
MALWARE: 
WORMS

GRAD SEC
OCT 12 2017

TODAY’S PAPERS

CASE STUDIES
VIRUS

BRAIN

• Propagation method
• Copies itself into the boot sector
• Tells the OS that all of the boot sector is “faulty” (so that it

won’t list contents to the user)
- Thus also one of the first examples of a stealth virus

• Intercepts disk read requests for 5.25” floppy drives
- Sees if the 5th and 6th bytes of the boot sector are 0x1234
- If so, then it’s already infected, otherwise, infect it

• Payload:
• Nothing really; goal was just to spread (to show off?)
• However, it served as the template for future viruses

First IBM PC virus (1987)

Downloaded from wikipedia.org

http://wikipedia.org

ROOTKITS
Malicious code that hides from discovery

• Ways to hide:
• By intercepting system calls, patching the kernel, etc.
• Often effectively done by a man in the middle attack

• Rootkit revealer: analyzes the disk offline and
through the online system calls, and compares

• Mark Russinovich ran a rootkit revealer and found a
rootkit in 2005…

SONY XCP ROOTKIT
Detected 2005

SONY XCP ROOTKIT
Detected 2005

• Goal: keep users from copying copyrighted material

SONY XCP ROOTKIT
Detected 2005

• Goal: keep users from copying copyrighted material

• How it worked:
• Loaded thanks to autorun.exe on the CD
• Intercepted read requests for its music files
• If anyone but Sony’s music player is accessing them, then

garble the data
• Hid itself from the user (to avoid deletion)

SONY XCP ROOTKIT
Detected 2005

• Goal: keep users from copying copyrighted material

• How it worked:
• Loaded thanks to autorun.exe on the CD
• Intercepted read requests for its music files
• If anyone but Sony’s music player is accessing them, then

garble the data
• Hid itself from the user (to avoid deletion)

• How it messed up
• Morally: violated trust
• Technically: Hid all files that started with “sys”
• Seriously?: The uninstaller did not check the integrity of the

code it downloaded, and would not delete it afterwords.

STUXNET
June 2010

• Virus in that it initially spread by infected USB stick
• Once inside a network, it acted as a worm, spreading quickly

• Exploited four zero-day exploits
• Zero-day: Known to only the attacker until the attack
• Typically, one zero-day is enough to profit
• Four was unprecedented

- Immense cost and sophistication on behalf of the attacker

• Rootkit: installed signed device drivers
• Thereby avoiding user alert when installing
• Signed with certificates stolen from two Taiwanese CAs

STUXNET: PAYLOAD

STUXNET: PAYLOAD

• Do nothing

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges
• .. for producing enriched uranium for nuclear weapons

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges
• .. for producing enriched uranium for nuclear weapons

• In which case, slowly increase the freq to 1410Hz

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges
• .. for producing enriched uranium for nuclear weapons

• In which case, slowly increase the freq to 1410Hz
• You know, enough to break the centrifuge

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges
• .. for producing enriched uranium for nuclear weapons

• In which case, slowly increase the freq to 1410Hz
• You know, enough to break the centrifuge
• .. all the while sending “looks good to me” readings to the

user

STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges
• .. for producing enriched uranium for nuclear weapons

• In which case, slowly increase the freq to 1410Hz
• You know, enough to break the centrifuge
• .. all the while sending “looks good to me” readings to the

user
• .. then drop back to normal range

STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable

logic boards

• Man-in-the-middle between Windows and Siemens control systems;
looked like it was working properly to the operator

WinCC PLC

Motors

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable

logic boards

• Man-in-the-middle between Windows and Siemens control systems;
looked like it was working properly to the operator

WinCC PLC

Motors

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable

logic boards

• Man-in-the-middle between Windows and Siemens control systems;
looked like it was working properly to the operator

WinCC PLC

Motors

Stuxnet

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable

logic boards

• Man-in-the-middle between Windows and Siemens control systems;
looked like it was working properly to the operator

