our Telex
proxy prototype based on measurements of its perfor-
mance.

8.1 Model deployment

We used a small model deployment consisting of three
machines connected in a hub-and-spoke topology. Our
simulated router is the hub of our deployment, and the
two machines connected are the Telex station, and a web
server serving pages over HTTPS and HTTP. The Telex
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Figure 4: Client Request Throughput — We measured
the rate at which two client machines could complete
HTTP requests for a 1 kB page over a laboratory network,
using either TLS or our Telex prototype. The prototype’s
performance was competitive with that of unmodified
TLS.

station has a 2.93 GHz Intel Core 2 Duo E7500 processor
and 2 GB of RAM. The server has a 4-core, 2.26 GHz
Intel Xeon E55200 processor and 11 GB of RAM. The
router has a 3.40 GHz Intel Pentium D processor and 1 GB
of RAM. All of the machines in our deployment and tests
are running Ubuntu Server 10.10 and are interconnected
using Gigabit Ethernet.

8.2 Tagging performance

We evaluated our tagging implementation by generating
and verifying tags in bulk using a single CPU core on
the Telex station. We performed ten trials, each of which
processed a batch of 100,000 tags. The mean time to gen-
erate a batch was 18.24 seconds with a standard deviation
of 0.016 seconds, and the mean time to verify a batch was
9.03 seconds with a standard deviation of 0.0083 seconds.
This corresponds to a throughput of approximately 5482
tags generated per second and 11074 tags verified per
second. As our TLS throughput experiments show, tag
verification appears very unlikely to be a bottleneck in
our system.

8.3 Telex-TLS performance

To compare the overhead of Telex, we used our model
deployment with two additional clients connected to the
router. Our primary client machine (client A) has a 2.93
GHz Intel Core 2 Duo E7500 processor and 2 GB of
RAM. The secondary client machine (client B) has a 3.40
GHz Intel Pentium D processor and 2 GB of RAM. For

our control, we used the Apache benchmark ab [1] to
have each of the clients simultaneously download a static
1-kilobyte page over HTTPS. To compare to Telex, we
then configured ab to download the same page through
the telex_client. Because the Telex tunnel itself is
encrypted with TLS, we configured ab to use HTTP,
not HTTPS, in this latter case. For the NotBlocked.com
used by telex_client, we used our server on port 443
(HTTPS) and for Blocked.com, we used our same server
on port 80 (HTTP).

We modified ab to ensure that only successful connec-
tions were counted in throughput numbers and to override
its use of OpenSSL’s SSL_OP_ALL option. This option
originally caused ab to send fewer packets than a default
configuration of OpenSSL, allowing the TLS control to
perform artificially better at the cost of decreased security.

We used ab to perform batches of 1000 connections
(ab -n 1000); in each batch, we configured it to use a
variable number of concurrent connections. We repeated
each trial on our two clients (client A and client B) to get
a mean connection throughput for each client.

The results are shown in Figure 4; the performance
of the Telex tunnel lags behind that of TLS at low con-
currency, but catches up at higher concurrencies. The
observered performance is consistent with Telex introduc-
ing higher latency but similar throughput, which we posit
is due to Telex’s additional processing and network delay
(e.g., execution of the fake_accept ioctl). Both Telex
and TLS exhibit diminishing returns from more than 10
concurrent requests, and both start to plateau at 30 con-
current requests. Manual inspection of client machines’
CPU utilization confirms that the tests are CPU bound by
50 concurrent connections.

8.4 Real-world experience

To test functionality on a real censor’s network, we ran a
Telex client on a PlanetLab [24] node located in Beijing
and attempted connections to each of the Alexa top 100
websites [2] using our model Telex station located at the
University of Michigan. As a control, we first loaded these
sites without using Telex and noted apparent censorship
behavior for 17 of them, including 4 from the top 10: face-
book.com, youtube.com, blogspot.com and twitter.com.
The blocking techniques we observed included forged
RST packets, false DNS results, and destination IP black
holes, which are consistent with previous findings [15].
We successfully loaded all 100 sites using Telex. We also
compared the time taken to load the 83 unblocked sites
with and without Telex. While this metric was difficult
to measure accurately due to varying network conditions,
we observed a median overhead of approximately 60%.

To approximate the user experience of a client in China,
we configured a web browser on a machine in Michigan



to proxy its connections over an SSH tunnel to our Telex
client running in Beijing. Though each request traveled
from Ann Arbor to China and back before being for-
warded to its destination website (a detour of at least
32,000 km), we were able to browse the Internet uncen-
sored, and even to watch streaming YouTube videos.

