
ISOLATION 
DEFENSES

GRAD SEC
OCT 03 2017

ISOLATION
Running untrusted code in a trusted environment

Setting

Threat model

Possibly with multiple tenants

Execution begins in the trusted environment

Security goal Restrict the set of actions that an attacker can make

Attacker can provide arbitrary code and data

OS: users / processes  
Browser: webpages / browser extensions  
Cloud: virtual machines (VMs)

Attacker’s goal is to run arbitrary code or exfiltrate data

TODAY’S PAPERS

ISOLATION What have I done  
to deserve this?

SANDBOXES
Execution environment that restricts what 

an application running in it can do

NaCl’s
restrictions

Chromium’s
restrictions

Takes arbitrary x86, runs it in a sandbox in a browser
Restrict applications to using a narrow API

Data integrity: No reads/writes outside of sandbox

No unsafe instructions

CFI

Runs each webpage’s rendering engine in a sandbox
Restrict rendering engines to a narrow “kernel” API

Data integrity: No reads/writes outside of sandbox  
(incl. the desktop and clipboard)

NACL CONSTRAINTS

Applied to all untrusted binaries

NACL CONSTRAINTS

What if we didn’t  
have this?

What if we only  
had this?

Attacker could overwrite the binary with code  
 (e.g., as a result of a wget)

NaCl would have to statically analyze that new code

Load binary with invalid instructions

ROP to make the binary writable

NACL CONSTRAINTS

What if we didn’t  
have this?

What if we only  
had this?

Would render C5, C6, C7 useless

⟹	Could not determine control transfer targets

Alone, it is not checking for or preventing anything

NACL CONSTRAINTS

What if we didn’t  
have this?

What if we only  
had this?

Attacker could potentially jump anywhere  
 ROP, code injection

C1 necessary; C2 ensures these are instructions

C7 ensures that what it’s jumping to is valid

nacljmp (SFI)

and %eax, 0xffffffe0  
jmp (%eax)

jmp %eax

First byte  
is 64K (C2)

NACL CONSTRAINTS

What if we didn’t  
have this?

What if we only  
had this?

Execution would continue beyond the executable itself

Could start to run data

Provides no guarantees about what’s in the code itself

NACL CONSTRAINTS

What if we didn’t  
have this?

What if we only  
had this?

Would render nacljmp useless

⟹	Wouldn’t know what exactly we’re jumping to

Provides no guarantees about what we are jumping to

NACL CONSTRAINTS

What if we didn’t  
have this?

What if we only  
had this?

Could not perform disassembly

⟹	Could not infer what instructions are called

C1 still breaks it

Doesn’t say you can’t also hit invalid instructions

NACL CONSTRAINTS

What if we didn’t  
have this?

What if we only  
had this?

Invalid instructions!

⟹	Arbitrary syscalls, interrupts, loads, returns, …

C1 still breaks it; C4: could execute beyond the binary

C2, C3, C5, C6 are needed to get to C7

NACL VALIDATOR

C2: Known entry point

C7: No invalid instructions
C5: No invalid alignments

C3: Only use nacljmp

Common disassembly techniques

DISASSEMBLY
Linear disassembly  
 Start at instruction i  
 i += inst_len(i)

Recursive disassembly  
 Set of entry points E  
 Start at entry point i  
 if i is a jmp:  
 add its target to E  
 i += inst_len(i)  

Leaves gaps if there are
variable-length inst’s,
data, bad alignment…

Goal: CFI without access to code:  
How do you infer the control flow graph?

NACL VALIDATOR

C2: Known entry point

C7: No invalid instructions
C5: No invalid alignments

C3: Only use nacljmp

Theorem: StartAddr contains all
addresses that can be reached

from an instruction with address
in StartAddr.

NACL VALIDATOR: PROOF
Theorem: StartAddr contains all addresses that can be
reached from an instruction with address in StartAddr.

ACTUALLY DOING THINGS WITH NACL

First 4KB: Unreadable, unwritable (detect NULL pointers)

Remaining 60KB: trusted trampoline code (untrusted to trusted)
& springboard return (trusted to untrusted)

Ensures we have a Trusted Compute Base (TCB)  
in the malicious binary

Allowed to contain instructions that are forbidden elsewhere

Especially far call to enable control transfers between
untrusted user code and trusted service runtime

Separation is handled by setting / restoring  
segment registers, which locate the code/text segments

NACL’S SANDBOXES

Untrusted  
3rd-party  

code

Trampoline

Springboard

Untrusted  
3rd-party  

data Trusted  
data

Inner sandbox

Trusted  
code

System callsOuter sandbox
Mediates system calls  

at the process boundary

Swap between untrusted & trusted  
within a process via segment registers

SECURITY DESIGN PRINCIPLES
Defense in depth

SECCOMP-BPF
• Linux system call enabled since 2.6.12 (2005)

• Affected process can subsequently only perform read,
write, exit, and sigreturn system calls

- No support for open call: Can only use already-open file descriptors

• Isolates a process by limiting possible interactions

• Follow-on work produced seccomp-bpf
• Limit process to policy-specific set of system calls,

subject to a policy handled by the kernel
- Policy akin to Berkeley Packet Filters (BPF)

• Used by Chrome, OpenSSH, vsftpd, and others

TODAY’S PAPERS

CHROMIUM ARCHITECTURE

Rendering Engine:  
Interprets and executes web content

Outputs rendered bitmaps

The website is the “untrusted code”

Browser Kernel:  
Stores data (cookies, history, clipboard)

Performs all network operations

Goal: Enforce a narrow  
interface between the two

CHROMIUM’S SANDBOX
Makes extensive use of the
underlying OS’s primitives

1. Restricted security token

 The OS then provides complete mediation  
 on access to “securable objects”

 (Security token set s.t. it fails almost always)

2. Separate desktop

 Avoid Windows API’s lax security  
 checks

3. Windows Job Object

 Can’t fork processes; can’t access clipboard

CHROMIUM’S BROWSER KERNEL INTERFACE
Goal: Do not leak the ability to read
or write the user’s file system

1. Restrict rendering

Rendering engine doesn’t get a window handle

Instead, draws to an off-screen bitmap

Browser kernel copies this bitmap to the screen

3. Restrict user input

Rendering engine doesn’t get user input directly

Instead, browser kernel delivers it via BKI

2. Network & I/O

Rendering engine requests uploads, 
downloads, and file access thru BKI