WinCC PLC

Motors

Stuxnet

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable

logic boards

• Man-in-the-middle between Windows and Siemens control systems;
looked like it was working properly to the operator

WinCC PLC

Motors

Stuxnet

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable

logic boards

• Man-in-the-middle between Windows and Siemens control systems;
looked like it was working properly to the operator

WinCC PLC

Motors

Stuxnet

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable

logic boards

• Man-in-the-middle between Windows and Siemens control systems;
looked like it was working properly to the operator

WinCC PLC

Motors

Stuxnet

W
in

do
w

s

• In reality, it sped up and slowed down the motors

• Result: Destroy (or at least decrease the productivity of)
nuclear centrifuges

STUXNET FALLOUT

• Iran denied they had been hit by Stuxnet

• Then claimed they were, but had contained it

• Understood now that it took out 1k of Iran’s 5k
centrifuges

• Security experts believe the U.S. did it (possibly
along with Israel) due to its sophistication and cost

• Legitimized cyber warfare

VIRUSES: SUMMARY

• Technological arms race between those who wish to
detect and those who wish to evade detection

• Started off innocuously, capable by only a few very clever
people

• But viruses have become commoditized; any scriptkiddy
can launch one (creation remains hard)

• No longer purely of academic interest
• Economic pursuits (zero-day markets)
• Cyber warfare

OTHER WORK
• Detecting malware in the Android

app store

• Lots of drive-by-download work

• Malware distribution networks: use
enterprise-wide network traces to
detect malware downloads

• Side-channel defenses: Measure,
e.g., power consumption of
benign vs. malicious code

• Metamorphic arms race

DETECTING METAMORPHIC VIRUSES

• Measure some effect of the system
• Power consumption
• Sounds during computation

• Compare that to normal operation
• Raise alarm when different

New idea: side-channel metamorphic detection

Iterations of code rewriter

Po
w

er
 

co
ns

um
pt

io
n

DETECTING METAMORPHIC VIRUSES

• Measure some effect of the system
• Power consumption
• Sounds during computation

• Compare that to normal operation
• Raise alarm when different

New idea: side-channel metamorphic detection

Iterations of code rewriter

Po
w

er
 

co
ns

um
pt

io
n

Deviates around a mean

DETECTING METAMORPHIC VIRUSES

• Measure some effect of the system
• Power consumption
• Sounds during computation

• Compare that to normal operation
• Raise alarm when different

New idea: side-channel metamorphic detection

Iterations of code rewriter

Po
w

er
 

co
ns

um
pt

io
n

Deviates around a mean

Monotonically increases:  
easier to detect over time

DETECTING METAMORPHIC VIRUSES

• Measure some effect of the system
• Power consumption
• Sounds during computation

• Compare that to normal operation
• Raise alarm when different

New idea: side-channel metamorphic detection

Iterations of code rewriter

Po
w

er
 

co
ns

um
pt

io
n

Deviates around a mean

Monotonically increases:  
easier to detect over time

Monotonically decreases:  
rewrite benign code to save power!

TODAY’S PAPERS

PROPAGATION
WORM

CONTROLLING MILLIONS OF HOSTS: WHY?

• Distributed Denial of Service (DDoS)
• Generate network traffic from many sources..
• .. to a single destination
• .. with the intention of overloading their network

- Consume too many resources for legitimate users to also use

• Steal sensitive information from millions of others
• Even a small fraction of unprotected people ⇒ $

• Confuse and disrupt

CONTROLLING MILLIONS OF HOSTS: HOW?
• Worm: self-propagates by arranging to have itself

immediately executed
• At which point it creates a new, additional instance of itself

• Typically infects by altering running code
• No user intervention required

• Like viruses, propagation and payload are orthogonal

SELF PROPAGATION
• The goal is to spread as quickly as possible

• The key is parallelization
• Ditto for viruses, but they require human interaction

to trigger each propagation

SELF PROPAGATION
• The goal is to spread as quickly as possible

• The key is parallelization
• Ditto for viruses, but they require human interaction

to trigger each propagation

SELF PROPAGATION
• The goal is to spread as quickly as possible

• The key is parallelization
• Ditto for viruses, but they require human interaction

to trigger each propagation

SELF PROPAGATION
• The goal is to spread as quickly as possible

• The key is parallelization
• Ditto for viruses, but they require human interaction

to trigger each propagation

Propagation
(1) Targeting: how does the worm find 

new prospective victims?
(2) Exploit: how does the worm get  

code to automatically run?

WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

• Morris worm
• Propagated across machines (too aggressively, thanks to a bug)
• One way it propagated was a buffer overflow attack against a

vulnerable version of fingerd on VAXes
• Sent a special string to the finger daemon, which caused it to

execute code that created a new worm copy
• Didn’t check OS: caused Suns running BSD to crash

• End result: $10-100M in damages, probation, community service

First arrival

WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

• Morris worm
• Propagated across machines (too aggressively, thanks to a bug)
• One way it propagated was a buffer overflow attack against a

vulnerable version of fingerd on VAXes
• Sent a special string to the finger daemon, which caused it to

execute code that created a new worm copy
• Didn’t check OS: caused Suns running BSD to crash

• End result: $10-100M in damages, probation, community service

Robert Morris is now a professor at MIT

First arrival

WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

Introduction of “modern day” worms

• CodeRed
• Propagation: Exploited an overflow in the MS-IIS server
• Payload 1: website defacement

• HELLO! Welcome to http://www.worm.com 
Hacked By Chinese!

• Payload 2: time bomb
• Day of month 1-20: Spread
• Day of month 20+: Attack (flood 198.137.240.91 = whitehouse.gov)

• 300,000 machines infected in 14 hours

http://www.worm.com

WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

Introduction of “modern day” worms

• CodeRed
• Propagation: Exploited an overflow in the MS-IIS server
• Payload 1: website defacement

• HELLO! Welcome to http://www.worm.com 
Hacked By Chinese!

• Payload 2: time bomb
• Day of month 1-20: Spread
• Day of month 20+: Attack (flood 198.137.240.91 = whitehouse.gov)

• 300,000 machines infected in 14 hours

http://www.worm.com

WORM PROPAGATION: PROBLEM

WORM PROPAGATION: PROBLEM
• Goal: spread your virus as widely and as

quickly as possible

WORM PROPAGATION: PROBLEM
• Goal: spread your virus as widely and as

quickly as possible

• Mechanisms:
• attack(IP address) 

tries to connect to and exploit MS-IIS (if it
happens to be running on that IP address)

WORM PROPAGATION: PROBLEM
• Goal: spread your virus as widely and as

quickly as possible

• Mechanisms:
• attack(IP address) 

tries to connect to and exploit MS-IIS (if it
happens to be running on that IP address)

• spread(code, state, IP addr)  
copies over the code (plus whatever extra
state) to the IP address, and executes it

WORM PROPAGATION: PROBLEM
• Goal: spread your virus as widely and as

quickly as possible

• Mechanisms:
• attack(IP address) 

tries to connect to and exploit MS-IIS (if it
happens to be running on that IP address)

• spread(code, state, IP addr)  
copies over the code (plus whatever extra
state) to the IP address, and executes it

WORM PROPAGATION: PROBLEM
• Goal: spread your virus as widely and as

quickly as possible

• Mechanisms:
• attack(IP address) 

tries to connect to and exploit MS-IIS (if it
happens to be running on that IP address)

• spread(code, state, IP addr)  
copies over the code (plus whatever extra
state) to the IP address, and executes it

WORM PROPAGATION: PROBLEM
• Goal: spread your virus as widely and as

quickly as possible

• Mechanisms:
• attack(IP address) 

tries to connect to and exploit MS-IIS (if it
happens to be running on that IP address)

• spread(code, state, IP addr)  
copies over the code (plus whatever extra
state) to the IP address, and executes it

• Question: What IP addresses do you
choose? What do your “children”
choose?