Anecdotally, three of the authors have used Telex for
their daily Web browsing for about two months, from
various locations in the United States, with acceptable
stability and little noticeable performance degradation.
The system received additional stress testing because an
early version of the Telex client did not restrict incom-
ing connections to the local host, and, as a result, one
of the authors’ computers was enlisted by others as an
open proxy. Given the amount of malicious activity we
observed before the issue was corrected, our prototype
deployment appears to be robust enough to handle small-
scale everyday use.

9 Future Work

Maturing Telex from our current proof-of-concept to a
large-scale production deployment will require substantial
work. In this section, we identify four areas for future
improvement.

Traffic shaping An advanced censor may be able to
distinguish Telex activity from normal TLS connections
by analyzing traffic characteristics such as the packet and
document sizes and packet timing. We conjecture that this
would be difficult to do on a large scale due to the large
variety of sites that can serve as NotBlocked and the dis-
ruptive impact of false positives. Nevertheless, in future
work we plan to adapt techniques from prior work [18]
to defend Telex against such analysis. In particular, we
anticipate using a dynamic padding scheme to mimic the
traffic characteristics of NotBlocked.com. Briefly, for
every client request meant for Blocked.com, the Telex
station would generate a real request to NotBlocked.com
and use the reply from NotBlocked.com to restrict the
timing and length of the reply from Blocked.com (as-
suming the Blocked.com reply arrived earlier). If the
NotBlocked.com data arrived first, the station would send
padding as a reply to the client, including a command to
send a second “request” if necessary to ensure that the
apparent document length, packet size, and round trip
time remained consistent with that of NotBlocked.com.

Server mimicry Different service implementations
and TCP stacks are easily distinguished by their observ-
able behavior [21, Chapter 8]. This presents a substantial
challenge for Telex: to avoid detection when the Not-
Blocked.com server and the Telex station run different
software, a production implementation of Telex would
need to accurately mimic the characteristics of many com-

mon server configurations. Our prototype implementation
does not attempt this, and we have noted a variety of ways
that it deviates from TLS servers we have tested. These
deviations include properties at the IP layer (e.g. stale IP
ID fields), the TCP layer (e.g. incorrect congestion win-
dows, which is detectable by early acknowledgements),
and the TLS layer (e.g. different compression methods
and extensions provided by our more recent OpenSSL
version). While these specific examples may themselves
be trivial to fix, convincingly mimicking a diverse popu-
lation of sites will likely require substantial engineering
effort. One approach would be for the Telex station to
maintain a set of userspace implementations of popular
TCP stacks and use the appropriate one to masquerade as
NotBlocked.com.

Station scalability Widescale Telex deployment will
likely require Telex stations to scale to thousands of con-
current connections, which is beyond the capacity of our
prototype. We plan to investigate techniques for adapt-
ing station components to run on multiple distributed
machines. Clustering techniques [31] developed for in-
creasing the scalability of the Bro IDS may be applicable.

Station placement Telex raises a number of questions
related to Internet topography. How many ISPs would
need to participate to provide global coverage? Short of
this, where should stations be placed to optimally cover a
particular censor’s network? We leave accurate deploy-
ment modelling for future work.

Furthermore, we currently make the optimistic assump-
tion that all packets for the client’s connection to Not-
Blocked.com pass through some particular Telex station,
but this might not be the case if there are asymmetric
routes or other complications. Does this assumption hold
widely enough for Telex to be practically deployed? If
not, the system could be enhanced in future work to sup-
port cooperation among Telex stations on different paths,
or to support multi-headed stations consisting of several
routers in different locations diverting traffic to common
recognition and relay components.

10 Conclusion

In this paper, we introduced Telex, a new concept in
censorship resistance. By moving anticensorship service
from the edge of the network into the core network infras-
tructure, Telex has the potential to provide both greater
resistance to blocking and higher performance than ex-
isting approaches. We proposed a protocol for stegano-
graphically implementing Telex on top of TLS, and we
supported its feasibility with a proof-of-concept imple-
mentation. Scaling up to a production implementation
will require substantial engineering effort and close part-
nerships with ISPs, and we acknowledge that worldwide



deployment seems unlikely without government partici-
pation. However, Internet access increasingly promises to
empower citizens of repressive governments like never be-
fore, and we expect censorship-resistant communication
to play a growing part in foreign policy.
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the non-zero elements mod p are quadratic residues, and
half are nonresidues.) Let `p be the bit length of p, and
ensure that 2`p − p <

√
p. The curve E is defined by the

equation y2 = x3−3x+b mod p for a particular value of
b.

