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BRAIN

• Propagation method 
• Copies itself into the boot sector 
• Tells the OS that all of the boot sector is “faulty” (so that it 

won’t list contents to the user) 
- Thus also one of the first examples of a stealth virus 

• Intercepts disk read requests for 5.25” floppy drives 
- Sees if the 5th and 6th bytes of the boot sector are 0x1234 
- If so, then it’s already infected, otherwise, infect it 

• Payload: 
• Nothing really; goal was just to spread (to show off?) 
• However, it served as the template for future viruses

First IBM PC virus (1987)



Downloaded from wikipedia.org

http://wikipedia.org


ROOTKITS
Malicious code that hides from discovery

• Ways to hide: 
• By intercepting system calls, patching the kernel, etc. 
• Often effectively done by a man in the middle attack 

• Rootkit revealer: analyzes the disk offline and 
through the online system calls, and compares 

• Mark Russinovich ran a rootkit revealer and found a 
rootkit in 2005…
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SONY XCP ROOTKIT
Detected 2005

• Goal: keep users from copying copyrighted material

• How it worked: 
• Loaded thanks to autorun.exe on the CD 
• Intercepted read requests for its music files 
• If anyone but Sony’s music player is accessing them, then 

garble the data 
• Hid itself from the user (to avoid deletion)

• How it messed up 
• Morally: violated trust 
• Technically: Hid all files that started with “$sys$” 
• Seriously?: The uninstaller did not check the integrity of the 

code it downloaded, and would not delete it afterwords.



STUXNET
June 2010

• Virus in that it initially spread by infected USB stick 
• Once inside a network, it acted as a worm, spreading quickly 

• Exploited four zero-day exploits 
• Zero-day: Known to only the attacker until the attack 
• Typically, one zero-day is enough to profit 
• Four was unprecedented 

- Immense cost and sophistication on behalf of the attacker 

• Rootkit: installed signed device drivers 
• Thereby avoiding user alert when installing 
• Signed with certificates stolen from two Taiwanese CAs
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STUXNET: PAYLOAD

• Do nothing

• Unless attached to particular models of frequency 
converter drives that operate at 807-1210Hz
• You know, like those in Iran and Finland
• .. those ones that are used to operate centrifuges
• .. for producing enriched uranium for nuclear weapons

• In which case, slowly increase the freq to 1410Hz
• You know, enough to break the centrifuge
• .. all the while sending “looks good to me” readings to the 

user
• .. then drop back to normal range



STUXNET: PAYLOAD
• Targets industrial control systems by overwriting programmable 

logic boards 

• Man-in-the-middle between Windows and Siemens control systems; 
looked like it was working properly to the operator
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STUXNET FALLOUT

• Iran denied they had been hit by Stuxnet 

• Then claimed they were, but had contained it 

• Understood now that it took out 1k of Iran’s 5k 
centrifuges 

• Security experts believe the U.S. did it (possibly 
along with Israel) due to its sophistication and cost 

• Legitimized cyber warfare



VIRUSES: SUMMARY

• Technological arms race between those who wish to 
detect and those who wish to evade detection 

• Started off innocuously, capable by only a few very clever 
people 

• But viruses have become commoditized; any scriptkiddy 
can launch one (creation remains hard) 

• No longer purely of academic interest 
• Economic pursuits (zero-day markets) 
• Cyber warfare



OTHER WORK
• Detecting malware in the Android 

app store 

• Lots of drive-by-download work 

• Malware distribution networks: use 
enterprise-wide network traces to 
detect malware downloads 

• Side-channel defenses: Measure, 
e.g., power consumption of 
benign vs. malicious code 

• Metamorphic arms race



DETECTING METAMORPHIC VIRUSES

• Measure some effect of the system 
• Power consumption 
• Sounds during computation 

• Compare that to normal operation 
• Raise alarm when different

New idea: side-channel metamorphic detection
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• Measure some effect of the system 
• Power consumption 
• Sounds during computation 

• Compare that to normal operation 
• Raise alarm when different

New idea: side-channel metamorphic detection

Iterations of code rewriter

Po
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Deviates around a mean

Monotonically increases:  
easier to detect over time

Monotonically decreases:  
rewrite benign code to save power!
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CONTROLLING MILLIONS OF HOSTS: WHY?

• Distributed Denial of Service (DDoS) 
• Generate network traffic from many sources.. 
• .. to a single destination 
• .. with the intention of overloading their network 

- Consume too many resources for legitimate users to also use 

• Steal sensitive information from millions of others 
• Even a small fraction of unprotected people ⇒ $ 

• Confuse and disrupt



CONTROLLING MILLIONS OF HOSTS: HOW?
• Worm: self-propagates by arranging to have itself 

immediately executed 
• At which point it creates a new, additional instance of itself 

• Typically infects by altering running code 
• No user intervention required 

• Like viruses, propagation and payload are orthogonal
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• Ditto for viruses, but they require human interaction 
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SELF PROPAGATION
• The goal is to spread as quickly as possible 

• The key is parallelization 
• Ditto for viruses, but they require human interaction 

to trigger each propagation

Propagation
(1) Targeting: how does the worm find 

new prospective victims? 
(2) Exploit: how does the worm get  

code to automatically run?



WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

• Morris worm 
• Propagated across machines (too aggressively, thanks to a bug) 
• One way it propagated was a buffer overflow attack against a 

vulnerable version of fingerd on VAXes 
• Sent a special string to the finger daemon, which caused it to 

execute code that created a new worm copy 
• Didn’t check OS: caused Suns running BSD to crash 

• End result: $10-100M in damages, probation, community service

First arrival
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• Morris worm 
• Propagated across machines (too aggressively, thanks to a bug) 
• One way it propagated was a buffer overflow attack against a 

vulnerable version of fingerd on VAXes 
• Sent a special string to the finger daemon, which caused it to 

execute code that created a new worm copy 
• Didn’t check OS: caused Suns running BSD to crash 

• End result: $10-100M in damages, probation, community service

Robert Morris is now a professor at MIT

First arrival



WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

Introduction of “modern day” worms

• CodeRed 
• Propagation: Exploited an overflow in the MS-IIS server 
• Payload 1: website defacement 

• HELLO! Welcome to http://www.worm.com 
Hacked By Chinese! 

• Payload 2: time bomb 
• Day of month 1-20: Spread 
• Day of month 20+: Attack (flood 198.137.240.91 = whitehouse.gov) 

• 300,000 machines infected in 14 hours
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WORM PROPAGATION: PROBLEM
• Goal: spread your virus as widely and as 

quickly as possible

• Mechanisms:
• attack(IP address) 

tries to connect to and exploit MS-IIS (if it 
happens to be running on that IP address)

• spread(code, state, IP addr)  
copies over the code (plus whatever extra 
state) to the IP address, and executes it

• Question: What IP addresses do you 
choose?  What do your “children” 
choose?
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address space 
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• Try attack(IP addr) 
• Repeat 

• This is a very common but not fundamental worm 
technique 
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CODERED’S PROPAGATION: V.1
• Spread by randomly scanning the entire 32-bit IP 

address space 
• Pick a pseudorandom 32-bit number = IP addr 
• Try attack(IP addr) 
• Repeat 

• This is a very common but not fundamental worm 
technique 

• Each instance of the worm used the same random 
number seed

What would the growth over time be? Linear



CODERED’S PROPAGATION: V.2

• Revision released one week later (July 19, 2001) 

• Whitehouse.gov changed its IP address 
• This caused CodeRed to die for date ≥20th of the 

month 
• .. Author didn’t test the code: it was buggy! 

• But with this revision, the random number 
generator was seeded properly!



CODERED’S GROWTH



MODELING WORM SPREAD
• Worm spread is well described as infectious epidemic 

• Classic “SI” model (Susceptible-Infectible) 

• Model parameters: 
• N: Population size 
• S(t): # Susceptible hosts at time t 
• I(t): # Infected hosts at time t 
• β: contact rate 

- How many population members each infected host communicates with 
per unit time 

- E.g., if each infected host scans 10 IP addresses per unit time, and 2% of 
all IP addresses run a vulnerable server, then β = 0.2

N = S(t) + I(t) 
S(0) = I(0) = N/2

i(t) = I(t) / N = fraction of hosts infected
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COMPUTING HOW AN EPIDEMIC PROGRESSES

dI

dt
=  β · I ·

S

N
Increase in  
# infectibles 
per unit time

Total attempted 
contacts per  
unit time

Fraction of 
contacts expected 
to succeed

Rewriting using i(t) = I(t) / N and S = N - I:

di

dt
=  β · i · (1-i) ⇒ i(t) = 

eβt

1+eβt

Fraction 
infected grows 

as a logistic



FITTING THE MODEL TO CODERED

Credit: Vern Paxson’s CS 161 at Berkeley
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CODERED SPREAD

• Note that # of new infections scales 
with contact rate β 

• For a scanning worm, β increases with N 
• Larger populations are infected more quickly! 
• More likely that a given scan finds a population member

• Large-scale monitoring found 360K systems were infected with Code 
Red on July 19 

• Within 13 hours

• That night (the 20th) the worm died due to bug

• Successfully managed to restart itself Aug 1 
• … and each successive month for years to come

dI

dt
=  β · I ·

S

N



BETTER WORMS

Key challenge: 
Coordinating action across distributed hosts

This is a distributed systems problem!
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BETTER WORMS
Localized scanning: 

Preferentially hosts with similar IP addresses

Pr = 3/8 Random IP address in same /16

Pr = 4/8 Random IP address in same /8

Pr = 1/8 Random IP address
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BETTER WORMS
Hit-list scanning 

Start with a list of likely-successful targets

Quickly build an initial set of bots to “get off the ground”

Likely targets
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Start at a random seed; iteratively attack

When you reach an already-attacked node, re-seed



WORMS: A BRIEF HISTORY

1988 1999 2000 2001 2002 2003

The harm can be substantial

• SQL Slammer 
• Exploited an overflow in the MS-SQL server 
• 75,000 machines infected in 10 minutes



LIFE BEFORE SLAMMER

Credit: Vern Paxson’s CS 161 at Berkeley



LIFE JUST AFTER SLAMMER

Credit: Vern Paxson’s CS 161 at Berkeley



SLAMMER PROPAGATION

• Slammer exploited connectionless UDP service 
rather than connection-oriented TCP 

• Entire worm fit in a single packet! 

• When scanning, the worm could “fire and forget” 
• Stateless! 

• Infected 75k+ hosts in < 10 minutes 

• At its peak, doubled ever 8.5 seconds
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HOW CAN YOU MEASURE WORM ACTIVITY AT SCALE?

Idea: Exploit the fact that worms indiscriminately scan

Unused  
Network

No-one should be  
hitting this network



INTERNET BACKGROUND RADIATION
Traffic sent to unused IP addresses



WHAT CAN WE LEARN FROM BACKGROUND RADIATION?