CODERED’S PROPAGATION: V.1
• Spread by randomly scanning the entire 32-bit IP

address space
• Pick a pseudorandom 32-bit number = IP addr
• Try attack(IP addr)
• Repeat

• This is a very common but not fundamental worm
technique

• Each instance of the worm used the same random
number seed

CODERED’S PROPAGATION: V.1
• Spread by randomly scanning the entire 32-bit IP

address space
• Pick a pseudorandom 32-bit number = IP addr
• Try attack(IP addr)
• Repeat

• This is a very common but not fundamental worm
technique

• Each instance of the worm used the same random
number seed

Linear

CODERED’S PROPAGATION: V.1
• Spread by randomly scanning the entire 32-bit IP

address space
• Pick a pseudorandom 32-bit number = IP addr
• Try attack(IP addr)
• Repeat

• This is a very common but not fundamental worm
technique

• Each instance of the worm used the same random
number seed

What would the growth over time be? Linear

CODERED’S PROPAGATION: V.2

• Revision released one week later (July 19, 2001)

• Whitehouse.gov changed its IP address
• This caused CodeRed to die for date ≥20th of the

month
• .. Author didn’t test the code: it was buggy!

• But with this revision, the random number
generator was seeded properly!

CODERED’S GROWTH

MODELING WORM SPREAD
• Worm spread is well described as infectious epidemic

• Classic “SI” model (Susceptible-Infectible)

• Model parameters:
• N: Population size
• S(t): # Susceptible hosts at time t
• I(t): # Infected hosts at time t
• β: contact rate

- How many population members each infected host communicates with
per unit time

- E.g., if each infected host scans 10 IP addresses per unit time, and 2% of
all IP addresses run a vulnerable server, then β = 0.2

N = S(t) + I(t)
S(0) = I(0) = N/2

i(t) = I(t) / N = fraction of hosts infected

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N
Increase in  
infectibles 
per unit time

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N
Increase in  
infectibles 
per unit time

Total attempted
contacts per
unit time

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N
Increase in  
infectibles 
per unit time

Total attempted
contacts per
unit time

Fraction of
contacts expected
to succeed

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N
Increase in  
infectibles 
per unit time

Total attempted
contacts per
unit time

Fraction of
contacts expected
to succeed

Rewriting using i(t) = I(t) / N and S = N - I:

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N
Increase in  
infectibles 
per unit time

Total attempted
contacts per
unit time

Fraction of
contacts expected
to succeed

Rewriting using i(t) = I(t) / N and S = N - I:

di

dt
= β · i · (1-i)

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N
Increase in  
infectibles 
per unit time

Total attempted
contacts per
unit time

Fraction of
contacts expected
to succeed

Rewriting using i(t) = I(t) / N and S = N - I:

di

dt
= β · i · (1-i) ⇒ i(t) =

eβt

1+eβt

COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
= β · I ·

S

N
Increase in  
infectibles 
per unit time

Total attempted
contacts per
unit time

Fraction of
contacts expected
to succeed

Rewriting using i(t) = I(t) / N and S = N - I:

di

dt
= β · i · (1-i) ⇒ i(t) =

eβt

1+eβt

Fraction 
infected grows 

as a logistic

FITTING THE MODEL TO CODERED

Credit: Vern Paxson’s CS 161 at Berkeley

CODERED SPREAD

dI

dt
= β · I ·

S

N

CODERED SPREAD

• Note that # of new infections scales 
with contact rate β

dI

dt
= β · I ·

S

N

CODERED SPREAD

• Note that # of new infections scales 
with contact rate β

• For a scanning worm, β increases with N
• Larger populations are infected more quickly!
• More likely that a given scan finds a population member

dI

dt
= β · I ·

S

N

CODERED SPREAD

• Note that # of new infections scales 
with contact rate β

• For a scanning worm, β increases with N
• Larger populations are infected more quickly!
• More likely that a given scan finds a population member