For some values of x ∈ Fp, z = x3− 3x+ b will be a

quadratic residue mod p; for those values, y = z
p+1

4 will
be a square root of z and (x,y) will be on the elliptic curve
E.

The other values of x will never occur as the x-
coordinate of a point on the elliptic curve E; however, for
those values of x, −z will be a quadratic residue, y = z

p+1
4

will be a square root of −z, and (x,y) will be a point on
the “twist” curve E ′ defined by −y2 = x3− 3x+ b. We
choose a value of b such that both E and E ′ have prime
order over Fp. It is a fact about elliptic curves that the
orders o and o′ of E and E ′ will satisfy o = p+1− t and
o′ = p+1+ t, for some |t| ≤ 2

√
p.

Define a function φ : {0,1}`p ×{0,1}`p → {0,1}`p ,
such that φ(r,x) is the point multiplication on the ellip-
tic curve (E or E ′) which contains a point X with x-
coordinate x. To compute φ(r,x), consider r and x as
integers expressed as little-endian strings. x will be the x-
coordinate of a point X = (x,y) on one of the curves. On
that curve, compute R = r ·X , and output the x-coordinate
of R, expressed as a little-endian string. If R is the point
at infinity (which happens if and only if r is a multiple of
the curve order), φ(r,x) is undefined. We note that this
is the same function (albeit over different curves) as was
used by Bernstein in Curve25519 [3].

The tagging protocol is as follows:

Setup Telex selects arbitrary generators of E and E ′

and publishes their x-coordinates as little-endian strings
g0 and g1. Since E and E ′ have prime order, any non-
identity element is a generator of those groups. Telex
selects a random private key r ∈ {0,1}`p , and publishes
α0 = φ(r,g0) and α1 = φ(r,g1). If either of those val-
ues is undefined because r is a multiple of either group
order (this happens with probability less than 22−`p), a
different value for r can be selected. Telex also pub-
lishes hash functions H1 : {0,1}∗ → {0,1}`H1 and H2 :
{0,1}∗→{0,1}`H2 .

Client tag generation Given a context string χ , the
client selects a random s ∈ {0,1}`p and a random bit
b ∈ {0,1}. The client computes β = φ(s,gb) and k =
φ(s,αb). (The bit b selects whether the client will be us-
ing E or E ′.) In the extremely unlikely event (probability
approximately 21−`p) that s is a multiple of the group
order, φ(s,αb) will be undefined, and the client can select
a different s. The client publishes the tag β‖H1(k‖χ) and
stores the shared secret key H2(k‖χ) for later use. Again
viewing φ as point multiplication, we can see that the gen-
eration of the value k is just elliptic curve Diffie-Hellman;

we will exploit this fact in the security argument below.
Telex tag inspection Given a context string χ and a
purported (`p + `H1)-bit tag, the Telex station parses the
tag as β‖h where β is `p bits and h is `H1 bits. It computes
k′= φ(r,β ) and h′=H1(k′‖χ). If h= h′, the Telex station
accepts the tag as valid, and outputs H2(k′‖χ) as the
shared secret key for later use. Otherwise, it rejects the
tag as invalid.

A.1 Parameter selection

In our implementation, we use p = 2168−28−1 (and so
`p = 168). Using sage version 4.5.2 [26], we searched
for an appropriate value of b by randomly selecting can-
didate values of b until the orders of E and E ′ both
turned out to be prime. This search took only a few
minutes on an 8-core computer, and yielded the value b =
114301813541519167821195403070898020343878856329174. The
curve E has order p + 1 − t and the twist E ′ has
order p + 1 + t (both of which are prime) for t =
−25904187505858679946718103. g0 is the 168-bit
little-endian representation of the number 2, and g1 is
likewise of the number 0. The hash functions H1 and
H2 are both based on the SHA256 hash function; we se-
lect `H1 = 56 and `H2 = 128, and set H1 to be the first
56 bits of the SHA256 output, and H2 to be the last 128
bits of the SHA256 output. The resulting tag length is
`p + `H1 = 224 bits, which is the size of the random por-
tion of a TLS ClientHello message.

Choosing `p = 168 requires an adversary (under the
usual security assumptions for elliptic curves) to perform
284 computations in order to break the tagging scheme by
recovering the private key from the public key (and thus
violating the DDH assumption below). While we believe
this is sufficient, there are a number of methods we can use
to guard against even more powerful adversaries. The first
is that the key strength (2`p/2) can be traded off against
the rate of false positives (2−`H1 ) under the restriction that
`p + `H1 = 224. There are also other places [17] one can
hide random-looking bits in a TLS session, to increase
from the 224 bits we use to hide our tag. Next, we can
limit the utility of expending massive effort to recover
the Telex private key by having multiple keys that may
correspond to time, source, and/or destination. These
public keys could be bundled with the Telex client code.
Depending on the duration each public key is used, time-
based keys would have to be refetched periodically. As an
example, a system that switches public keys every hour
could bundle 1 million keys, enough to last for over 114
years, in only 42 MB of space.

A.2 Security argument

We must argue that an adversary, given g0, g1, α0, α1,
and a candidate tag τ , cannot determine whether τ was



an output from the above client tag generation algorithm
or was just a (`p + `H1)-bit string generated uniformly at
random by a standard TLS client. Parsing τ as β‖h, we
claim that the distribution of β values is only negligibly
different from a uniform distribution of `p-bit values, and
also that, under reasonable cryptographic assumptions,
given β , an adversary cannot distinguish the correct value
of h that would appear in a valid tag from a random `H1 -bit
value.

To see the former, consider the distribution of possible
values of β = φ(s,g0) as s ranges over {0,1}`p . Treating
s as a number, this distribution is only negligibly differ-
ent from that resulting from the range 1≤ s < o, where
o is the order of E. The latter is the distribution of x-
coordinates of a uniformly selected (non-infinity) point of
E. Let L0 be the set of values x ∈ Fp such that x3−3x+b
is a quadratic residue. Then every value in L0 appears as
the x-coordinate of two points of E, except possibly for
up to 3 points whose y-coordinates are 0, which appear
only once each. The previous distribution is then only
negligibly different from the uniform distribution on L0.
If L1 is the set of values x ∈ Fp such that x3− 3x+ b is
a quadratic nonresidue, then the same argument shows
that the distribution of possible values of β = φ(s,g1)
is only negligibly different from a uniform distribution
on L1. The required distribution of β is then negligibly
different from the result of selecting a uniform element of
Lb where b is a uniform random bit. Since the sizes of L0
and L1 are negligibly different, and L0 and L1 are disjoint,
and the size of L0∪L1 is p, which is negligibly different
from 2`p (as we chose p to be only slightly smaller than a
power of 2), our result follows.

To see the latter, we require the Decision (Co-)Diffie-
Hellman (DDH and DCoDH) assumptions [4, 5]: that
no adversary, given the points P and rP, can distin-

guish the distributions {(Q,rQ)} and {(Q,r′Q)} with
non-negligible advantage, where P and Q are points on ei-
ther E or E ′ and r and r′ are selected uniformly at random
from their respective domains (or, as above, from [0,2`p)).
If P are Q are on the same curve, this is DDH; if one is
on E and one on E ′, this is DCoDH. We also need an
assumption on the properties of H1; namely, that for any
χ and any bit b, the distribution {H1(φ(s,αb)‖χ)} over
all s is indistinguishable from the uniform distribution on
`H1-bit strings. (This is of course true if H1 is modelled
as a random oracle, but seems likely to be true for our
SHA256-based H1 as well.)

An adversary that can distinguish
{(φ(s,gb),H1(φ(s,αb)‖χ))} from {(φ(s,gb),$}
(where $ are uniform `H1-bit values) can also
distinguish {(φ(s,gb),H1(φ(s,αb)‖χ))} from
{(φ(s,gb),H1(φ(s′,αb)‖χ))} by our assumption
on H1. He can then distinguish {(φ(s,gb),φ(s,αb))}
from {(φ(s,gb),φ(s′,αb))} by taking hashes, and
{(sGb,sAb)} from {(sGb,s′Ab)} by taking x-coordinates,
where Gb is the elliptic curve point with x-coordinate
gb and Ab is the elliptic curve point with x-coordinate
αb. Writing Q = sGb and r′ = s′s−1, and noting
that Ab = rGb, this is the same as distinguishing the
distributions {(Q,rQ)} and {(Q,r′Q)}, given Gb and
Ab = rGb, which is impossible by the DDH assumption.
Care must also be taken to ensure that the adversary’s
knowledge of (G1−b,A1−b) does not aid him, but this can
also be seen to be true by DCoDH.

In summary, under the DDH and DCoDH assumptions
on E and E ′ and a random-looking-output assumption
on H1, an adversary who does not know Telex’s private
key r cannot distinguish valid tags from uniformly gen-
erated (`p + `H1)-bit strings with more than a negligible
advantage.
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