• Large-scale monitoring found 360K systems were infected with Code
Red on July 19

• Within 13 hours

dI

dt
= β · I ·

S

N

CODERED SPREAD

• Note that # of new infections scales 
with contact rate β

• For a scanning worm, β increases with N
• Larger populations are infected more quickly!
• More likely that a given scan finds a population member

• Large-scale monitoring found 360K systems were infected with Code
Red on July 19

• Within 13 hours

• That night (the 20th) the worm died due to bug

dI

dt
= β · I ·

S

N

CODERED SPREAD

• Note that # of new infections scales 
with contact rate β

• For a scanning worm, β increases with N
• Larger populations are infected more quickly!
• More likely that a given scan finds a population member

• Large-scale monitoring found 360K systems were infected with Code
Red on July 19

• Within 13 hours

• That night (the 20th) the worm died due to bug

• Successfully managed to restart itself Aug 1
• … and each successive month for years to come

dI

dt
= β · I ·

S

N

BETTER WORMS

Key challenge:
Coordinating action across distributed hosts

This is a distributed systems problem!

BETTER WORMS

BETTER WORMS
Localized scanning: 

Preferentially hosts with similar IP addresses

BETTER WORMS
Localized scanning: 

Preferentially hosts with similar IP addresses

Pr = 3/8 Random IP address in same /16

Pr = 4/8 Random IP address in same /8

Pr = 1/8 Random IP address

BETTER WORMS

BETTER WORMS
Hit-list scanning 

Start with a list of likely-successful targets

BETTER WORMS
Hit-list scanning 

Start with a list of likely-successful targets

Quickly build an initial set of bots to “get off the ground”

Likely targets

BETTER WORMS

BETTER WORMS
Permutation scanning 

Break up the work deterministically

BETTER WORMS
Permutation scanning 

Break up the work deterministically

Permuted list of IP addresses

BETTER WORMS
Permutation scanning 

Break up the work deterministically

Permuted list of IP addresses

Start at a random seed; iteratively attack

BETTER WORMS
Permutation scanning 

Break up the work deterministically

Permuted list of IP addresses

Start at a random seed; iteratively attack

BETTER WORMS
Permutation scanning 

Break up the work deterministically

Permuted list of IP addresses

Start at a random seed; iteratively attack

When you reach an already-attacked node, re-seed

BETTER WORMS
Permutation scanning 

Break up the work deterministically

Permuted list of IP addresses

Start at a random seed; iteratively attack

When you reach an already-attacked node, re-seed

WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

The harm can be substantial

• SQL Slammer
• Exploited an overflow in the MS-SQL server
• 75,000 machines infected in 10 minutes

LIFE BEFORE SLAMMER

Credit: Vern Paxson’s CS 161 at Berkeley

LIFE JUST AFTER SLAMMER

Credit: Vern Paxson’s CS 161 at Berkeley

SLAMMER PROPAGATION

• Slammer exploited connectionless UDP service
rather than connection-oriented TCP

• Entire worm fit in a single packet!

• When scanning, the worm could “fire and forget”
• Stateless!

• Infected 75k+ hosts in < 10 minutes

• At its peak, doubled ever 8.5 seconds

SLAMMER’S GROWTH

Credit: Vern Paxson’s CS 161 at Berkeley

SLAMMER’S GROWTH

Credit: Vern Paxson’s CS 161 at Berkeley

HOW CAN YOU MEASURE WORM ACTIVITY AT SCALE?

Idea: Exploit the fact that worms indiscriminately scan

HOW CAN YOU MEASURE WORM ACTIVITY AT SCALE?

Idea: Exploit the fact that worms indiscriminately scan

Unused  
Network

No-one should be  
hitting this network

INTERNET BACKGROUND RADIATION
Traffic sent to unused IP addresses

WHAT CAN WE LEARN FROM BACKGROUND RADIATION?

